北京市人大附中2021届高三上学期10月月考数学试题含答案

合集下载

人大附中2021届高三数学试卷及答案

人大附中2021届高三数学试卷及答案

人大附中2021届高三数学试卷一、选择题:共10小题,每小题4分,共40分. 在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{sin ,0}A x y x x π==<<,{cos 0}A y y x x π==<<,,则A B =( )A.{}4πB.}C.{(}4πD. 以上答案都不对2.已知向量(,1)t =a ,(1,2)=b .若⊥a b ,则实数t 的值为( )A .2- B.2 C.12-D.123.下列函数中,既是奇函数又在区间(0,1)上单调递增的是( )A.12y x = B.1sin sin y x x=+C.2log y x =D.x x y e e -=-4. 已知抛物线212y x =-的焦点与双曲线2214x y a -=的一个焦点重合,则a =( )C.5D.5. 已知3log 6a =,54log b =,若12log a m b >>,m *∈N ,则满足条件的m 可以为( )A.18B.14C.12D.16.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( )A.1个B.2个C.3个D.4个7. “3a =”是“直线21:+60l ax a y +=和直线2:(2)320l a x ay a -++=平行”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8. 已知函数()sin()f x A x ωϕ=+(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )A. (2)(2)(0)f f f <-<B.(0)(2)(2)f f f <<-C. (2)(0)(2)f f f -<<D.(2)(0)(2)f f f <<-9.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .2 C .52 D .3210.某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入了的最后角逐.他们 还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为,,(,a b c a b c >>且,,)N a b c *∈;选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是( ) A. 每场比赛的第一名得分a 为4 B.甲至少有一场比赛获得第二名 C.乙在四场比赛中没有获得过第二名 D.丙至少有一场比赛获得第三名二、填空题;共5小题,每小题5分,共25分 11.设i 为虚数单位,则11ii-+的虚部为 . 12.已知椭圆22221(0)x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为 .13.数列}{n a 的前n 项和为S n ,且111,2,1,2,3,n n a a S n +===.则3=_______;a234+1_______.n a a a a +++⋅⋅⋅+=14. 椭圆的左、右焦点分别为,点在椭圆上且同时满足:①是等腰三角形; ②是钝角三角形; ③线段12F F 为的腰; ④椭圆上恰好有4个不同的点P . 则椭圆的离心率的取值范围是 .15.已知集合{}22()|(cos )(sin )40P x y x y θθθ=-+-=≤≤π,, .由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”. 给出下列结论:① “水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为(0,1);2222:1(0)x y C a b a b+=>>12,F F P 12F F P ∆12F F P ∆12F F P ∆C C②在集合P 中任取一点M ,则M 到原点的距离的最大值为3;③阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则23CD =+;④白色“水滴”图形的面积是1136π-.其中正确的有 .三、解答题:共3小题,共35分. 解答应写出文字说明,演算步骤或证明过程. 16. (本小题满分11分)已知2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调递减区间;(Ⅰ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.17. (本小题满分12分)设函数2()e 3x f x m x =-+,其中∈m R .(Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅰ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围.18. (本小题满分12分)已知椭圆:C 22221(0)x y a b a b+=>>经过两点2P ,(Q . (Ⅰ)求椭圆C 的标准方程;(Ⅰ)过椭圆的右焦点F 的直线l 交椭圆C 于A ,B 两点,且直线l 与以线段FP 为直径的圆交于另一点E (异于点F ),求AB EF ⋅的最大值.四、选做题(本小题满分10分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅱ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-.人大附中2021届高三数学试卷答案一、选择题:共10小题,每小题4分,共40分. 在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{sin ,0}A x y x x π==<<,{cos 0}A y y x x π==<<,,则A B =( D )A.{}4πB.}C.{(}4πD. 以上答案都不对2.已知向量(,1)t =a ,(1,2)=b .若⊥a b ,则实数t 的值为( A )A .2- B.2 C.12-D.123.下列函数中,既是奇函数又在区间(0,1)上单调递增的是( D )A.12y x = B.1sin sin y x x=+C.2log y x =D.x x y e e -=-4. 已知抛物线212y x =-的焦点与双曲线2214x y a -=的一个焦点重合,则a =( C )C.5D.5. 已知3log 6a =,54log b =,若12log a m b >>,m *∈N ,则满足条件的m 可以为( C ) A.18B.14C.12D.16.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( C )A.1个B.2个C.3个D.4个7. “3a =”是“直线21:+60l ax a y +=和直线2:(2)320l a x ay a -++=平行”的( D )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8. 已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( A ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<- 9.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( B ) A .3 B .2 C .52 D .3210.某中学举行了科学防疫知识竞赛.经过选拔,甲、乙、丙三位选手进入了的最后角逐.他们 还将进行四场知识竞赛.规定:每场知识竞赛前三名的得分依次为,,(,a b c a b c >>且,,)N a b c *∈;选手总分为各场得分之和.四场比赛后,已知甲最后得分为16分,乙和丙最后得分都为8分,且乙只有一场比赛获得了第一名,则下列说法正确的是(C )A. 每场比赛的第一名得分a 为4B.甲至少有一场比赛获得第二名C.乙在四场比赛中没有获得过第二名D.丙至少有一场比赛获得第三名二、填空题;共5小题,每小题5分,共25分 11.设i 为虚数单位,则11ii-+的虚部为 .-112.已知椭圆22221(0)x y a b a b +=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为 . (答案:21-5)13.数列}{n a 的前n 项和为S n ,且111,2,1,2,3,n n a a S n +===.则3=_______;a234+1_______.n a a a a +++⋅⋅⋅+= 63 1.n-;14. 椭圆的左、右焦点分别为,点在椭圆上且同时满足:①是等腰三角形;②是钝角三角形; ③线段12F F 为的腰; ④椭圆上恰好有4个不同的点P .则椭圆的离心率的取值范围是___________.1(,2-1)315.已知集合{}22()|(cos )(sin )40P x y x y θθθ=-+-=≤≤π,, .由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”. 给出下列结论: ① “水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为(0,1); ②在集合P 中任取一点M ,则M 到原点的距离的最大值为3; ③阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则23CD =+;④白色“水滴”图形的面积是1136π-.其中正确的有__________.②④三、解答题:共3小题,共35分. 解答应写出文字说明,演算步骤或证明过程. 16. (本小题满分11分) 设2()sin cos cos ()4f x x x x π=-+.2222:1(0)x y C a b a b+=>>12,F F P 12F F P ∆12F F P ∆12F F P ∆C C(Ⅰ)求()f x 的单调递减区间;(Ⅰ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.解:(Ⅰ)由题意1cos(2)12()sin 222x f x x π++=- x x 2sin 21212sin 21+-= 212sin -=x . …………………………………………2分 由 ππππk x k 223222+≤≤+, 得ππππk x k +≤≤+434(Z k ∈), 所以)(x f 的单调递增区间是]4,4[ππππk k ++-(Z k ∈). ……………………4分(II )11()sin 0,sin 222A fA A =-=∴= 由题意A 是锐角,所以 cos 2A =, …………………………………………6分 由余弦定理:A bc c b a cos 2222-+= 2212b c bc=+≥可得32321+=-≤∴bc ,且当c b =时成立. (9)分2sin 4bc A +∴≤,ABC ∆∴面积最大值为432+.………………………11分 17. (本小题满分12分)设函数2()e 3x f x m x =-+,其中∈m R .(Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅰ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围. 解:(Ⅰ)由函数()f x 是偶函数,得()()f x f x -=,即22e()3e 3xx m x m x ---+=-+对于任意实数x 都成立,所以0m =. ……………… 1分此时3()()3h x xf x x x ==-+,则2()33h x x '=-+.由()0h x '=,解得1x =±. ……………… 2分 当x 变化时,()h x '与()h x 的变化情况如下表所示:所以(h 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-上单调递增.………… 4分 所以()h x 有极小值(1)2h -=-,()h x 有极大值(1)2h =. ……………… 5分(Ⅰ)由2()e 30xf x m x =-+=,得23ex x m -=.所以“()f x 在区间[2,4]-上有两个零点”等价于“直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点”. ……………… 6分对函数()g x 求导,得223()exx x g x -++'=. ……………… 7分 由()0g x '=,解得11x =-,23x =. ……………… 8分 当x 变化时,()g x '与()g x 的变化情况如下表所示:所以g 在(2,1)--,上单调递减,在(1,3)-上单调递增. ………… 10分 又因为2(2)e g -=,(1)2e g -=-,36(3)(2)e g g =<-,413(4)(1)e g g =>-, 所以当4132e e m -<<或36e m =时,直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点. 即当4132e em -<<或36e m =时,函数()f x 在区间[2,4]-上有两个零点.…… 12分 18. (本小题满分12分)已知椭圆:C 22221(0)x y a b a b+=>>经过两点2P ,(Q . (Ⅰ)求椭圆C 的标准方程;(Ⅰ)过椭圆的右焦点F 的直线l 交椭圆C 于A ,B 两点,且直线l 与以线段FP 为直径的圆交于另一点E (异于点F ),求AB EF ⋅的最大值.18.解:(Ⅰ)因为椭圆:C 22221(0)x y a b a b+=>>过点(1,2P ,(Q ,所以22111,2a a b⎧=⎪⎨+=⎪⎩得1,a b ⎧=⎪⎨=⎪⎩ 故椭圆C 的标准方程为2212x y +=.……………………………4分 (Ⅰ)由题易知直线l 的斜率不为0,设l :1x ty =+,由221,1,2x ty x y =+⎧⎪⎨+=⎪⎩得22(2)210t y ty ++-=,显然0∆>.设1122(,),(,)A x y B x y ,则12122221,22t y y y y t t --+==++.……5分又12AB y =-===………………………7分以FP为直径的圆的圆心坐标为(1,4,半径为4r =, 故圆心到直线l的距离为d ==所以EF ===分所以AB EF ⋅=== 因为211≥t +,所以221(1)21≥t t +++,即221114(1)21≤t t ++++.所以1≤AB FE ⋅=.…………………………………11分当0t =时,直线与椭圆有交点,满足题意,且1AB FE ⋅=, 所以AB FE ⋅的最大值为1.………………………………12分四、选做题(本小题满分10分)设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅱ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-.(Ⅰ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.………………….2分因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.…….……………………….4分(Ⅱ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos e cos 2e n n y x n n n n n f y y x n n π--π==-π=∈N .因为()()20e 1n n f y f y -π==≤及(Ⅰ),所以0n y y ≥. (6)分由(I )知当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数, 因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭. 又由(I )知,()()02n n n f y g y y π⎛⎫+-≥⎪⎝⎭, ………………………………….8分 故()()()()()022********s e e e e e in cos sin cos n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤-=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.…………………………………………….10分。

2021年高三10月月考试卷(数学)

2021年高三10月月考试卷(数学)

2021年高三10月月考试卷(数学)一、填空题:本大题共12小题,每小题5分,共60分.把答案填写在答题卡...相应位置上......1、原命题:“设”以及它的逆命题,否命题、逆否命题中,真命题共有个.2、已知命题,命题,则命题p是命题q的条件3、若向量满足且,则实数k的值为4、若不等式的解集为,求的值5、已知等差数列的前项和为,若,且三点共线(该直线不过点),则等于6、若复数满足,且在复平面内所对应的点位于轴的上方,则实数的取值范围是。

7.已知、、是三角形的三个顶点,,则的形状为。

8.在条件的最大值为 .9.把实数a,b,c,d排成形如的形式,称之为二行二列矩陈。

定义矩阵的一种运算·,该运算的几何意义为平面上的点(x,y)在矩阵的作用下变换成点,若点A在矩阵的作用下变换成点(2,4),则点A的坐标为 .10、把一条长是6m的绳子截成三段,各围成一个正三角形,则这三个正三角形的面积和最小值是m2.11、对,记,按如下方式定义函数:对于每个实数,.则函数最大值为.12、已知函数,直线:9x+2y+c=0.若当x∈[-2,2]时,函数y=f(x)的图像恒在直线的下方,则c的取值范围是________________________二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,只.有.一项..是符合题目要求的.13 定义集合与的运算,则等于(A)(B)(C)(D)()14.根据表格中的数据,可以断定函数的一个零点所在的区间是15、函数()是上的减函数,则的取值范围是 A. B. C. D.( ) 16.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f (x ),另一种平均价格曲线y=g(x ),如f (2)=3表示股票开始卖卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元。

下面给出了四个图象,实线表示y=f (x ),虚线表示y=g(x ),其中可能..正确的是 ( )三、解答题:本大题共6小题,共80分.解答时应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设函数. (I )解不等式;(II )若关于的不等在恒成立,试求的取值范围. 18.(本小题满分12分)已知等差数列的前4项和为10,且、 、成等比数列. (1)求数列的通项公式;(2)设,求数列的前n 项和. 19.(本小题满分12分)设函数,其中向量R x x x n x m ∈==),2sin 3,(cos ),1,cos 2(.(Ⅰ)求f (x )的最小正周期与单调减区间;(Ⅱ)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知f (A ) =2,b = 1,△ABC 的面积为,求的值.ABCD20.(本小题满分14分)为迎接xx年的奥运会,某厂家拟在xx年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元()(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。

中国人大附中2021届高三10月考试卷数学试题 Word版含答案

中国人大附中2021届高三10月考试卷数学试题 Word版含答案

1 1 29
25
2 6 -
3 150
4 Ⅰ级、φ20钢筋拉环, 与工字钢双面焊接
100
100
100 25 550 20 50 600
100
100
5 M10×80螺杆加M10螺帽 φ16圆钢,末端打扁
600
两块50×50×3、 30×50×3mm钢板焊接 45 700 100 50 50
950 100 700 1100
150
墙体拉结平面图
墙体拉结剖面图
墙体拉结三维效果图
连墙杆1
图号
29
100 100
连墙杆 1800 连墙杆
900
1800 1500
100
900
150
柱子拉结平面图
连墙杆
柱子拉结剖面图
柱子拉结三维效果图
100 100 ≥200 双扣件
100 1800
100
900
150
预埋钢管拉结大样图
预埋钢管拉结三维效果图
总图例
18mm厚木胶合板 安全平网
50×100mm木枋
钢巴网脚手板
钢筋砼结构
竹串片脚手板
φ48钢管刷黄色油漆
混凝土
400
φ48钢管刷红白油漆
水泥砂浆
φ48钢管
灰砂砖砌体
模板挡脚板
400
素土夯实
200 150
模板红白警示线条
密目安全网
目 录
第一部分 施工现场安全生产标准化 第二部分 施工现场文明施工标准化
300
100 木枋侧面与地面之间的缝隙封严
100 400 100 300
400
400
400 100 300 100

2021年高三上学期10月月考试题 数学(理) 含答案

2021年高三上学期10月月考试题 数学(理) 含答案

2021年高三上学期10月月考试题 数学(理) 含答案(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1. 已知集合M ={x |x <1},N ={x |lg(2x +1)>0},则M ∩N = .(0,1)2. 复数z =a +i 1-i为纯虚数,则实数a 的值为 .13. 不等式|x +1|·(2x ―1)≥0的解集为 . {x |x =―1或x ≥12}4. 函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写).5. 充要6. m 为任意实数时,直线(m -1)x +(2m -1)y =m -5必过定点_________.(9,-4)7. 向量a =(1,2)、b =(-3,2),若(k a +b )∥(a -3b ),则实数k =_________. 8. 由题意知,a 与b 不共线,故k ∶1=1∶(-3),∴k =-139. 关于x 的方程cos 2x +4sin x -a =0有解,则实数a 的取值范围是 . 10. [-4,4]11. 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.412. 解:x +2y =8-x ·(2y )≥8-⎝⎛⎭⎫x +2y 22,整理得(x +2y )2+4(x +2y )-32≥0,即(x +2y -4) (x+2y +8)≥0.又x +2y >0,∴x +2y ≥4.13. 已知点x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________.(-∞,3]14. 已知△ABC 是等边三角形,有一点D 满足→AB +12·→AC =→AD ,且|→CD |=3,那么→DA ·→DC= . 315. 若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是_________.[12,+∞)16. 解:f '(x )=2mx +1x -2≥0对x >0恒成立,2mx 2+1-2x ≥0∴2m ≥2x -1x 2=-1x 2+2x,令t =1x >0∴2m ≥-t 2+2t ,∵()-t 2+2t max =1,∴2m ≥1,∴m ≥12. 17. 已知函数f (x )=⎩⎨⎧-x 2+ax (x ≤1)2ax -5 (x >1),若x 1, x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 . (-∞,4)18. 将y =sin2x 的图像向右平移φ单位(φ>0),使得平移后的图像仍过点⎝⎛⎭⎫π3,32,则φ的最小值为_______.19. 解法一:点代入y =sin(2x -2φ)∴sin(2π3-2φ)=32∴-2φ+2π3=2k π+π3或-2φ+2π3=2k π+2π3∴φ=-k π+π6或φ=-k π∴φ的最小值为π6.20. 解法二:结合函数y =sin2x 的图形.21. 已知函数f (x )满足f (x )=f (1x ),当x ∈[1,3]时,f (x )=ln x ,若在区间[13,3]内,函数g (x )=f(x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是 . 22. ⎣⎡ln33,⎭⎫1e二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 23. (本小题满分14分) 24. 已知直线和.25. 问:m 为何值时,有:(1);(2).解:(1)∵,∴,得或;当m =4时,l 1:6x +7y -5=0,l 2:6x +7y =5,即l 1与l 2重合,故舍去. 当时,即 ∴当时,. ………7分 (2)由得或; ∴当或时,. ………14分 26. (本小题满分14分)27. 已知函数f (x )=sin(ωx +φ) (ω>0,0<φ<π),其图像经过点M ⎝⎛⎭⎫π3,12,且与x 轴两个相邻的交点的距离为π. 28. (1)求f (x )的解析式;29. (2)在△ABC 中,a =13,f (A )=35,f (B )=513,求△ABC 的面积.解:(1)依题意知,T =2π,∴ω=1,∴f (x )=sin(x +φ)∵f (π3)=sin(π3+φ)=12,且0<φ<π ∴π3<π3+φ<4π3 ∴π3+φ=5π6 即φ=π2∴f (x )=sin ⎝⎛⎭⎫x +π2=cos x . ………6分(2)∵f (A )=cos A =35,f (B )=cos B =513, ∴A ,B ∈(0,π2)∴sin A =45,sin B =1213 ………8分∴sin C =sin(A +B )=sin A cos B +cos A sin B =5665………10分 ∵在△ABC 中a sin A =bsin B ∴b =15. ………12分∴S △ABC =12ab sin C =12×13×15×5665=84. ………14分30. (本小题满分15分)31. 已知|a |=3,|b |=2,a 与b 的夹角为120º,当k 为何值时, 32. (1)k a -b 与a -k b 垂直;33. (2)|k a -2b |取得最小值?并求出最小值.解:(1)∵k a -b 与a -k b 垂直,∴(k a -b )·(a -k b )=0.∴k a 2-k 2a ·b -b ·a +k b 2=0.∴9k -(k 2+1)×3×2·cos120°+4k =0.∴3k 2+13k +3=0.∴k =-13±1336. ………7分(2)∵|k a -2b |2=k 2a 2-4k a ·b +4b 2=9k 2-4k ×3×2·cos120°+4×4 =9k 2+12k +16=(3k +2)2+12.∴当k =-23时,|k a -2b |取得最小值为23. ………15分34. (本小题满分15分)35. 如图①,一条宽为1km 的两平行河岸有村庄A 和供电站C ,村庄B 与A 、C 的直线距离都是2km ,BC 与河岸垂直,垂足为D .现要修建电缆,从供电站C 向村庄A 、B 供电.修建地下电缆、水下电缆的费用分别是2万元/km 、4万元/km .36. (1)已知村庄A 与B 原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km .现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.37. (2)如图②,点E 在线段AD 上,且铺设电缆的线路为CE 、EA 、EB .若∠DCE =θ(0≤θ≤ π3),试用θ表示出总施工费用y (万元)的解析式,并求y 的最小值.解:(1)由已知可得△ABC 为等边三角形,∵AD ⊥CD ,∴水下电缆的最短线路为CD . 过D 作DE ⊥AB 于E ,可知地下电缆的最短线路为DE 、AB . ………3分又CD =1,DE =32,AB =2,故该方案的总费用为 1×4+32×2+2×0.5=5+ 3 (万元). …………6分 (2)∵∠DCE =θ (0≤θ≤ π3)∴CE =EB =1cos θ,ED =tan θ,AE =3-tan θ.则y =1cos θ×4+1cos θ×2+(3-tan θ)×2=2×3-sin θcos θ+2 3 ……9分令f (θ)=3-sin θcos θ (0≤θ≤ π3)则f '(θ)=-cos 2θ-(3-sin θ)(-sin θ)cos 2θ=3sin θ-1cos 2θ,……11分∵0≤θ≤ π 3,∴0≤sin θ≤32,记sin θ0=13,θ0∈(0, π 3)当0≤θ<θ0时,0≤sin θ<13,∴f '(θ)<0当θ0<θ≤ π 3时,13<sin θ≤32,∴f '(θ)>0∴f (θ)在[0,θ0)上单调递减,在(θ0, π3]上单调递增.……13分∴f (θ)min =f (θ0)=3-13223=22,从而y min =42+23,此时ED =tan θ0=24,答:施工总费用的最小值为(42+23)万元,其中ED =24. ……15分38. (本小题满分16分)39. 已知a 为实数,函数f (x )=a ·ln x +x 2-4x .40. (1)是否存在实数a ,使得f (x )在x =1处取极值?证明你的结论; 41. (2)若函数f (x )在[2, 3]上存在单调递增区间,求实数a 的取值范围; 42. (3)设g (x )=2a ln x +x 2-5x -1+ax,若存在x 0∈[1, e],使得f (x 0)<g (x 0)成立,求实数a 的取值范围.解:(1)函数f (x )定义域为(0,+∞),f '(x )=a x +2x -4=2x 2-4x +a x假设存在实数a ,使f (x )在x =1处取极值,则f '(1)=0,∴a =2, ……2分此时,f '(x )=2(x -1)2x,∴当0<x <1时,f '(x )>0,f (x )递增;当x >1时,f '(x )>0,f (x )递增. ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取极值. ………4分(2)f '(x )=2x 2-4x +a x =2(x -1)2+a -2x,①当a ≥2时,∴f '(x )≥0,∴f (x )在(0,+∞)上递增,成立; ………6分②当a <2时,令f '(x )>0,则x >1+1-a 2或x <1-1-a2,∴f (x )在(1+1-a2,+∞)上递增,∵f (x )在[2, 3]上存在单调递增区间,∴1+1-a2<3,解得:6<a <2 综上,a >-6. ………10分(3)在[1,e]上存在一点x 0,使得成立,即在[1,e]上存在一点,使得,即函数在[1,e]上的最小值小于零.有22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==①当,即时, 在上单调递减, 所以的最小值为,由可得,因为,所以; ………12分 ②当,即时,在上单调递增,所以最小值为,由可得; ………14分 ③当,即时,可得最小值为, 因为,所以,,故 此时不存在使成立.综上可得所求的范围是:或. ………16分解法二:由题意得,存在x ∈[1, e],使得a (ln x -1x )>x +1x成立.令m (x )=ln x -1x ,∵m (x )在[1, e]上单调递增,且m (1)=-1<0, m (e)=1-1e >0故存在x 1∈(1,e),使得x ∈[1, x 1)时,m (x )<0;x ∈(x 1, e]时,m (x )>0 故存在x ∈[1, x 1)时,使得a <x 2+1x ln x -1成立,·························(☆)或存在x ∈(x 1, e]时,使得a >x 2+1x ln x -1成立,·························(☆☆) ………12分记函数F (x )=x 2+1x ln x -1,F '(x )=(x 2-1)ln x -(x +1)2(x ln x -1)2当1<x ≤e 时,(x 2-1)ln x -(x +1)2=(x 2-1)·⎝⎛⎭⎪⎫ln x -x +1x -1∵G (x )=ln x -x +1x -1=ln x -2x -1-1递增,且G (e)=-2e -1<0∴当1<x ≤e 时,(x 2-1)ln x -(x +1)2<0,即F '(x )<0∴F (x )在[1, x 1)上单调递减,在(x 1, e]上也是单调递减, ………14分 ∴由条件(☆)得:a <F (x )max =F (1)=-2 由条件(☆☆)得:a >F (x )min =F (e)=e 2+1e -1综上可得,a >e 2+1e -1或a <-2. ………16分43. (本小题满分16分)44. 已知常数a >0,函数f (x )=13ax 3-4(1-a )x ,g (x )=ln(ax +1)-2x x +2.45. (1)讨论f (x )在(0,+∞)上的单调性;46. (2)若f (x )在⎝⎛⎭⎫-1a ,+∞上存在两个极值点x 1、x 2,且g (x 1)+g (x 2)>0,求实数a 的取值范围.解:(1)由题意可知:f '(x )=ax 2-4(1-a )当a ≥1时,f '(x )>0,此时,f (x )在区间(0,+∞)上单调递增. 当0<a <1时,由f '(x )=0得:x 1=2a (1-a )a (x 2=-2a (1-a )a<0舍去) 当x ∈(0, x 1)时,f '(x )<0;当x ∈(x 1,+∞)时,f '(x )>0.故f (x )在区间(0, x 1)上单调递减,在区间(x 1,+∞)上单调递增. 综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增; 当0<a <1时,f (x )在区间(0,2a (1-a )a )上单调递减,在区间(2a (1-a )a,+∞)上单调递增. ………6分(2)由(1)知,当a ≥1时,f '(x )≥0,此时f (x )不存在极值点, 因而要使得f (x )有两个极值点,必有0<a <1. 又∵f (x )的极值点只可能是x 1=2a (1-a )a 和x 2=-2a (1-a )a, 由g (x )的定义可知,x >-1a 且x ≠-2,∴-2a (1-a )a >-1a 且2a (1-a )a x ≠2解得:0<a <12或12<a <1 【定义域在这里很重要】 ………8分此时,由(*)式易知,x 1, x 2分别是f (x )的极小值点和极大值点. 而g (x 1)+g (x 2)=ln(ax 1+1)(ax 2+1)-2x 1x 1+2-2x 2x 2+2=ln[a 2x 1x 2+a (x 1+x 2)+1]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2-22a -1-2………10分令x =2a -1,由0<a <12且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1 ,记h (x )=ln x 2+2x-2.①当-1<x <0时,h (x )=2ln(-x )+2x-2,设t =-x ∈(0,1), (t )=2ln t -2t -2单调递增 ∴ (t )< (1)=-4<0∴h (x )<-4<0,故当0<a <12时,g (x 1)+g (x 2)<0,不合题意,舍去.②当0<x <1时,h (x )=2ln x +2x -2,∴h '(x )=2x -2x 2=2x -2x2<0,∴h (x )在(0,1)上单调递减,∴h (x )>h (1)=0,故当12<a <1时,g (x 1)+g (x 2)>0.综上,a 的取值范围为⎝⎛⎭⎫12,1.………16分附加题(考试时间:30分钟 总分:40分)xx.1021.(选修4—2:矩阵与变换)(本小题满分10分) 已知矩阵(1)求;(2)满足AX =二阶矩阵X解:(1) ………5分(2) ………10分22.(选修4—4:坐标系与参数方程)(本小题满分10分)在极坐标系中,曲线C 的极坐标方程为ρ=2cos θ+2sin θ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =1+t ,y =3t(t 为参数),求直线l 被曲线C 所截得的弦长.解:曲线C 的直角坐标方程为x 2+y 2-2x -2y =0,圆心为(1,1),半径为2,(3分)直线的直角坐标方程为3x -y -3=0,(5分)所以圆心到直线的距离为d =||3-1-32=12,(8分)所以弦长=22-14=7.(10分)23.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=AC =4,AA 1⊥平面ABC ; AB ⊥AC , (1)求二面角A 1-BC 1-B 1的余弦值;(2)在线段BC 1存在点D ,使得AD ⊥A 1B ,求BDBC 1的值.解: (1)如图,以A 为原点建立空间直角坐标系A -, 则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为, 则,即,令,则,,所以.同理可得,平面BB 1C 1的法向量为, 所以.由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为. ………5分(2)设D 是直线BC 1上一点,且. 所以.解得,,. 所以.由,即.解得.因为,所以在线段BC 1上存在点D , 使得AD ⊥A 1B .此时,. ………10分1C 1A 1B 1C ABC24.(本小题满分10分)(1)证明:①;②(其中);(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设局,每局比赛甲获胜的概率均为,首先赢满局者获胜(). ①若,求甲获胜的概率;②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大). 解:(1)①()()()()()()()()()111!1!!!()!1!(1)!1!()!1!1!11!r r n nr n n r n r n n C C r n r r n r r n r n C r n r +++++-⎡⎤⎣⎦+=+=-+--+-+==++-+……2分②由① ……3分(2)①若,甲获胜的概率()10156)1()1(2322242233+-=-+-+=p p p p p pC p p pC p P ……5分②证明:设乙每一局获胜的概率为,则. 记在甲最终获胜的概率为,则()nn nn n nn n nn n n n n n n n n n n qC q Cq Cpqp pC q p pC q p pC p P 2221122211...1...++++=++++=++++++所以,()()()()()[]()()[()][][]()()()0122)()()(...)1()1()11(......1...1...11...1...1 (112111212111212211122211212211122211212211211221)3221211212231321211222131222211112221312222111122213122222111<-=-=-=+--=+--+-+++-++-+-=+++++++++-++++=++++--++++=++++-++++=-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++q C q p C qC q p C qC q p C qC C q p C q C C q C C C q C C q C C q p qC q C q C q q C q C q C qC q C q C p q C q C q C q qC q C q C p q C q C q C p q C q C q C p P P n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n所以即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大). ………10分 26545 67B1 枱Ay21102 526E 剮40664 9ED8 默33073 8131 脱 35752 8BA8 讨25121 6221 戡24143 5E4F 幏34944 8880 袀34497 86C1 蛁。

高三数学10月月考试题含解析 试题

高三数学10月月考试题含解析 试题

卜人入州八九几市潮王学校海淀区中国人民大学附属2021届高三数学10月月考试题〔含解析〕一、选择题〔本大题一一共8道小题,每一小题5分,一共40分.在每一小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母按规定求填涂在“答题纸〞第1-6题的相应位置上.〕1.全集=R U ,集合20x A x x ⎧⎫+=≤⎨⎬⎩⎭,那么集合UA 等于〔〕A.{2x x <-或者}0x >B.{2x x <-或者}0x ≥C.{2x x ≤-或者}0x >D.{2x x ≤-或者}0x ≥【答案】B 【解析】 【分析】 求出集合A 中不等式的解集确定出A ,根据全集U =R 求出A 的补集即可.【详解】由A 中的不等式变形得:200x x +≥⎧⎨<⎩或者200x x +≤⎧⎨>⎩,解得:20x -≤<,即{}|20A x x =-≤<,∵全集U =R ,∴UA ={2x x <-或者}0x ≥.应选:B.【点睛】此题考察分式不等式的解法,考察补集及其运算,属于根底题.2.角α的终边与单位圆交于点12⎛⎫- ⎪ ⎪⎝⎭,那么sin α的值是〔〕A. B.12-D.12【答案】B 【解析】 【分析】根据三角函数的定义即可求出. 【详解】根据三角函数的定义可知,1sin 2y α==-. 应选:B .【点睛】此题主要考察三角函数的定义的应用,属于根底题. 3.以下函数中是奇函数,且在区间()0,∞+上是增函数的是〔〕A.1y x=B.2x y = C.1y x x=+D.1y x x=-【答案】D 【解析】 【分析】可先判断奇偶性,再判断单调性.【详解】由奇偶性定义知ACD 三个函数都是奇函数,B 不是奇函数也不是偶函数,1y x =在(0,)+∞上是减函数,1y x x=+是勾形函数,在(0,1)上递增,在(1,)+∞上递增, 只有1y x x=-在(0,)+∞上递增. 应选:D .【点睛】此题考察函数的奇偶性与单调性,掌握奇偶和单调性定义是解题根底. 4.为了得到函数1cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只要把1cos 2y x =的图象上所有的点〔〕A.向左平移3π个单位长度 B.向右平移3π个单位长度C.向左平移23π个单位长度 D.向右平移23π个单位长度 【答案】C 【解析】 【分析】把函数式1cos 23y x π⎛⎫=+⎪⎝⎭化为1cos ()2y x a =+形式可得.【详解】112cos cos ()2323y x x ππ⎛⎫=+=+⎪⎝⎭,因此把1cos 2y x =的图象上所有的点向左平移23π个单位得到函数1cos 23y x π⎛⎫=+⎪⎝⎭的图象.应选:C .【点睛】此题考察三角函数的图象平移变换,解题时对相位变换要注意平移的概念,特别是()f x ω向左平移m 个单位,得[()]f x m ω+不是()f x m ω+.5.“ln ln a b >>A.充分不必要条件;B.必要不充分条件;C.充要条件;D.既不充分也不必要条件.【答案】A 【解析】ln ln 0a b a b >⇒>>⇒>>1,0a b ==,那么ln ln a b >不成立,所以ln ln a b >>∴选A .考点:充分条件、必要条件. 6.假设实数集R 的子集X满足:任意开区间(),a b 〔其中a b <〕中都含有X 中的元素,那么称X 在R中的稠密,假设“R 的子集X 在R 中的不稠密〞,那么〔〕A.任意开区间都不含有X中的元素B.存在开区间不含有X中的元素C.任意开区间都含有X的补集中的元素 D.存在开区间含有X的补集的元素【答案】B 【解析】 【分析】X 在R 中的稠密的否认即可,【详解】(),a b 〔其中a b <〕中都含有X 中的元素〞的否认是:“存在开区间(),a b 〔其中a b <〕不含有X中的元素〞,应选:B . 【点睛】R 的子集X 在R 中的不稠密就是X 在R7.函数()sin 2cos f x x x x =+的大致图象有可能是〔〕A. B.C. D.【答案】A 【解析】 【分析】根据函数的奇偶性排除D 选项.根据()()cos 2sin 1f x x x x =+的零点个数,对选项进展排除,由此得出【详解】函数()f x 是偶函数,排除D ;由()()2sin cos cos cos 2sin 1f x x x x x x x x =+=+,知当()0,2x π∈时,cos 0x =有两个解π3π,22,令12sin 10,sin 2x x x x+==-,而sin y x =与12y x=-在()0,2π有两个不同的交点〔如以下列图所示〕,故函数在()0,2π上有4个零点,应选A. 【点睛】本小题主要考察函数图像的识别,考察二倍角公式以及零点的个数判断方法,属于中档题. 8.()2log f x x=,关于x 的方程()()0f x m m =>的根为1x ,()212x x x <,关于x 的方程()41f x m =+,41m m ⎛⎫≠ ⎪+⎝⎭根为3x ,()434x x x <.当m 变化时,4231x x x x --的最小值为〔〕A. B.8C. D.16【答案】B 【解析】 【分析】由数形结合思想求出1234,,,x x x x ,计算4231x x x x --并化简,然后由根本不等式求得最小值.【详解】在同一坐标系中作出2log y x=的图象和直线y m =,41y m =+,交点,,,A B C D 的横坐标分别1234,,,x x x x ,由方程2log x m =解得122,2m m x x -==,同理4132m x -+=,4142m x +=,4231x x x x --44411144112222222222mmm m mm m m m m +++--++--==⋅⋅--412m m ++=41111228m m ++-+=≥=,当且仅当411m m +=+,即1m =时等号成立. ∴4231x x x x --的最小值是8.应选:B .【点睛】此题考察对数函数的图象与性质的综合应用,求出方程的根代入并化简后应用根本不等式解决问题二、填空题〔本大题一一共6道小题,每一小题5分,一共30分.请将每道题的最简答案填写上在“答题纸〞第9-14题的相应位置上.〕 9.向量()2,3a =,(),2b t =,假设a 与b 一共线,那么实数t =__________.【答案】43【解析】 【分析】由向量一共线的坐标表示计算.【详解】由题意430t -=,43t =. 故答案为:43. 【点睛】此题考察向量平行的坐标运算,属于根底题同.10.函数()f x =的定义域为______________. 【答案】(0,1)(1,2]⋃ 【解析】 【分析】根据幂函数的定义域、对数函数的定义域以及分母不等于零,列不等式组求解即可.【详解】要使函数()ln f x x=有意义,那么24000x lnx x ⎧-≥⎪≠⎨⎪>⎩,解得02x <≤且1x ≠,所以函数()ln f x x=的定义域为()(]0,11,2⋃,故答案为()(]0,11,2⋃.【点睛】此题主要考察函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)函数的解析式,那么构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)假设函数()f x 的定义域为[],a b ,那么函数()()f g x 的定义域由不等式()a g x b ≤≤求出.11.函数()sin 0,2y A x πωϕωϕ⎛⎫=+<<⎪⎝⎭的局部图象如下列图,那么()f x =__________. 【答案】2sin(2)6x π-【解析】 【分析】结合“五点法作图〞可求解.【详解】由题意2A =,2()36T πππ=⨯+=,22πωπ==,2232k ππϕπ⨯+=+,2,6k k Z πϕπ=-∈,∵2πϕ<,∴6πϕ=-.∴()2sin(2)6f x x π=-.故答案为:2sin(2)6x π-.【点睛】此题考察由三角函数图象求解析式,掌握“五点法作图〞是解题关键.12.如下列图,某游乐园内摩天轮的中心O 点距地面的高度为50m ,摩天轮做匀速运动.摩天轮上一点P 自最低点A 点起经过min t 后,点P 的高度40sin 5062h t ππ⎛⎫=-+⎪⎝⎭〔单位:m 〕,那么P 的高度在距地面70m 以上的时间是为__________min .【答案】4 【解析】直接解不等式70h ≥即可.【详解】由题意40sin 507062h t ππ⎛⎫=-+≥ ⎪⎝⎭,1sin()622t ππ-≥,5226626k t k ππππππ+≤-≤+,124128k tk +≤≤+,k Z ∈,取0k =,那么48t ≤≤,844-=.故答案为:4.【点睛】此题考察三角函数模型的应用.考察解三角不等式,属于根底题. 13.如图,在△ABC 中,BO 为边AC 上的中线,2BGGO =,设CD ∥AG ,假设15AD AB AC λ=+()R λ∈,那么λ的值是. 【答案】65【解析】 试题分析:因为所以.又CD ∥AG,可设从而.因为15AD AB AC λ=+,所以.考点:向量一共线表示14.集合M 是满足以下性质的函数()f x 的全体,存在非零常数T ,对任意R x ∈,有()()f x T Tf x +=成立.〔1〕给出以下两个函数:()1f x x =,()()2201f x a a =<<,其中属于集合M 的函数是__________.〔2〕假设函数()sin f x kx M =∈,那么实数k 的取值集合为__________. 【答案】(1).2()f x (2).{|,}k k m m Z π=∈【解析】〔1〕根据集合M 的性质判断.〔2〕根据集合M 的性质求解,由sin ()sin k x T T kx +=恒成立成立,只有1T =±,【详解】〔1〕假设1()f x M∈,那么存在非零点常数T ,使得11()()f x T Tf x +=,那么x T Tx +=,(1)0T x T -+=对x ∈R 恒成立,这是不可能的,1()f x M∉;假设2()f x M∈,那么存在非零点常数T ,使得22()()f x T Tf x +=,那么22a Ta =,对x ∈R 恒成立,1T=,2()f x M∈;〔2〕函数()sin f x kx M =∈,那么存在非零点常数T ,使得()()f x T Tf x +=,即sin ()sin k x T T kx +=,0k =时,()0f x M =∈,0k ≠时,由x ∈R 知kx R ∈,()k x T k R +∈,sin [1,1]kx ∈-,sin ()[1,1]k x T +∈-,因此要使sin ()sin k x T T kx +=成立,只有1T =±,假设1T =,那么sin()sin kx k kx +=,2,T m m Z π=∈,假设1T=-,那么sin()sin kx k kx -=-,即sin()sin kx k kx π-+=,2k m ππ-+=,(21),k m m Z π=--∈,综上实数k 的取值范围是{|,}k k m m Z π=∈.故答案为:2(),f x {|,}k k m m Z π=∈.【点睛】此题考察新定义问题,此类问题的特点是解决问题只能以新定义规那么为根据,由新定义规那么把问题转化,转化为熟悉的问题进展解决.三、解答题〔本大题一一共6道小题,一共80分.解答题应写出文字说明、演算步骤或者证明过程.请将解答题之答案填写上在“答题纸〞第15-20题的相应位置上.〕15.函数()()22cos cos sin R f x x x x x a x =+-+∈的最大值为5.〔1〕求a 的值和()f x 的最小正周期;〔2〕求()f x 的单调递增区间.【答案】〔1〕3a =,Tπ=.〔2〕[,],36k k k Z ππππ-+∈【解析】 【分析】〔1〕先降幂,由两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求解; 〔2〕由正弦函数的单调区间可得.【详解】〔1〕()2cos22sin(2)6f x x x a x a π=++=++,由题意25a +=,3a =,22T ππ==. 〔2〕222262k x k πππππ-≤+≤+,解得36k x k ππππ-≤≤+,∴增区间为[,],36k k k Z ππππ-+∈. 【点睛】此题考察三角函数的恒等变换,考察正弦函数的性质:周期性,最值,单调性,掌握正弦函数的性质是解题关键.16.如下列图,在平面四边形ABCD 中,DA AB ⊥,22CD AE ED ===,23ADC ∠=π,π3BEC ∠=,CED α∠=.〔1〕求sin α的值; 〔2〕求BE 的长.【答案】〔1〕7;〔2〕【解析】 【分析】〔1〕在CDE △中,由余弦定理2222cos EC CD DE CD ED EDC =+-⋅⋅∠,可求得EC ,再由正弦定理得sin sin EC CDEDC α=∠,可求出sin α;〔2〕先求出cos α,结合2π3AEBα∠=-,可得2πcos cos 3AEB α⎛⎫∠=-⎪⎝⎭,再由cos AEBE AEB=∠可求出答案.【详解】〔1〕在CDE △中,由余弦定理,得2222cos 24122cos π37EC CD DE CD ED EDC =+-⋅⋅∠-=+⨯=⨯,在CDE △中,由正弦定理,得sin sin EC CDEDC α=∠. 于是,2πsin23sin 7CD EC α⋅===. 〔2〕由题设知,π03α<<,于是由〔1〕知,cos α===. 而2π3AEB α∠=-,所以2πcos cos 3AEB α⎛⎫∠=- ⎪⎝⎭2π2πcos cos sin sin 33αα=+=在直角EAB中,BE == 【点睛】此题考察正弦定理及余弦定理在解三角形中的应用,考察学生的推理才能与计算才能,属于根底题. 17.在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒〔如图〕.设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b . 〔1〕当a =90时,求纸盒侧面积的最大值;〔2〕试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值. 【答案】〔1〕当x =654时,纸盒的侧面积的最大值为42252平方厘米; 〔2〕当a =b =60,x =10时纸盒的体积最大,最大值为16000立方厘米. 【解析】试题分析:〔1〕矩形纸板ABCD 的面积为3600,故当90a =时,40b =,列出关于纸盒侧面积S 函数解析式,利用二次函数的性质,即可求得最大值;〔2〕列出盒子体积V 的函数解析式,利用导数求解函数的单调性、最值,即可得到结论. 试题解析:〔1〕因为矩形纸板ABCD 的面积为3600,故当a =90时,b =40, 从而包装盒子的侧面积 S =2×x(90-2x)+2×x(40-2x) =-8x 2+260x ,x∈(0,20). 因为S =-8x 2+260x =-8(x -)2+, 故当x =时,侧面积最大,最大值为平方厘米.答:当x =时,纸盒的侧面积的最大值为平方厘米.〔2〕包装盒子的体积V =(a -2x)(b -2x)x =x[ab -2(a +b)x +4x 2],x ∈(0,),b≤60. V =x[ab -2(a +b)x +4x 2]≤x(ab-4x +4x 2) =x(3600-240x +4x 2)=4x 3-240x 2+3600x .当且仅当a =b =60时等号成立. 设f(x)=4x 3-240x 2+3600x ,x∈(0,30). 那么f′(x)=12(x -10)(x -30).于是当0<x <10时,f′(x)>0,所以f(x)在(0,10)上单调递增; 当10<x <30时,f′(x)<0,所以f(x)在(10,30)上单调递减. 因此当x =10时,f(x)有最大值f(10)=16000,此时a =b =60,x =10. 答:当a =b =60,x =10时纸盒的体积最大,最大值为16000立方厘米.18.函数()()32413f x x a x a =--∈R . 〔1〕曲线()f x 在点()()1,1f 处的切线l 与直线210x y -+=平行,求l 的方程;〔2〕假设函数()f x 的图象与直线2y =只有一个公一共点,务实数a 的取值范围.【答案】〔1〕11203x y --=;〔2〕(. 【解析】 【分析】 〔1〕求出导函数()f x ',由(1)2f '=,求得a ,可得切线方程;〔2〕由导数确定函数的单调性,解不等式2()f x >的极大值即可.【详解】〔1〕由题意22()4f x x a '=-,2(1)42f a '=-=,a =a =45(1)2133f =--=-,切线l 方程是52(1)3y x +=-,即11203x y --=. 〔2〕由〔1〕22()4f x x a '=-,假设0a =,()f x 在实数集上递增,函数()f x 的图象与直线2y =只有一个公一共点,符合题意,假设0a ≠, 2ax <-或者2a x>时,()0f x '>,22a a x -<<时,()0f x '<,∴()()2a f x f =-极大值,3()()23a a f x f ==-极小值,∵函数()f x 的图象与直线2y =只有一个公一共点,∴()22af -<,即324()()12322a a a ⨯--⨯--<,39a <,a <,a <<0a ≠,综上可得,a 的范围是(.【点睛】此题考察导数的几何意义,考察有导数研究函数的极值.函数图象与直线的交点个数问题转化为函数极值的不等关系是此题解题关键. 19.设函数()()ln f x x x ax a =⋅+∈R .〔1〕求函数()y f x =在1,e e ⎡⎤⎢⎥⎣⎦上的最小值点;〔2〕假设()()()21212g x f x ax a x =+-+,求证:0a ≥是函数()y g x =在()1,2x ∈时单调递增的充分不必要条件.【答案】〔1〕0a ≥时,最小值点为1e,20a -<<时,最小值点为1a e --,当2a ≤-时,最小值点为e .〔2〕见解析. 【解析】 【分析】〔1〕求出导函数,研究函数的单调性,确定函数在1[,]e e上单调性得最值. 〔2〕求出数()y g x =在()1,2x ∈时单调递增时的a 的取值范围后可得结论.【详解】〔1〕()ln 1f x x a '=++,由()0f x '=得1a x e --=,当10a x e --<<时,()0f x '<,()f x 递减,1a x e -->时,()0f x '>,()f x 递增, 当11aee--≤,即0a ≥时,()f x 在1[,]e e 递增,()f x 的最小值点为1e ,11ae e e--<<,即20a -<<时,()f x 的极小值点也是最小值点为1a e --, 1a e e --≥,即2a ≤-时,()f x 在1[,]e e递减,()f x 的最小值点为e .综上,0a ≥时,最小值点为1e,20a -<<时,最小值点为1a e --,当2a ≤-时,最小值点为e . 〔2〕由21()ln (1)2g x x x ax a x =+-+,()ln 1(1)ln (1)g x x ax a x a x '=++-+=+-,由题意()ln (1)0g x x a x '=+-≥在(1,2)x ∈上恒成立,即1ln x ax-≥-在(1,2)x ∈上恒成立,设1()ln x h x x -=-,21ln 1()(ln )x x h x x +-'=-, 设1()ln m x x x=+,22111()x m x x x x -'=-=,当(1,2)x ∈时,()0m x '>,()m x 递增,∴1()ln (1)1m x x m x=+>=,∴()0h x '<,()h x 在(1,2)上递减, 11111lim()lim lim 11ln x x x x x xx→→→--=-=-=-,∴(1,2)x ∈时,()1h x <-,∴1a ≥-. ∴:0a ≥是函数()y g x =在()1,2x ∈时单调递增的充分不必要条件.【点睛】此题考察用导数研究函数的最值,考察函数的单调性.求函数在某个区间上的最值问题,关键是确定函数的单调性,函数在某个区间上的单调问题转化为不等式恒成立,不等式恒成立经可转化为研究函数的最值. 20.如图,设A 是由n n ⨯(2)n ≥个实数组成的n 行n 列的数表,其中ij a (,1,2,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.定义1122st s t s t sn tn p a a a a a a =+++(,1,2,,)s t n =为第s 行与第t 行的积.假设对于任意,s t 〔s t ≠〕,都有0st p =,那么称数表A 为完美数表.〔Ⅰ〕当2n =时,试写出一个符合条件的完美数表; 〔Ⅱ〕证明:不存在10行10列的完美数表; 〔Ⅲ〕设A 为n 行n 列的完美数表,且对于任意的1,2,,i l =和1,2,,j k =,都有1ij a =,证明:kl n ≤.【答案】〔Ⅰ〕见解析;〔Ⅱ〕〔1〕见解析,〔2〕不存在10行10列的完美数表;〔Ⅲ〕见解析 【解析】 【分析】〔Ⅰ〕根据定义确定112112220a a a a +=一个解即可,〔Ⅱ〕先研究完美数表性质,再利用性质作变换,考虑前三行的情况,列方程组,最后根据所求解得矛盾,即证得结论,〔Ⅲ〕把12n n ln n a a a X +++=作为研究对象,根据条件可得12k X X X l ====,根据定义可得22212n X X X ln +++=.最后根据不等关系:2222221212n k X X X X X X +++≥+++证得结果.【详解】〔Ⅰ〕答案不唯一.如〔Ⅱ〕假设存在10行10列的完美数表A .根据完美数表的定义,可以得到以下两个结论:〔1〕把完美数表的任何一列的数变为其相反数〔即1+均变为1-,而1-均变为1+〕,得到的新数表是完美数表;〔2〕交换完美数表的任意两列,得到的新数表也是完美数表. 完美数表A 反复经过上述两个结论的变换,前三行可以为如下形式:x 共列y 共列z 共列w 共列在这个新数表中,设前三行中的数均为1的有x 列,前三行中“第1,2行中的数为1,且第3行中的数为-1”的有y 列,前三行中“第1,3行中的数为1,且第2行中的数为-1”的有z 列,前三行中“第1行中的数为1,且第2,3行中的数为-1”的有w 列〔如上表所示〕, 那么10x y z w +++=由120p =,得x y z w +=+; 由130p =,得x z y w +=+; 由230p =,得x w y z +=+.解方程组,,,,得52xy z w ====.这与,,,x y z w N ∈矛盾, 所以不存在10行10列的完美数表. 〔Ⅲ〕记第1列前l 行中的数的和112111l a a a X +++=,第2列前l 行中的数的和122222l a a a X +++=,……, 第n 列前l 行中的数的和12n n ln n a a a X +++=,因为对于任意的1,2,,i l =和1,2,,j k =,都有1ij a =,所以12k X X X l ====.又因为对于任意,s t 〔s t ≠〕,都有0st p =,所以22212n X X X ln +++=.又因为22222221212n k X X X X X X l k +++≥+++=,所以2ln l k ≥,即kln ≤.【点睛】解决新定义问题的两个着手点(1)正确理解新定义.耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法那么、新运算的外表,利用所学的知识将生疏的性质转化为我们熟悉的性质,是解决这类问题的打破口.(2)合理利用有关性质是破解新定义型问题的关键.在解题时要擅长从题设条件给出的数式中发现可以使用性质的一些因素,并合理利用.。

2021年高三上学期10月综合测试数学试题含答案

2021年高三上学期10月综合测试数学试题含答案

2021年高三上学期10月综合测试数学试题含答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

满分150分,考试时间120分钟第I卷选择题(共50分)一.选择题:(本题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合要求的,请将正确答案填到答题卡的相应位置)1.设集合},yy=x-A x则<xxB22,]2,0[{},={∈1=(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)2.给出下列两个命题,命题“”是“”的充分不必要条件;命题q:函数是奇函数,则下列命题是真命题的是A. B. C. D.3. “,”是“函数的图象过原点”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数的定义域为(A) (B) (C) (D)5.已知函数若方程有两个不相等的实根,则实数k的取值范围是,.(A)(B)(C)(D)6.定义在R上的奇函数满足,当时,,则在区间内是()A.减函数且f(x)>0 B.减函数且f(x)<0 C.增函数且f(x)>0 D.增函数且f (x)<07.若对任意的恒成立,则的最大值是(A)4(B)6(C)8(D)108.已知函数的图象过点,则的图象的一个对称中心是(A) (B) (C) (D)9.已知函数,则函数的大致图象为10.直线与不等式组表示的平面区域有公共点,则实数m的取值范围是A. B. C. D.二.填空题(每小题5分,共25分。

请把答案填在答题卡上)11.当时,函数的图像恒过点A,若点A在直线上,则的最小值为________12.已知对于任意的x∈R,不等式|x﹣3|+|x﹣a|>5恒成立,则实数a的取值范围是________13.若,则= ___________.14.已知向量和,,其中,且,则向量和的夹角是.15.已知函数在区间内任取两个实数,不等式恒成立,则实数a的取值范围为___________.三.解答题(满分75分。

2021年高三上学期10月月考数学试卷(文科)含解析)

2021年高三上学期10月月考数学试卷(文科)含解析)

2021年高三上学期10月月考数学试卷(文科)含解析)一.选择题:本大题共8小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|﹣2<x<2,x∈R},那么集合A∩B 是()A.∅B.{x|0<x<1,x∈R} C.{x|﹣2<x<2,x∈R} D.{x|﹣2<x<1,x ∈R}2.i是虚数单位,计算=()A.﹣1 B.1 C.i D.﹣i3.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件4.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)5.已知数列{a n}中,a n=﹣4n+5,等比数列{b n}的公比q满足q=a n﹣a n(n≥2),且b1=a2,﹣1则|b1|+|b2|+…+|b n|=()A.1﹣4n B.4n﹣1 C. D.6.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C()A.a<b<c B.a<c<b C.b<a<c D.c<a<b7.已知函数y=log b(x﹣a)(b>0且b≠1)的图象如图所示,那么函数y=a+sinbx的图象可能是()A. B. C.D.8.若存在负实数使得方程2x﹣a=成立,则实数a的取值范围是()A.(2,+∞)B.(0,+∞)C.(0,2)D.(0,1)二.填空题(本大题共4个小题,每小题5分,共20分.)9.向量=(1,1),=(2,t),若⊥,则实数t的值为.10.在△ABC中,若cos2B+3cos(A+C)+2=0,则sinB的值为.11.已知tan(+α)=,α∈(,π),则tanα的值是;cosα的值是.12.已知角α的终边经过点(3a,4a)(a<0),则cosα=.13.通项公式为a n=an2+n的数列{a n},若满足a1<a2<a3<a4<a5,且a n>a n对n≥8恒成立,+1则实数a的取值范围是.14.已知函数f(x)=对∀x1,x2∈R,x1≠x2有<0,则实数a的取值范围是.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.15.已知S n为等差数列{a n}的前n项和,且a3=S3=9(Ⅰ)求{a n}的通项公式;(Ⅱ)若等比数列{b n}满足b1=a2,b4=S4,求{b n}的前n项和公式.16.已知函数f(x)=sinωx﹣sin2+(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.17.在△ABC中,A=,cosB=,BC=6.(Ⅰ)求AC的长;(Ⅱ)求△ABC的面积.=1+S n(n∈N*).18.设数列{a n}的前n项和为S n,且a1=1,a n+1(Ⅰ)求数列{a n}的通项公式;与1+b1+b2+…+b n的(Ⅱ)若数列{b n}为等差数列,且b1=a1,公差为.当n≥3时,比较b n+1大小.19.已知f(x)=lg(﹣<x,1).(I)判断f(x)的奇偶性,并予以证明;(Ⅱ)设f()+f()=f(x0),求x0的值.(Ⅲ)求证:对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f().20.设函数y=f(x)的定义域为R,满足下列性质:(1)f(0)≠0;(2)当x<0时,f(x)>1;(3)对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.(I)求f(0)及f(x)*f(﹣x)的值;(Ⅱ)判断函数g(x)=是否具有奇偶性,并证明你的结论;(Ⅲ)求证:y=f(x)是R上的减函数;(Ⅳ)若数列{a n}满足a1=f(0),且f(a n)=(n∈N*),求证:{a n}是等差数列,并求{a n}+1的通项公式.xx学年北京交大附中高三(上)10月月考数学试卷(文科)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x(x﹣1)<0,x∈R},B={x|﹣2<x<2,x∈R},那么集合A∩B是()A.∅B.{x|0<x<1,x∈R}C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x<1,x∈R}【考点】交集及其运算.【分析】先求解一元二次不等式化简集合A,然后直接利用交集的运算求解.【解答】解:由x(x﹣1)<0,得0<x<1.所以A={x|x(x﹣1)<0,x∈R}={x|0<x<1},又B={x|﹣2<x<2,x∈R},所以A∩B={x|0<x<1,x∈R}∩{x|﹣2<x<2,x∈R}={x|0<x<1,x∈R}.故选B.2.i是虚数单位,计算=()A.﹣1 B.1 C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】通过复数的分母实数化,即可得到结果.【解答】解:===i.故选:C.3.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也不必要条件【考点】平面向量共线(平行)的坐标表示;平行向量与共线向量.【分析】利用向量共线的充要条件求出的充要条件,利用充要条件的定义判断出“x=2”是的充分但不必要条件.【解答】解:依题意,∥⇔3﹣(x﹣1)(x+1)=0⇔x=±2,所以“x=2”是“∥”的充分但不必要条件;故选A4.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.5.已知数列{a n}中,a n=﹣4n+5,等比数列{b n}的公比q满足q=a n﹣a n(n≥2),且b1=a2,﹣1则|b1|+|b2|+…+|b n|=()A.1﹣4n B.4n﹣1 C. D.【考点】数列的求和.【分析】先由a n=﹣4n+5及q=a n﹣a n求出q,再由b1=a2,求出b1,从而得到b n,进而得到﹣1|b n|,根据等比数列前n项和公式即可求得|b1|+|b2|+…+|b n|.=(﹣4n+5)﹣[﹣4(n﹣1)+5]=﹣4,b1=a2=﹣4×2+5=﹣3,【解答】解:q=a n﹣a n﹣1所以=﹣3•(﹣4)n﹣1,|b n|=|﹣3•(﹣4)n﹣1|=3•4n﹣1,所以|b1|+|b2|+…+|b n|=3+3•4+3•42+…+3•4n﹣1=3•=4n﹣1,故选B.6.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【考点】对数值大小的比较.【分析】利用指数与对数函数的单调性即可得出.【解答】解:∵0<a=log0.80.9<1,b=log1.10.9<0,c=1.10.9>1,∴b<a<c.故选:C.7.已知函数y=log b(x﹣a)(b>0且b≠1)的图象如图所示,那么函数y=a+sinbx的图象可能是()A. B. C.D.【考点】函数的图象.【分析】先根据对数函数的图象和性质象得到a,b的取值范围,再根据正弦函数的图得到答案.【解答】解∵由对数函数图象可知,函数为增函数,∴b>1,y=log b(x﹣a)函数的图象过定点(a+1,0),∴a+1=2,∴a=1∴函数y=a+sinbx(b>0且b≠1)的图象,是有y=sinbx的图象向上平移1的单位得到的,由图象可知函数的最小正周期T=<2π,故选:B8.若存在负实数使得方程2x﹣a=成立,则实数a的取值范围是()A.(2,+∞)B.(0,+∞)C.(0,2)D.(0,1)【考点】特称命题.【分析】由已知,将a分离得出a=.令f(x)=,(x<0).a的取值范围为f(x)在(﹣∞,0)的值域.【解答】解:由已知,将a分离得出a=.令f(x)=,(x<0).已知在(﹣∞,0)上均为增函数,所以f(x)在(﹣∞,0)上为增函数.所以0<f(x)<f(0)=2,a的取值范围是(0,2).故选C.二.填空题(本大题共4个小题,每小题5分,共20分.)9.向量=(1,1),=(2,t),若⊥,则实数t的值为﹣2.【考点】平面向量的坐标运算.【分析】利用两个向量垂直的性质,两个向量数量积公式,可得=2+t=0,由此求得t的值.【解答】解:∵向量=(1,1),=(2,t),若⊥,则=2+t=0,t=﹣2,故答案为:﹣2.10.在△ABC中,若cos2B+3cos(A+C)+2=0,则sinB的值为.【考点】三角函数中的恒等变换应用.【分析】利用三角形内角和定理化简即可得到答案!【解答】解:∵B+A+C=π,∴A+C=π﹣B那么cos(A+C)=cos(π﹣B)=﹣cosB.则:cos2B+3cos(A+C)+2=0⇔cos2B﹣3cosB+2=0⇔2cos2B﹣1﹣3cosB+2=0⇔2cos2B﹣3cosB+1=0⇔(2cosB﹣1)(cosB﹣1)=0解得:cosB=1,此时B=0°,不符合题意.或cosB=,此时B=60°,符合题意.那么:sinB=sin60°=.故答案为:.11.已知tan(+α)=,α∈(,π),则tanα的值是﹣;cosα的值是﹣.【考点】两角和与差的正切函数;任意角的三角函数的定义.【分析】利用两角和与差的正切函数及任意角的三角函数的定义,即可求得tanα与cosα的值.【解答】解:tan(+α)=,∴tanα=tan[(+α)﹣]===﹣;又α∈(,π),∴cosα=﹣=﹣.故答案为:;.12.已知角α的终边经过点(3a,4a)(a<0),则cosα=﹣.【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求得cosα的值.【解答】解:∵角α的终边经过点(3a,4a)(a<0),∴x=3a,y=4a,r==5|a|=﹣5a,则cosα===﹣,故答案为:﹣.13.通项公式为a n=an2+n的数列{a n},若满足a1<a2<a3<a4<a5,且a n>a n对n≥8恒成立,+1则实数a的取值范围是.【考点】数列递推式;数列的应用.【分析】由a n=an2+n是二次函数型,结合已知条件得,由此可知答案.【解答】解:∵a n=an2+n是二次函数型,且a1<a2<a3<a4<a5,a n>a n对n≥8恒成立,+1∴,解得﹣.故答案为:﹣.14.已知函数f(x)=对∀x1,x2∈R,x1≠x2有<0,则实数a的取值范围是0≤a<1或a>3.【考点】分段函数的应用.【分析】由任意x1≠x2,都有<0成立,得函数为减函数,根据分段函数单调性的性质建立不等式关系即可.【解答】解:∵f(x)满足对任意x1≠x2,都有<0成立∴函数f(x)在定义域上为减函数,则满足,得0≤a<1或a>3,故答案为:0≤a<1或a>3.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.15.已知S n为等差数列{a n}的前n项和,且a3=S3=9(Ⅰ)求{a n}的通项公式;(Ⅱ)若等比数列{b n}满足b1=a2,b4=S4,求{b n}的前n项和公式.【考点】等比数列的前n项和;等差数列的通项公式.【分析】(Ⅰ)设等差数列{a n}的公差为d,由a3=S3=9,得,解出a1,d,由等差数列通项公式即可求得答案;(Ⅱ)设等比数列{b n}的公比为q,由b1=a2可得b1,由b4=S4可得q,由等比数列前n项和公式可得答案;【解答】解:(Ⅰ)设等差数列{a n}的公差为d.因为a3=S3=9,所以,解得a1=﹣3,d=6,所以a n=﹣3+(n﹣1)•6=6n﹣9;(II)设等比数列{b n}的公比为q,因为b1=a2=﹣3+6=3,b4=S4=4×(﹣3)+=24,所以3q3=24,解得q=2,所以{b n}的前n项和公式为=3(2n﹣1).16.已知函数f(x)=sinωx﹣sin2+(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.【考点】二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的单调性.【分析】(Ⅰ)利用两角和的正弦公式,二倍角公式化简函数f(x)的解析式为,由此求得它的最小正周期.令,求得x的范围,即可得到函数f(x)的单调递增区间.(Ⅱ)因为,根据正弦函数的定义域和值域求得函数f(x)的取值范围.【解答】解:(Ⅰ)==.…因为f(x)最小正周期为π,所以ω=2.…所以.由,k∈Z,得.所以函数f(x)的单调递增区间为[],k∈Z.…(Ⅱ)因为,所以,…所以.…所以函数f(x)在上的取值范围是[].…17.在△ABC中,A=,cosB=,BC=6.(Ⅰ)求AC的长;(Ⅱ)求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)由已知结合平方关系求得sinB=,再由正弦定理求得AC的长;(Ⅱ)由sinC=sin(B+60°)展开两角和的正弦求得sinC,代入三角形的面积公式求得△ABC 的面积.【解答】解:(Ⅰ)∵cosB=,B∈(0,π),又sin2B+cos2B=1,解得sinB=.由正弦定理得:,即,∴AC=4;(Ⅱ)在△ABC中,sinC=sin(B+60°)=sinBcos60°+cosBsin60°==.∴=.18.设数列{a n}的前n项和为S n,且a1=1,a n+1=1+S n(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}为等差数列,且b1=a1,公差为.当n≥3时,比较b n+1与1+b1+b2+…+b n的大小.【考点】数列的求和;数列递推式.【分析】(I)由a n+1=1+S n(n∈N*),当n≥2时可得a n+1=2a n,当n=1时,=2,利用等比数列即可得出;(II)利用等差数列的通项公式可得:b n=2n﹣1.当n≥3时,b n+1=2n+1.1+b1+b2+…+b n=n2+1.通过作差即可比较出大小.【解答】解:(I)∵a n+1=1+S n(n∈N*),∴当n≥2时,a n=1+S n﹣1,∴a n+1﹣a n=a n,即a n+1=2a n,当n=1时,a2=1+a1=2,∴=2,综上可得:a n+1=2a n(n∈N*),∴数列{a n}是等比数列,公比为2,∴.(II)数列{b n}为等差数列,且b1=a1=1,公差为=2.∴b n=1+2(n﹣1)=2n﹣1.当n≥3时,b n+1=2n+1.1+b1+b2+…+b n=1+=n2+1.∴n2+1﹣(2n+1)=n(n﹣2)>0,∴b n+1<1+b1+b2+…+b n.19.已知f(x)=lg(﹣<x,1).(I)判断f(x)的奇偶性,并予以证明;(Ⅱ)设f()+f()=f(x0),求x0的值.(Ⅲ)求证:对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f().【考点】函数奇偶性的判断;抽象函数及其应用.【分析】(I)利用奇偶性的定义,看f(﹣x)和f(x)的关系,注意到和互为倒数,其对数值互为相反数;也可计算f(﹣x)+f(x)=0得到结论.(Ⅱ)根据题意得到关于x0的方程,解方程可得x0的值;(Ⅲ)将a与b代入函数f(x)=lg(﹣<x,1).求出f(a)+f(b)的值,然后计算出f()的值,从而证得结论.【解答】解:(I)f(x)是奇函数,理由如下:f(x)的定义域为(﹣1,1)关于原点对称;又∵f(﹣x)=lg=﹣lg=﹣f(x),所以f(x)为奇函数;(Ⅱ)∵f(x)=lg(﹣1<x<1).∴由f()+f()=f(x0)得到:lg+lg=lg,整理,得lg3×2=lg,∴=6,解得x0=;(Ⅲ)证明:∵f(x)=lg(﹣<x,1).∴f(a)+f(b)=lg+lg=lg•=lg,f()=lg=lg,∴对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f().得证.20.设函数y=f(x)的定义域为R,满足下列性质:(1)f(0)≠0;(2)当x<0时,f(x)>1;(3)对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立.(I)求f(0)及f(x)*f(﹣x)的值;(Ⅱ)判断函数g(x)=是否具有奇偶性,并证明你的结论;(Ⅲ)求证:y=f(x)是R上的减函数;(Ⅳ)若数列{a n}满足a1=f(0),且f(a n+1)=(n∈N*),求证:{a n}是等差数列,并求{a n}的通项公式.【考点】抽象函数及其应用.【分析】(I)令x=y=0得出f(0),令y=﹣x得出f(x)f(﹣x)=f(0);(II)求出g(x)的定义域,计算g(﹣x)并化简得出结论;(III)设x1<x2,根据f(x1)=f(x1﹣x2+x2)=f(x1﹣x2)f(x2)得出=f(x1﹣x2)>1,得出结论;(IV)根据f(﹣x)f(x)=1得出a n+1﹣a n﹣2=0得出结论.【解答】解:(I)令x=y=0得f(0)=f2(0),又f(0)≠0,∴f(0)=1.令y=﹣x得f(x)f(﹣x)=f(0)=1.(II)∵f(x)f(﹣x)=1,∴f(﹣x)=,∵x<0时,f(x)>1,∴x>0时,0<f(x)<1,由g(x)有意义得f(x)≠1,∴x≠0,即g(x)的定义域为{x|x≠0},关于原点对称.∴g(﹣x)====﹣g(x),∴g(x)是奇函数.证明:(III)设x1<x2,则x1﹣x2<0,∴f(x1﹣x2)>1,∵f(x1)=f(x1﹣x2+x2)=f(x1﹣x2)f(x2),∴=f(x1﹣x2)>1,∴f(x1)>f(x2),∴f(x)是R上的减函数.(IV)∵f(a n+1)=,∴f(a n+1)f(﹣2﹣a n)=1,∵f(x)f(﹣x)=1,∴a n+1﹣a n﹣2=0,即a n+1﹣a n=2,又a1=f(0)=1,∴{a n}是以1为首项,以2为公差的等差数列,∴a n=1+2(n﹣1)=2n﹣1.精品文档xx年11月30日39234 9942 饂cCK23691 5C8B 岋39065 9899 颙g29049 7179 煹34685 877D 蝽31197 79DD 秝&25755 649B 撛28880 70D0 烐实用文档。

2021年高三上学期10月月考理数试题含答案

2021年高三上学期10月月考理数试题含答案

2021年高三上学期10月月考理数试题含答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则集合( )A .B .C .D .2.若,则下列不等式中不成立的是( )A .B .C .D .3.函数的零点有( )A .0个B .1个C .2个D .3个4.设,,,则的大小关系是( )A .B .C .D .5.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则+=B .由平面三角形的性质,推测空间四面体的性质C .某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D .在数列中,,,计算,由此推测通项6.已知函数的导函数为,且满足,则( )A .B .C .D .7.函数的定义域和值域都是,则( )A .B .C .D .8.函数满足,那么函数的图象大致为( )9.设函数是定义在上周期为3的奇函数,若,,则有( )A .且B .或C .D .10.已知,是互不相同的正数,且,则的取值范围是( )A .B .C .D .Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在题中横线上11..12.设实数满足则的最大值为.13.观察下列式子:,,,…,根据上述规律,第个不等式应该为.14.在等式“”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数依次为、.15.下列四个命题:①命题“若,则”的否命题是“若,则”;②若命题,则;③若命题“”与命题“或”都是真命题,则命题一定是真命题;④命题“若,则”是真命题.其中正确命题的序号是.(把所有正确的命题序号都填上)三、解答题:本大题有6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤16.(本题满分12分)已知集合,,.(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围.17.(本题满分12分)设命题:函数在上是增函数,命题:,如果是假命题,是真命题,求的取值范围.18.(本题满分12分)已知函数.(Ⅰ)若函数的图象在处的切线方程为求的值;(Ⅱ)若函数在上是增函数,求实数的最大值.19.(本题满分12分)已知二次函数.(Ⅰ)若且函数的值域为求函数的解析式;(Ⅱ)若且函数在上有两个零点,求的取值范围.20.(本题满分13分)某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值(精确到,参考数据:取).21.(本题满分14分)设,函数.(Ⅰ)求的单调递增区间;(Ⅱ)设问是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)设是函数图象上任意不同的两点,线段的中点为直线的斜率为.证明:.高三数学试题(理科)参考答案及评分标准一、选择题:ABADA BCCBD二、填空题:11.8 12.4 13.14.4,12 15.②③三、解答题16.解:(Ⅰ)由,得.…………………………2分由不等式得所以.…………………………4分所以.…………………………6分(Ⅱ)因为,所以,…………………………8分所以…………………………9分解得.…………………………11分所以,实数的取值范围是.…………………………12分17.解:∵函数在上是增函数,∴,…………………………2分由得方程有解,………………4分∴,解得或…………………………5分∵是假命题,是真命题,∴命题一真一假,…………………………6分①若真假,则∴;…………………………8分②若假真,则解得,…………………………10分综上可得的取值范围为…………………………12分18.解:(Ⅰ)∵∴.于是由题知解得.…………………………2分∴.∴,于是,解得.…………………………4分(Ⅱ)由题意即恒成立,∴恒成立;……………6分减函数极小值增函数∴…………………………11分∴.∴的最大值为…………………………12分19.解:(Ⅰ)因为所以…………………………2分因为函数的值域为所以方程有两个相等的实数根,…………………………3分即有等根,故.…………………………5分所以;…………………6分(Ⅱ)解法一:因为在上有两个零点,且,所以有……8分(图正确,答案错误,扣2分)通过线性规划可得.……12分(若答案为,则扣1分)解法二:设的两个零点分别为,所以;…………8分不妨设,因为,且,所以,…………………………10分因为,所以.…………………………12分20.解:(Ⅰ)因为一次喷洒4个单位的去污剂,所以空气中释放的浓度为…………………………2分当时,令,解得,所以.当时,令,解得,所以.于是得,…………………………5分即一次投放4个单位的去污剂,有效去污时间可达8天.…………………………6分(Ⅱ)设从第一次喷洒起,经天,浓度.…………………………8分因为,而,所以,…………………………10分故当且仅当时,有最小值为.令,解得,…………………………12分所以的最小值为.…………………………13分21.解:在区间上,.…………………………1分(Ⅰ) .(1)当时,∵,∴恒成立,的单调增区间为;………2分(2)当时,令,即,得∴的单调增区间为…………………………3分综上所述:当时,的单调增区间为;当时,的单调增区间为…………………………4分(Ⅱ)得…………………………5分当时,恒有∴在上为单调增函数,故在上无极值;…………………………6分当时,令,得单调递增,单调递减.∴无极小值…………………………8分综上所述:时,无极值时,有极大值无极小值.…………………………9分29922 74E2 瓢25903 652F 支{28051 6D93 涓>31261 7A1D 稝11[~29029 7165 煥p31708 7BDC 篜21076 5254 剔20099 4E83 亃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人大附中2021届高三第一学期10月月考数学试卷一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项。

01.已知集合{}{1,0,1},1A B x N x=-=∈<,则A B=A. {-1,0}B. {0,1}C. {0}D. Φ02.已知命题:(0,),ln0P x x x∃∈+∞+<,则P⌝为A.(0,),ln0x x x∀∈+∞+< B. (0,),ln0x x x∃∉+∞+≥C.(0,),ln0x x x∀∈+∞+≥ D. (0,),ln0x x x∀∉+∞+≥03.已知点5(2cos1)6Pπ,是角α终边上一点,则sinα=A.12 B.2C.12-D.22-04.已知向量a=(1,1),b(2,-1),若(λa+2b)∥(a-b),则实数λ=A. 8B. -8C. 2D. -205.以下选项中,满足log2log2a b>的是A. a=2,b=4B. a=8,b=4C.1,84a b ==D.11,24a b ==06.下列函数中,既是奇函数又在区间(-1,1)内是增函数的是A.()33f x x x=- B. f (x )=sin xC.1()ln1xf x x -=+D.()x xf x e e -=+07.已知方程210x ax +-=在区间[0,1]上有解,则实数a 的取值范围是A. [0,+∞)B.(-∞,0]C. (-∞,-2]D. [-2,0]08.已知a 是非零向量,m 为实数,则“a m=”是“22a m =”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件09.已知a >0,若函数31,1()1,1x ax x x f x a x -⎧-≤⎪=⎨->⎪⎩有最小值,则实数a 的取值范围是 A. (1,+∞)B. [1,+∞)C. (12,+∞)D. [12,+∞)10.定义在[1,+∞)上的函数f (x )满足,当0≤x ≤π时,f (x )=sin x ;当x ≥π时,f (x )=2f (x -π)若方程f (x )-x +m =0在区间[0,5π]上恰有3个不同的实根,则m 的所有可能取值集合是A.4[0,3πB.4(0,3πC.4[0,[343πππ,)D.4[0,(343πππ,)二、填空题共5小题每小题5分,共25分。

请将答案全部填写在答题卡上。

11.已知1cos()23πα+=,则sin α= .12.在△ABC 中,已知2,,cos cos cos a b ca A B C ===则△ABC 的面积为.13.已知点P (1,1),O 为坐标原点,点A 、B 分别在x 轴和y 轴上,且满足PA ⊥PB ,则()PA PB PO +⋅=,PA PB+的最小值为 .14.已知函数()(1)xf x e a x =+-,若f (x )≥0恒成立,则实数a 的取值范围是 .15.将函数y =sin x 图象上各点横坐标变为原来的1(0)ωω>倍,再向左平移5π个单位,得到函数f (x )的图象,已知f (x )在[0,2π]上有且只有5个零点,在下列命题中:①f (x )的图象关于点(,0)5π-对称;②f (x )在(0,2π)内恰有5个极值点;③f (x )在区间(0,)5π内单调递减; ④ω的取值范围是2530[,)1111,所有真命题的序号是.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程,每小题均包含1分的卷面分,请注意答题卡卷面的工整和整洁。

16(本题13分)在△ABC 中,已知a +2b =2c cos A . (1)求C ; (2)若a =5,c =7,求b.17(本题13分)已知函数()()22cos sin0f x x xωω=+>,若,写出f(x)的最小正周期,并求函数f(x)在区间5(,]66ππ内的最小值.请从①ω=1,②ω=2这两个条件中选择一个,补充在上面的问题中并作答.若选择多个条件分别作答,按第一个判分.18.(本题14分)已知函数1(),()11f x g x x x ==-+.求正实数a 的取值范围;(1)任意()10,x a ∈,存在()20,x a ∈,使得12()()f xg x =成立;(2)存在[]211,x a x a ∈+,使得12()()f xg x <成立19(本题15分)研究表明:在一节40分钟的数学课中,学生的注意力指数f (x )与听课时间x (单位:分钟)之间的变化曲线如图所示.当x ∈(0,16]时,曲线是二次函数图象的一部分;当x ∈[16,40]时,曲线是函数0.8log ()80y x a =++图象的一部分.(1)求函数f (x )的解析式;(2)如果学生的注意力指数低于75,称为“欠佳听课状态”,则在一节40分钟的数学课中,学生处于“欠佳听课状态”所持续的时间有多长?(精确到2分钟,参考数据:554102453125==,)20.(本题15分)已知函数f(x)=(x+a)ln x-(a+1)(x-1)(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)是否存在实数a,使得f(x)在(0,+∞)具有单调性?若存在,求所有a的取值构成的集合;若不存在,请说明理由.21.(本题15分)对非空数集A,B,定义{},A B x y x A y B-=-∈∈,记有限集T的元素个数为T.(1)A={1,3,5},B={1,2,4},求,,.A AB B A B ---(2)若*4,{1,2,3,4},A A N B=⊆=当A B-最大时,求A中最大元素的最小值.(3)若5,21,A B A A B B==-=-=求A B-的最小值.参考答案一、选择题共10小题,每小题4分,共40分11.13-14.2[0,]e15.①④三、解答题共6小题,共85分,每小题均包含1分的卷面分. 16.(本题13分)解:(1)法1:因为a +2b =2c cos A ,由正弦定理,得sin A +2sin B =2sin C cos A ,················2分 又sin B =sin (A +C )=sin A cos C +cos A sin C , 所以,sin A +2sin A cos C +2cos A sin C=2sin C cos A , 整理得:sin A·(1+2cos C )=0················4分 又A ,B ,C ∈(0,π),故sin A >0,所以1223cosC C π=-=,···············7分法2:因为a +2b =2c cos A ,由余弦定理,知222cos 2b c a A bc +-=, 所以222222b c a a b c bc +-+=⋅,··············2分整理得:222a b c ab +-=-,所以2221cos 22a b c C ab +-==-·············5分又A ,B ,C ∈(0,π),所以23C π=···············7分(II )法1:由正弦定理,知sin sin a cA C =,即:572sin sin 3A π=,所以,sin 14A =··············8分因为C 为钝角所以11cos 14A =,··············9分所以sin B =sin(A +C )=sin A cos C +cos A sinC111()214=-+=··············11分由正弦定理,得7sin 3sin c Bb C===·············12分法2:由余弦定理,知2222cos c a b ab C =+-,即:22492510cos3b b π=+-⋅,·············10分整理得:25240b b +-=解得:b =3或-8(舍)·············12分17.(本题13分)解:选择①:()22cos sin f x x x=+,最小正周期为2π·············4分令t =sin x ,则1[,1]2t ∈,·············6分22117()2(1)2()48f x t t t =-+=--+,·············9分由于上述关于t 的二次函数在区间1[,1]2上单调递减,因此,当t =1,即2x π=时,f (x )取得最小值1·············12分选择②:()22cos sin 2f x x x=+,最小正周期为π·············4分因为f (x )=1+cos2x +sin2x ·············6分)14x π=++·············8分当5(,]66x ππ∈时,7232(,]41212x πππ+∈,·············9分又函数y =sin x 在73(,]122ππ上单调递减,在323[,]212ππ上单调递增,所以,当3242x ππ+=,即58x π=时,f (x )取得最小值1············12分 18.(本题14分)解:(1)因为f (x )在区间(0,+∞)单调递减,所以10x a ∈(,)时,11()(,1)1f x a ∈+············1分因为g (x )在区间(0,+∞)内单调递增,所以20x a ∈(,)时,2()(1,1)g x a ∈--············2分依题意,1(,1)(1,1)1a a ⊆--+,所以11111a a -≤<≤-+············5分因为a >0,所以a ≥2即正实数a 的取值范围为[2,+∞) ············7分(II )当[]()12,,10x x a a a ∈+>时1211()[,],()[1,]21f x g x a a a a ∈∈-++············9分依题意,12aa <+因为a >0,所以1a >,即正实数a的取值范围为1,)+∞············13分 19.(本题15分)解:(1)当x ∈(0,16]时,设2()(12)84(0)f x b x b =-+<, 因为2(16)(1612)8480f b =-+=, 所以14b =-,故21()(12)844f x x =--+············3分当x ∈[16,40]时,0.8()log ()80f x x a =++,由0.8(16)log (16)8080f a =++=,解得a =-15,故0.8()log (15)80f x x =-+············5分所以20.81(12)84,(0,16],()4log (15)80,(16,40].x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩············6分(II )x ∈(0,16]时,令21()(12)84754f x x =--+<解得,x ∈(0,6) ············9分当x ∈[16,40]时,令0.8()log (15)8075f x x =-+<所以55553125150.8341024x -->==≈所以x ∈(18,40] ············12分因为,在一节40分钟的数学课中,学生处于“欠佳听课状态”所持续的时间有 (6-0)+(40-18)=28分钟············14分 20.(本题15分)解:(1)因为f (x )=(x +a )ln x -(a +1)(x -1), 所以f (1)=0············1分()’ln (1)ln x a a f x x a x a x x +=++=+-············3分所以f ’(1)=0············4分所以所求切线方程为y =0············5分(II )令()'()(0)g x f x x =>,则221'()a x ag x x x x -=-=············6分(1)当a ≤0时,g ’(x )>0所以g(x)=f’(x)在(0,+∞)单调递增············7分又因为f’(1)=0·,所以当x∈(0,1)时,f’(x)<0, f(x)单调递减;当x∈(1,+∞)时,f’(x)>0, f(x)单调递增············8分(2)当a>0时,令g’(x)=0,得x=a.x,g’(x),g(x)的变化情况列表如下:所以f(x)在(0,+∞)内单调递增,具有单调性②当0<a<1时,x,f’(x),f(x)的变化情况列表如下:③当a>1时,x,f’(x),f(x)的变化情况列表如下:13分综上所述,存在实数a使得f(x)在(0,+∞)具有单调性,所有a的取值所构成的集合为{1}············14分21.(本题15分)解:(I)因为A={1,3,5},B={1,2,4}所以A-A={-4,-2,0,2,4},A-A={-3,-2,-1,0,1,2,3},A-B={-3,-1,0,1,2,3,4}所以5,7,7,A AB B A B-=-=-=············6分(II)设*{,,,},A a b c d N a b c d =⊆<<<①因为4 A B==,所以2416 A B-≤=当A={1,5,9,13}时,因为B={1,2,3,4}所以{3,2,1,0,1,2,,1112}16 A B A B-=---⋅⋅⋅-=,,所以A B-最大为16.②当16A B-=时,A中元素与B中元素的差均不相同.所以()(){0} A A B B--=又因为B-B={-3,-2,-1,0,1,2,3} 所以b-a,c-b,d-c≥4所以d-a≥12,d≥13综上,当A B-最大时,A中最大元素的最小值为13···········10分(III)对非空数集T,定义运算{} *,,T x y x y T x y =-∈≠①因为5 A=,所以5(51)121A A-≤⨯-+=,当且仅当*5(51)20A=⨯-=时取等号又因为21 A A-=所以A中不同元素的差均不相同同理,B中不同元素的差均不相同又因为''''''a b a b a a b b a a b b -=-⇔-=-⇔-=-所以**1155201522A B A B A B -≥⋅-⋅≥⨯-⨯=②令A ={1,2,4,8,16},B ={-1,-2,-4,-8,-16}所以5,A B A==中不同元素的差均不相同,B 中不同元素的差均不相同所以21A AB B -=-=经检验,15A B -=,符合题意综上,A B-的最小值为15···········14分。

相关文档
最新文档