2021-2022年高三10月月考理科数学试题

合集下载

【KS5U发布】辽宁省沈阳二中2021届高三上学期10月月考试题 数学(理) Word版含答案

【KS5U发布】辽宁省沈阳二中2021届高三上学期10月月考试题 数学(理) Word版含答案

沈阳二中2022——2021学年度上学期10月份小班化学习成果 阶段验收高三( 15 届)数学(理科)试题命题人:高三数学组 审校人:高三数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:(本大题共12小题,每小题5分,共60分。

每题只有一个正确答案,将正确答案的序号涂在答题卡上.) 1.已知集合A ={x|0<log 4x<1},B ={x|x≤2},则A∩B =( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2] 2.有关下列命题的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1” B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0” D .命题“若x=y,则sinx=siny ”的逆否命题为真命题3.已知函数()()2531m f x m m x--=--是幂函数且是()0,+∞上的增函数,则m 的值为( )A .2B .-1C .-1或2D .04.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( ) A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2) D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13 5.函数)42sin(log 21π+=x y 的单调减区间为 ( )A .)(],4(Z k k k ∈-πππB .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππ D .)(]83,8(Z k k k ∈++ππππ6.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值( )A .2413- B. 2213-C. 2313-D. 231-7.已知函数2()ln(193)1f x x x =++,则1(lg 2)(lg )2f f +等于( )A .-1 B.0 C. 1 D. 28.tan70°cos10°(1-3tan20°)的值为( )A .-1B .1C .-2D .29.已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( )A.14B.12C.22D.3210..已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(-∞,0)B.⎝ ⎛⎭⎪⎫0,12 C .(0,1)D .(0,+∞)11. 设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则 ( ) A . 32παβ-=B.32παβ+=C.22παβ-=D.22παβ+=12. 已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=, 若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )A.]61,61[-B.]66,66[-C. ]31,31[- D. ]33,33[-第Ⅱ卷 (90分)二.填空题:本大题共4小题,每小题5分,共20分. 13.计算定积分=+⎰-dx x x 112)sin (__________14..设()f x R 是上的奇函数,且2'(1)0,0(1)()2()0f x x f x xf x -=>+-<当时,,则不等 式()0f x >的解集为15.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x ≤⎧=⎨>⎩给出下列四个命题:①该函数是以π为最小正周期的周期函数②当且仅当()x k k Z ππ=+∈时,该函数取得最小值是-1 ③该函数的图象关于直线52()4x k k Z ππ=+∈对称。

山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科) Word版含解析

山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科) Word版含解析

山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.103.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.36.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.27.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.19.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.15.(5分)给出下列命题:①函数y=cos(2x ﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出全部正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}考点:交集及其运算.专题:计算题.分析:直接求出集合B,然后求出A∩B即可.解答:解:由于集合A={x|1<x<3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x<3}.故选B.点评:本题考查对数函数的基本性质,集合的基本运算,考查计算力量.2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10考点:平面对量数量积的坐标表示、模、夹角.专题:计算题.分析:通过向量的垂直,求出向量,推出,然后求出模.解答:解:由于x∈R ,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.点评:本题考查向量的基本运算,模的求法,考查计算力量.3.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:简易规律.分析:依据正弦定理,利用充分条件和必要条件的定义进行推断即可得到结论.解答:解:由正弦定理可知,若===t,则,即a=tc,b=ta,c=bt,即abc=t3abc,即t=1,则a=b=c,即△ABC是等边三角形,若△ABC是等边三角形,则A=B=C=,则===1成立,即命题p是命题q的充要条件,故选:C点评:本题主要考查充分条件和必要条件的推断,利用正弦定理是解决本题的关键.4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较;不等式比较大小.分析:依据指数函数和对数函数的单调性推断出abc的范围即可得到答案.解答:解:∵a=20.1>20=10=ln1<b=ln<lne=1c=<log31=0∴a>b>c故选A.点评:本题主要考查指数函数和对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.3考点:利用导数争辩函数的单调性.专题:计算题.分析:依据f(x)在区间[1,+∞)上单调递减,可得f'(x)≥0在区间[1,+∞)上恒成立,建立等量关系,求出参数a最大值即可.解答:解:∵f(x)=ax﹣x3∴f′(x)=a﹣3x2∵函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,∴f′(x)=a﹣3x2≤0在区间[1,+∞)上恒成立,∴a≤3x2在区间[1,+∞)上恒成立,∴a≤3.故选D.点评:本小题主要考查运用导数争辩函数的单调性及恒成立等基础学问,考查综合分析和解决问题的力量.6.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:依据函数奇偶性的性质结合函数图象即可得到结论.解答:解:∵函数f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2)=﹣2,故选:B点评:本题主要考查函数值的计算,依据函数的奇偶性以及函数图象进行转化时解决本题的关键.7.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=考点:正弦函数的对称性.专题:三角函数的图像与性质.分析:利用正弦函数的对称性可求得其对称轴方程为:x=kπ+(k∈Z),从而可得答案.解答:解:由x ﹣=kπ+(k∈Z)得:x=kπ+(k∈Z),∴函数y=sin(x ﹣)的对称轴方程为:x=kπ+(k∈Z),当k=1时,x=π,∴方程为x=π的直线是函数y=sin(x ﹣)的一条对称轴,故选:B.点评:本题考查正弦函数的对称性,求得其对称轴方程为:x=kπ+(k∈Z)是关键,属于中档题.8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.1考点:正弦定理.专题:解三角形.分析:利用正弦定理把已知等式中的边转化成角的正弦,进而利用两角和公式对等号左边进行化简求得sinA和sinB的关系,进而利用正弦定理求得a和b的关系.解答:解:∵bcosC+ccosB=2b,∴sinBcosC+cosBsinC=sin(B+C)=sinA=2sinB,∴=2,由正弦定理知=,∴==2,故选:A.点评:本题主要考查了正弦定理的应用,三角函数恒等变换的应用.考查了同学分析和运算力量.9.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .考点:函数的图象.专题:函数的性质及应用.分析:分别画出y=2x,y=x2的图象,由图象可以函数与x轴有三个交点,且当x<﹣1时,y<0,故排解BCD,问题得以解决.解答:解:y=2x﹣x2,令y=0,则2x﹣x2=0,分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x﹣x2的图象与x轴有3个交点,故排解BC,当x<﹣1时,y<0,故排解D故选:A.点评:本题主要考查了图象的识别和画法,关键是把握指数函数和幂函数的图象,属于基础题.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10考点:函数的零点;函数的周期性.专题:函数的性质及应用.分析:由f(x+2)=f(x),知函数y=f(x)(x∈R)是周期为2的函数,进而依据f(x)=1﹣x2与函数g(x)=的图象得到交点为9个.解答:解:由于f(x﹣2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.由于x∈[﹣1,1]时,f(x)=1﹣x2,所以作出它的图象,利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[﹣5,6]上的图象,如图所示:故函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为9,故选C.点评:本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,留意把握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=﹣f(x),则周期为2a;若f(x+a)=,则周期为2a,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为a23•a24.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:把等式3a n+1=3a n﹣2变形后得到a n+1﹣a n等于常数,即此数列为首项为15,公差为﹣的等差数列,写出等差数列的通项公式,令通项公式小于0列出关于n的不等式,求出不等式的解集中的最小正整数解,即可得到从这项开头,数列的各项为负,这些之前各项为正,得到该数列中相邻的两项乘积是负数的项.解答:解:由3a n+1=3a n﹣2,得到公差d=a n+1﹣a n=﹣,又a1=15,则数列{a n}是以15为首项,﹣为公差的等差数列,所以a n=15﹣(n﹣1)=﹣n+,令a n=﹣n+<0,解得n >,即数列{a n}从24项开头变为负数,所以该数列中相邻的两项乘积是负数的项是a23a24.故答案为:a23•a24点评:此题考查同学机敏运用等差数列的通项公式化简求值,把握确定一个数列为等差数列的方法,是一道综合题.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.考点:平面对量的综合题.专题:计算题.分析:由==可求解答:解:∵==∴sin2θ=故答案为:点评:本题主要考查了向量的数量积的坐标表示,三角函数的二倍角公式的应用,属于基础试题13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f (x)=x2+mx ﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.考点:导数的运算.专题:导数的综合应用.分析:由已知分别求出f2(x),f3(x),f4(x),f5(x),可得从第五项开头,f n(x)的解析式重复消灭,每4次一循环,结合f1(A)+f2(A)+…+f2021(A)=求出cosA,进一步得到sinA,则答案可求.解答:解:∵f1(x)=cosx,∴f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…从第五项开头,f n(x)的解析式重复消灭,每4次一循环.∴f1(x)+f2(x)+f3(x)+f4(x)=0.∴f2021(x)=f4×503+1(x)=f1(x)=cosx.∵f1(A)+f2(A)+…+f2021(A)=.∴cosA=.∵A为三角形的内角,∴sinA=.∴sin2A=2sinAcosA=.故答案为:.点评:本题考查了导数及其运算,关键是找到函数解析式规律性,是中档题.15.(5分)给出下列命题:①函数y=cos (2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出全部正确命题的序号).考点:命题的真假推断与应用.专题:计算题;简易规律.分析:①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③依据图象的平移规律可得结论;④依据sinx+cosx=sin(x+)≤<,可以推断.解答:解:①函数y=cos(2x ﹣),x=时,y=﹣1,所以函数y=cos(2x ﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x ﹣)+],即y=sin(2x ﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.点评:本题利用三角函数图象与性质,考查命题的真假推断与应用,考查同学分析解决问题的力量,属于中档题.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.考点:集合的包含关系推断及应用.专题:集合.分析:(I)解指数不等式求出A,解二次不等式求出B,进而可得集合A∩B;(Ⅱ)若C⊆B ,则,解不等式组可得实数a的取值范围.解答:解:(Ⅰ)由2x<8,得2x<23,x<3.(3分)解不等式x2﹣2x﹣8<0,得(x﹣4)(x+2)<0,所以﹣2<x<4.(6分)所以A={x|x<3},B={x|﹣2<x<4},所以A∩B={x|﹣2<x<3}.(9分)(Ⅱ)由于C⊆B,所以(11分)解得﹣2≤a≤3.所以,实数a的取值范围是[﹣2,3].(13分)点评:本题考查的学问点是集合的包含关系推断及应用,集合的交集运算,解不等式,难度不大,属于基础题.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.考点:复合命题的真假.专题:简易规律.分析:易得p:k>0,q :或,由p∧q是假命题,p∨q是真命题,可得p,q一真一假,分别可得k的不等式组,解之可得.解答:解:∵函数y=kx+1在R上是增函数,∴k>0,又∵曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,∴△=(2k﹣3)2﹣4>0,解得或,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q 假,则,∴;②若p假q 真,则,解得k≤0,综上可得k的取值范围为:(﹣∞,0]∪[,]点评:本题考查复合命题的真假,涉及不等式组的解法和分类争辩的思想,属基础题.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.考点:两角和与差的正弦函数;平面对量数量积的运算;同角三角函数间的基本关系;二倍角的余弦.专题:计算题.分析:(1)利用向量数量积运算得出sin2θ﹣2cos2θ=﹣1,再利用二倍角余弦公式求出cos2θ.(2)由(1)可以求出P,Q的坐标,再利用任意角三角函数的定义求出α,β的正、余弦值.代入两角和的正弦公式计算.解答:解(1)=(1,2cos2θ),=(sin2θ,﹣1),∵,∴sin2θ﹣2cos2θ=﹣1,∴,∴.(2)由(1)得:,∴,∴∴,,由任意角三角函数的定义,,同样地求出,,∴点评:本题考查向量的数量积运算、任意角三角函数的定义、利用三角函数公式进行恒等变形以及求解运算力量.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.考点:余弦定理的应用.专题:综合题;解三角形.分析:(Ⅰ)由3(b2+c2)=3a2+2bc,利用余弦定理,可得cosA ,依据,即可求tanC的大小;(Ⅱ)利用面积及余弦定理,可得b、c的两个方程,即可求得结论.解答:解:(Ⅰ)∵3(b2+c2)=3a2+2bc,∴=∴cosA=,∴sinA=∵,∴∴∴∴tanC=;(Ⅱ)∵ABC 的面积,∴,∴bc=①∵a=2,∴由余弦定理可得4=b2+c2﹣2bc ×∴b2+c2=5②∵b>c,∴联立①②可得b=,c=.点评:本题考查余弦定理,考查三角形面积的计算,考查同学的计算力量,属于中档题.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;利用导数争辩函数的单调性;利用导数争辩曲线上某点切线方程.专题:导数的综合应用.分析:(1)求切线方程,就是求k=f′(1),f(1),然后利用点斜式求直线方程,问题得以解决;(2)令h(x)=g(x)﹣f(x),要使f(x)≥g(x)恒成立,即h(x)max≤0,转化为求最值问题.解答:解:(1)∵f(x)=x2+x∴f′(x)=2x+1,f(1)=2,∴f′(1)=3,∴所求切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(2)令h(x)=g(x)﹣f(x)=x3﹣2x+m﹣x2﹣x=x3﹣3x+m﹣x2∴h′(x)=x2﹣2x﹣3,当﹣4<x<﹣1时,h′(x)>0,当﹣1<x<3时,h′(x)<0,当3<x<4时,h′(x)>0,要使f(x)≥g(x)恒成立,即h(x)max≤0,由上知h(x)的最大值在x=﹣1或x=4取得,而h(﹣1)=,h(4)=m ﹣,∵m+,∴,即m.点评:导数再函数应用中,求切线方程就是求某点处的导数,再求参数的取值范围中,转化为求函数的最大值或最小值问题.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.考点:三角函数的最值.专题:三角函数的图像与性质.分析:(1)利用三角函数的定义求出φ的值,由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,可得函数的周期,从而可求ω,进而可求函数f(x)的解析式;(2)利用正弦函数的单调增区间,可求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x )恒成立,等价于,由此可求实数m的取值范围.解答:解:(1)角φ的终边经过点,∴,…(2分)∵,∴.…(3分)由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3…..(5分)∴…(6分)(2)由,可得,…(8分)∴函数f(x )的单调递增区间为k∈z…(9分)(3 )当时,,…(11分)于是,2+f(x)>0,∴mf(x)+2m≥f(x )等价于…(12分)由,得的最大值为…(13分)∴实数m 的取值范围是.…(14分)点评:本题考查函数解析式的确定,考查三角函数的性质,考查分别参数法的运用,考查同学分析解决问题的力量,属于中档题.。

2022-2023学年北京市第八中学高三10月月考数学试卷含详解

2022-2023学年北京市第八中学高三10月月考数学试卷含详解

2023届高三10月测试数学试题第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|22}A x x =-<,{|11}B x x =-< ,则()A.A B A= B.B ⊆R Að C.R A B =∅ð D.R A B ⋃=Rð2.若复数()i 1i z =+,则2z =()A.2- B.2C.2i- D.2i3.在621x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为()A.15B.15- C.30D.30-4.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面α以任意角度截正方体,所截得的截面图形不可能为()A.等腰梯形B.非矩形的平行四边形C.正五边形D.正六边形5.已知半径为1的圆经过点()3,4,则其圆心到点()3,4--的距离的最大值为()A.9B.10C.11D.126.已知函数()()πsin 0,2f x x ωθωθ⎛⎫=+><⎪⎝⎭,π6x =是()f x 的一个极值点,π6x =-是与其相邻的一个零点,则π3f ⎛⎫⎪⎝⎭的值为()A.0B.1C.1-D.227.已知函数()2log 1f x x x =-+,则不等式()0f x >的解集是()A.()0,1 B.()()1,22,⋃+∞ C.()1,2 D.()2,+∞8.过抛物线C :26y x =的焦点且垂直于x轴的直线被双曲线E :()22210xy a a-=>所截得线段长度为,则双曲线的离心率为()A.B.512+ C.72D.9.已知数列{}n a 是递增数列,且4(1)5,4,(3)5,4n n n n a n N n λλ+--+≤⎧=∈⎨-+>⎩,则λ的取值范围是()A.()1,2 B.51,4⎛⎫⎪⎝⎭ C.51,4⎛⎤ ⎥⎝⎦D.71,5⎛⎫ ⎪⎝⎭10.如图,已知1OA OB == ,OC = 4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB =+,则mn等于A.57 B.75C.37D.73第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.12.若函数()()cos sin f x x x ϕ=++的最大值为2,则ϕ的一个可能的取值为___________.13.若直线y x a =+和直线y x b =+将圆()()22111x y -+-=的周长四等分,则a b -=__________.14.若数列{}n a 满足12a =,23a =,()*21n n n a a a n +++=∈N,则2021a的值为__________.15.甲乙丙三个学生同时参加了若干门学科竞赛,至少包含数学和物理,在每科竞赛中,甲乙丙三人中都有一个学生的分数为x ,另一个学生的分数为y ,第三个学生的分数为z ,其中x ,y ,z 是三个互不相等的正整数.在完成所有学科竞赛后,甲的总分为47分,乙的总分为24分,丙的总分为16分.(1)甲乙丙三个学生参加的学科竞赛门数为________;(用x ,y ,z 表示);(2)若在甲乙丙这三个学生中乙的数学竞赛成绩排名第一,则下列正确的序号为________.①甲乙丙三个学生至少参加了四门学科竞赛②x ,y ,z 这三个数中的最大值可以取到21③在甲乙丙这三个学生中,甲学生的物理竞赛成绩可能排名第二④在甲乙丙这三个学生中,丙学生的物理竞赛成绩一定排名第二三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC 中,1cos 7C =,8c =,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)b 的值;(2)角A 的大小和ABC 的面积.条件①:7a =;条件②:11cos 14B =.17.如图,在四棱锥P ABCD -中,O 是AD 边的中点,PO ⊥底面,1ABCD PO =.在底面ABCD 中,//,,1,2BC AD CD AD BC CD AD ⊥===.(1)求证://AB 平面POC ;(2)求二面角B AP D --的余弦值.18.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)19.已知椭圆()2222:10x y C a b a b+=>>过点(,且离心率为12.设A ,B 为椭圆C 的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线MB 与椭圆C 交于另一点H .(1)求椭圆C 的标准方程;(2)求证:直线AP 与BP 的斜率之积为定值;(3)判断三点A ,H ,N 是否共线:并证明你的结论.20.已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≥在[)0,x ∈+∞上恒成立,求实数a 的取值范围.21.设m 为正整数,若无穷数列{}n a 满足(1,2,,;1,2,)ik i ik a a i i m k +=+== ,则称{}n a 为m P 数列.(1)数列{}n 是否为1P 数列?说明理由;(2)已知,,,,n s n a t n ⎧=⎨⎩为奇数为偶数其中,s t 为常数.若数列{}n a 为2P 数列,求,s t ;(3)已知3P 数列{}n a 满足10a <,82a =,666(1,2,)k k a a k +<= ,求n a .2023届高三10月测试数学试题第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|22}A x x =-<,{|11}B x x =-< ,则()A.A B A =B.B ⊆R A ðC.R A B =∅ð D.R A B ⋃=RðD【分析】根据集合的运算法则判断各选项.【详解】由题意1{|1}A B x x =-<≤ ,A 错;{|2R A x x =≤-ð或2}x >,B 错;{|1B x x =≤-R ð或1}x >,{|21R A B x x =-<≤- ð或12}x <≤,C 错;R A B R ⋃=ð,D 正确.故选:D .2.若复数()i 1i z =+,则2z =()A.2-B.2C.2i- D.2iC【分析】结合复数乘法公式直接求解.【详解】因为i(1i)1i z =+=-+,所以22i z =-.故选:C3.在621x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为()A.15B.15- C.30D.30-A【分析】根据二项展开式的通项公式直接求解.【详解】()663166211rr rr r r r T C x C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,令630r -=,得2r =,所以常数项是()2236115T C =-=.故选:A4.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面α以任意角度截正方体,所截得的截面图形不可能为()A.等腰梯形B.非矩形的平行四边形C.正五边形D.正六边形C【分析】在正方体中依次分析,经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,其他情况都可构造例子.【详解】画出截面图形如图:可以画出等腰梯形,故A 正确;在正方体1111ABCD A B C D 中,作截面EFGH (如图所示)交11C D ,11AB ,AB ,CD 分别于点E ,F ,G ,H ,根据平面平行的性质定理可得四边形EFGH 中,//EF HG ,且//EH FG ,故四边形EFGH 是平行四边形,此四边形不一定是矩形,故B 正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故C 错误;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故D 正确.故选:C5.已知半径为1的圆经过点()3,4,则其圆心到点()3,4--的距离的最大值为()A.9 B.10C.11D.12C【分析】根据圆的性质,求得轨迹方程,由点与圆的位置关系,可得答案.【详解】由题意,圆心的轨迹方程为()()22341x x -+-=,则其圆心到点()3,4--的距离的最大值为111=.故选:C.6.已知函数()()πsin 0,2f x x ωθωθ⎛⎫=+><⎪⎝⎭,π6x =是()f x 的一个极值点,π6x =-是与其相邻的一个零点,则π3f ⎛⎫⎪⎝⎭的值为()A.0B.1C.1-D.22D【分析】根据题中条件求出ω的值,结合θ的取值范围可求得θ的值,可得出函数()f x 的解析式,然后代值计算可得π3f ⎛⎫ ⎪⎝⎭的值.【详解】由题意可知,函数()f x 的最小正周期为π4π4263T =⨯⨯=,2π32T ω∴==,()3sin 2x f x θ⎛⎫∴=+ ⎪⎝⎭,因为π6x =是()f x 的一个极值点,则()3πππZ 262k k θ⨯+=+∈,则()ππZ 4k k θ=+∈,因为π2θ<,π4θ∴=,则()3πsin 24x f x ⎛⎫=+ ⎪⎝⎭,因此,ππππsin cos 32442f ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭.故选:D.7.已知函数()2log 1f x x x =-+,则不等式()0f x >的解集是()A.()0,1B.()()1,22,⋃+∞C.()1,2 D.()2,+∞C【分析】利用导数可求得()f x 单调性,结合()()120f f ==可得不等式的解集.【详解】()f x 定义域为()0,∞+,()11ln 21ln 2ln 2x f x x x -'=-=,∴当10,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x ¢>;当1,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<;()f x \在10,ln 2⎛⎫ ⎪⎝⎭上单调递增,在1,ln 2⎛⎫+∞ ⎪⎝⎭上单调递减;又()()120f f ==,且112ln 2<<,()0f x ∴>的解集为()1,2.故选:C8.过抛物线C :26y x =的焦点且垂直于x 轴的直线被双曲线E :()22210xy a a-=>所截得线段长度为,则双曲线的离心率为()A.B.512+C.2D.213D【分析】根据题意,代入32x =,求得弦长=即可求得a ,再由基本量的计算即可得解.【详解】抛物线C :26y x =的焦点为3(,0)2,令32x =,可得y =所以=,32a =,由1b =,所以2c ==,所以7212332c e a ===.故选:D9.已知数列{}n a 是递增数列,且4(1)5,4,(3)5,4n n n n a n N n λλ+--+≤⎧=∈⎨-+>⎩,则λ的取值范围是()A.()1,2 B.51,4⎛⎫ ⎪⎝⎭C.51,4⎛⎤ ⎥⎝⎦D.71,5⎛⎫ ⎪⎝⎭D【分析】根据数列{}n a 是递增数列,列出符合条件的不等式组,求出λ的取值范围即可.【详解】数列{}n a 是递增数列,且4(1)5,4,(3)5,4n n n n a n N n λλ+--+≤⎧=∈⎨-+>⎩,则5410314(1)5(3)5λλλλ-->⎧⎪->⎨⎪-+≤-+⎩,解得715λ<<,故λ的取值范围是71,5⎛⎫ ⎪⎝⎭故选:D10.如图,已知1OA OB ==,OC = 4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB =+,则mn等于A.57 B.75C.37D.73A【分析】依题意建立直角坐标系,根据已知角,可得点B、C 的坐标,利用向量相等建立关于m、n 的方程,求解即可.【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y轴,建立直角坐标系如图所示:因为1OA OB == ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A(1,0),B(3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tanθ413--=-=7,又如图点C 在∠AOB 内,∴cosθ=210,sin θ=7210,又OC =,∴C(1755,),∵OC mOA nOB =+ ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n )即15=m 35n -,7455n =,解得n=74,m=54,∴57m n =,故选A .【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.已知y =f (x )是奇函数,当x ≥0时,()23f x x=,则f (-8)的值是____.4-【分析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.12.若函数()()cos sin f x x x ϕ=++的最大值为2,则ϕ的一个可能的取值为___________.2π-(答案不唯一)【分析】化简可得出()()cos cos 1sin sin f x x x ϕϕ=+-,可得出()max2f x ==,求出sin ϕ的值,即可得解.【详解】因为()()cos cos sin sin sin cos cos 1sin sin f x x x x x x ϕϕϕϕ=-+=+-,故()max 2f x ===,可得sin 1ϕ=-.故()2Z 2k k πϕπ=-∈.故答案为:2π-(答案不唯一).13.若直线y x a =+和直线y x b =+将圆()()22111x y -+-=的周长四等分,则a b -=__________.2【分析】由条件可得直线y x a =+和直线y x b =+间的距离为,由此可求a b -的值.【详解】设直线y x a =+和圆()()22111x y -+-=相交与点,A B ,直线y x b =+与圆()()22111x y -+-=相交于点,M N ,圆心为C ,因为直线y x a =+和直线y x b =+将圆()()22111x y -+-=的周长四等分,所以圆心位于两直线之间,且2ACB MCN π∠=∠=,所以ACB △为等腰直角三角形,所以圆心为C 到直线y x a =+的距离为22,同理可得圆心为C 到直线y x b =+的距离为2,故直线y x a =+和直线y x b =+间的距离为,=,所以2a b -=,故答案为:2.14.若数列{}n a 满足12a =,23a =,()*21n n n a a a n +++=∈N ,则2021a 的值为__________.3-【分析】由递推式求数列的前几项,确定数列的项的规律,由规律确定2021a .【详解】解:132a a a +=,则3211a a a =-=,243a a a +=,则4322a a a =-=-,354a a a +=,则5433a a a =-=-,6541a a a =-=-,7652a a a =-=,8763a a a =-=,⋅⋅⋅⋅⋅⋅∴数列{}n a 为周期数列,且周期6T =,又202163365=⨯+,∴202153a a ==-.故答案为:-3.15.甲乙丙三个学生同时参加了若干门学科竞赛,至少包含数学和物理,在每科竞赛中,甲乙丙三人中都有一个学生的分数为x ,另一个学生的分数为y ,第三个学生的分数为z ,其中x ,y ,z 是三个互不相等的正整数.在完成所有学科竞赛后,甲的总分为47分,乙的总分为24分,丙的总分为16分.(1)甲乙丙三个学生参加的学科竞赛门数为________;(用x ,y ,z 表示);(2)若在甲乙丙这三个学生中乙的数学竞赛成绩排名第一,则下列正确的序号为________.①甲乙丙三个学生至少参加了四门学科竞赛②x ,y ,z 这三个数中的最大值可以取到21③在甲乙丙这三个学生中,甲学生的物理竞赛成绩可能排名第二④在甲乙丙这三个学生中,丙学生的物理竞赛成绩一定排名第二①.87x y z ++②.④【分析】(1)甲乙丙三人总分为87,即可求得甲乙丙三个学生参加的学科竞赛门数;(2)不妨设x y z >>,由472416293x y z ++++==,利用排除法即可判断①;再由甲乙丙这三个学生中乙的数学竞赛成绩排名第一,依次判断②③④.【详解】(1)甲乙丙三人总分为47241687++=,又每科竞赛中,甲乙丙三人中都有学生的分数为x ,y ,z ,故甲乙丙三个学生参加的学科竞赛门数为87x y z++(2)不妨设x y z >>,由题意可得472416293x y z ++++==,对于①,假设甲乙丙只参加了三门竞赛,当20,7,2x y z ===时,若甲:2020747++=,乙:202224++=,丙:77216++=,此时符合题意,故①错误;对于②,若21x =,有8y z +=,丙的分数无法满足;因为2116>,且x ,y ,z 是正整数,16不能整除3,必有216y z +=,但由于8y z +=,则2()16y z +=与216y z +=矛盾,故②错误;对于③④,当20,7,2x y z ===时,对于甲有2020747++=,对于乙有202224++=,对于丙有77216++=,由于甲乙丙这三个学生中乙的数学竞赛成绩排名第一,所以甲乙丙的数学成绩分为7,20,2,物理成绩分别为20,2,7,所以甲学生的物理竞赛成绩是第一,丙学生的物理竞赛成绩一定排名第二,故③错误,④正确;故答案为:87x y z++,④【点睛】关键点点睛:本题考查了合情推理的应用,主要考查了逻辑推理能力,正确理解题意是解题的关键,属于较难题.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC 中,1cos 7C =,8c =,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)b 的值;(2)角A 的大小和ABC 的面积.条件①:7a =;条件②:11cos 14B =.(1)5b =(2)3A π=,ABC S = 【分析】(1)若选①,则直接利用余弦定理可求得b ,若选②,先由同角三角函数的关系求出sin ,sin B C ,然后由正弦定理可求出b ,(2)若选①,先求出sin C ,再利用正弦定理可求出角A ,利用面积公式可求出其面积,若选②,由于cos cos()A B C =-+,利用两角和的余弦公式展开计算可求出角A ,利用面积公式可求出其面积,【小问1详解】选择条件①因为1cos 7C =,8c =,7a =,由余弦定理2222cos c a b ab C =+-,得216449147b b =+-⨯,化简得22150b b --=,解得5b =或3b =-(舍).所以5b =;选择条件②因为11cos 14B =,0B π<<,所以53sin 14B ==,因为1cos 7C =,0C π<<,所以43sin 7C ===,由正弦定理得sin sin b c B C =5343147=解得5b =;【小问2详解】选择条件①因为1cos 7C =,0C π<<,所以43sin 7C ===.由正弦定理sin sin a c A C =,得7sin 437A =,所以3sin 2A =,因为c a >,所以C A >,所以A 为锐角,所以3A π=,所以1143sin 75227ABC S ab C ==⨯⨯⨯= ,选择条件②由(1)知53sin 14B =,43sin 7C =,又因为11cos 14B =,1cos 7C =,在ABC 中,()A B C π=-+,所以cos cos()cos cos sin sin A B C B C B C=-+=-+111534311471472=-⨯+⨯=因为0A π<<所以3A π=,所以113sin 58222ABC S bc A ==�△17.如图,在四棱锥P ABCD -中,O 是AD 边的中点,PO ⊥底面,1ABCD PO =.在底面ABCD 中,//,,1,2BC AD CD AD BC CD AD ⊥===.(1)求证://AB 平面POC ;(2)求二面角B AP D --的余弦值.(1)证明见解析;(2)33.【分析】(1)证明//AB OC 后可证线面平行;(2)以,,OB OD OP 为,,x y z 轴建立空间直角坐标系,用空间向量法求二面角.【详解】(1)由题意BC OA =,又//BC OA ,所以BCOA 是平行四边形,所以//AB OC ,又AB ⊄平面POC ,OC ⊂平面POC ,所以//AB 平面POC ;(2),//BC OD BC OD =,所以BCDO 是平行四边形,所以//OB DC ,OB CD =,而CD AD ⊥,所以OB AD ⊥,以,,OB OD OP 为,,x y z 轴建立空间直角坐标系,如图,则(1,0,0)B ,(0,1,0)A -,(0,0,1)P ,(1,1,0)AB = ,(0,1,1)= AP ,设平面ABP 的一个法向量为(,,)n x y z = ,则00n AB x y n AP y z ⎧⋅=+=⎨⋅=+=⎩ ,取1x =,则1,1y z =-=,即(1,1,1)n =- ,易知平面APD 的一个法向量是(1,0,0)m = ,所以13cos ,313m n m n m n ⋅<>===⨯ ,所以二面角B AP D --的余弦值为33.【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论;(2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).18.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)(1)0.4(2)75(3)丙【分析】(1)由频率估计概率即可(2)求解得X 的分布列,即可计算出X 的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.【小问1详解】由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4【小问2详解】设甲获得优秀为事件A 1,乙获得优秀为事件A 2,丙获得优秀为事件A 31233(0)()0.60.50.520P X P A A A ===⨯⨯=,123123123(1)()()()P X P A A A P A A A P A A ==++80.40.50.50.60.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=,123123123(2)()()()P X P A A A P A A A P A A A ==++70.40.50.50.40.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=,1232(3)()0.40.50.520P X P A A A ===⨯⨯=.∴X 的分布列为X0123P 320820720220∴38727()0123202020205E X =⨯+⨯+⨯+⨯=【小问3详解】丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.19.已知椭圆()2222:10x y C a b a b +=>>过点(,且离心率为12.设A ,B 为椭圆C 的左、右顶点,P 为椭圆上异于A ,B 的一点,直线AP ,BP 分别与直线:4l x =相交于M ,N 两点,且直线MB 与椭圆C 交于另一点H .(1)求椭圆C 的标准方程;(2)求证:直线AP 与BP 的斜率之积为定值;(3)判断三点A ,H ,N 是否共线:并证明你的结论.(1)22143x y +=(2)定值为34-,证明见解析.(3)三点A ,H ,N 共线,证明见解析.【分析】(1)首先根据题意得到22212b c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,再解方程组即可.(2)设00(,)P x y ,()2,0A -,()2,0B ,再计算AP BP k k ⋅即可.(3)分别计算AH k 和AN k ,根据AN AH k k =,A 为公共点,即可证明A ,H ,N 三点共线.【小问1详解】由题知:2222121b a c b a c a b c ⎧==⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎩,所以椭圆C :22143x y +=.【小问2详解】由题知:AP k ,BP k 存在,且不为零,设00(,)P x y ,()2,0A -,()2,0B ,则2200143x y +=,即()200344x y -=.()202000220000343422444AP BP x y y y k k x x x x -⋅=⋅===-+---.所以直线AP 与BP 的斜率之积为定值34-.【小问3详解】A ,H ,N 三点共线,证明如下:设直线AP :()2y k x =+,则直线BP :()324=--y x k,将4x =代入直线AP ,BP 得:()4,6M k ,34,2N k ⎛⎫- ⎪⎝⎭,6342BM k k k ==-,设直线HM :()32y k x =-,联立()()22222211124848404332x y k x k x k y k x ⎧+=⎪⇒+-+-=⎨⎪=-⎩,设()11,H x y ,则2124842121k x k -=+,解得212242121k x k -=+,所以()1121232121k y k x k -=-=+,即22224212,121121k k H k k ⎛⎫-- ⎪++⎝⎭,所以31264AN k k k-==-,22212112124242121AH kk k k k k -+==--++,所以AN AH k k =,A 为公共点,所以A ,H ,N 三点共线.20.已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≥在[)0,x ∈+∞上恒成立,求实数a 的取值范围.(1)()f x 有极小值(0)0f =,无极大值;(2)(],e 2-∞-【分析】(1)求出函数的导数,判断出函数的单调性,即可求出极值;(2)由题可得2e 10x x ax ---≥在[0,)+∞上恒成立,易得0x =时满足,当0x >时,e 1x a x x x ⎛⎫≤-+ ⎪⎝⎭在(0,)+∞上恒成立,构造函数e 1()x g x x x x ⎛⎫=-+ ⎪⎝⎭,求出导数,判断()g x 的单调性,得出min ()e 2g x =-,即可求出a 的取值范围.【详解】(1)当1a =时,()e 1x f x x =--,所以()e 1x f x '=-,当0x <时()0f x '<;当0x >时()0f x '>,所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以当0x =时函数()f x 有极小值(0)0f =,无极大值.(2)因为2()f x x ≥在[0,)+∞上恒成立,所以2e 10x x ax ---≥在[0,)+∞上恒成立,当0x =时00≥恒成立,此时R a ∈,当0x >时e 1x a x x x ⎛⎫≤-+ ⎪⎝⎭在(0,)+∞上恒成,令e 1()x g x x x x ⎛⎫=-+ ⎪⎝⎭,则2222(1)e (1)e (1)1()xx x x x x g x x x x ⎡⎤--+⎛⎫--⎣⎦'=-= ⎪⎝⎭,由(1)知0x >时()(0)0f x f >=,即e (1)0x x -+>,当01x <<时()0g x '<;当1x >时()0g x '>,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min ()e 2g x =-,所以e 2a ≤-,综上可知,实数a 的取值范围是(],e 2-∞-.【点睛】思路点睛:不等式恒成立问题一般采用分离参数法求参数范围,若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.21.设m 为正整数,若无穷数列{}n a 满足(1,2,,;1,2,)ik i ik a a i i m k +=+== ,则称{}n a 为m P 数列.(1)数列{}n 是否为1P 数列?说明理由;(2)已知,,,,n s n a t n ⎧=⎨⎩为奇数为偶数其中,s t 为常数.若数列{}n a 为2P 数列,求,s t ;(3)已知3P 数列{}n a 满足10a <,82a =,666(1,2,)k k a a k +<= ,求n a .(1)是1P 数列,理由见解析;(2)1,0t s =-=;(3)6n a n =-.【分析】(1)根据1P 数列的性质判断即可;(2)根据2P 数列的性质,求出123,,a a a 即可;(3)根据3P 数列的性质,利用所给的条件,合理演绎即可.【小问1详解】∵()()11111(1)11n n n a a n a ⨯-+⨯-==-+=+()2n ≥,∴()()111111n n a a ⨯-+⨯-=+,符合1P 的定义,故数列n a n =是1P 数列;【小问2详解】依题意,2a t =,13a a s ==,因为n a 是2P 数列,2111111a a a t t ⨯+==+=+=,1t ∴=-,3121211a a a t s ⨯+==+=+=,0s ∴=;【小问3详解】∵n a 是3P 数列,817171a a a ⨯+∴==+,823262a a a ⨯+==+,76122a a ∴+=+=…①,9181813a a a ⨯+==+=,9323633a a a ⨯+==+=…②由①②得670,1a a ==,∴猜想n a 是首项为-5,公差为1的等差数列,即6n a n =-,检验:111611k k k a a k a ⨯++==-+=+,∴是1P 数列;222222262622k k k a a k k a ⨯++==+-=-+=+,∴是2P 数列;3333363633k k a k k a +=+-=-+=+,∴是3P 数列,并且66666,6666k k a k a k k +=-=+-=,(1,2,3,k = ),∴666k k a a +<,150a =-<符合题意,故6n a n =-,综上,n a n =是1P 数列,1t =-,0s =,6n a n =-.。

合肥168中2021届高三10月月考数学(理)试卷及答案

合肥168中2021届高三10月月考数学(理)试卷及答案

合肥168中2021届高三10月月考数学(理)试卷及答案----b3b6c2dc-6eac-11ec-bbd4-7cb59b590d7d合肥一六八中学2021届高三第二次段考数学(理科)试卷时间:120分钟总分:150分钟一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求在答题纸上相应的位置填写答案。

)22n??x,y?x2?y?0,x?r,y?r,1.设集合m??x,y?x?y?1,x?r,y?r,则集合m?n中???? 元素的数量为()a.1b.2c.3d.42.函数y?log21(x?1)的定义域为()2a。

??2.1.1,2? b、(?2,?1)?(1,2)c。

??2.1.1,2? d、(?2,?1)?(1,2)3.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()a.0b.1c.2d.34.在曲线y=x2上切线倾斜角为? 4的点是()A.(0,0)B.(2,4)C.(111416)d.(2,14)[来5.偶函数f(x)的定义域为r,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为(a.-2b.-1c.0d.16.已知a为常数,则使得a??e11xdx成立的一个充分而不必要条件是()a.a?0b.a?0c.a?ed.a?e7.若f?(xf(x0?h)?f(x0?3h)0)??3,则limh?0h?()a、 ?。

?3b。

?12c。

?9d。

?68.已知的三次函数f(x)?ax3?bx2?cx?图中显示了D的图像,然后f?(?3)f?(1)?()a、 -1b。

2c.-5d.-三)9.已知f(x)=x3?3x?m,在区间[0,2]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是()上午2b。

M4c。

M6d。

M八a2b10.已知f(x),g(x)都是r上的奇函数,f(x)?0的解集为(a,b),g(x)?0的解集为(,),且222b,那么f(x)?g(x)?0的解集是()2BB222BA(?,a)?(a,)b.(?,a)?(?a,)222B2222BC。

福建省福州市重点高中2021-2022学年高三上学期10月月考数学试题参考答案

福建省福州市重点高中2021-2022学年高三上学期10月月考数学试题参考答案


2 1−
≥0 x
,即
2ax≥ 2 1−
x
,即
a≤
1 (1− x)x

............................................. 8 分
∵ (1− x)x = −x2 + x = − (x − 1)2 + 1 在−3, −2单调递增,
24
∴ (1− x)x 的最大值为 − (2 − 1)2 + 1 = −6 ,
当 x 变化时, f (x) , f (x) 的变化情况如下表:
x (−, −2) −2 (−2, −1) −1 (−1, +)
f (x)
+
0

0
+
f (x)
3
1
e2
e
........................................................................................................................................... 11 分
2022 届高三 10 月月考
数学参考答案
一、单选题
题号
1
2
3
4
5
6
7
8
答案
B
A
B
A
A
C
C
D
二、多选题
9.ACD
10.AC
11.BC
12.ACD
三、填空题
13. 1 10
15. a + b = 1; 5 + 2 6
14.{3}
16. (−3, −2)

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集集合{}{}1,2,5,4,5,6U A C B ==,则集合A. B. C. D.2.若,则下列不等式中成立的是A. B. C. D.3.函数的零点有A.0个B.1个C.2个D.3个 4.设0.13592,1,log 210a b g c ===,则a,b,c 的大小关系是 A. B. C. D.5.下面几种推理过程是演绎推理的是A.两条直线平行,同旁内角互补,如果是两条平行直线的同旁内角,则B.由平面三角形的性质,推测空间四面体的性质C.某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D.在数列中,()11111,221n n n a a a n a -⎛⎫==+≥ ⎪-⎝⎭,计算,由此猜测通项 6.已知函数的导函数为,且满足,则A. B. C.1 D.e7.函数)0,0y a a =>≠的定义域和值域都是,则A.1B.2C.3D.48.函数满足,那么函数的图象大致为9.设函数是定义在R 上周期为3的奇函数,若,则有 A. B. C.D.10.已知()32log ,03,,,,1108,333x x f x a b c d x x x ⎧<≤⎪=⎨-+>⎪⎩是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是A.B. C. D.第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在题中横线上.11. __________.12.设实数满足240,0,0.x y x y y +-≤⎧⎪-≥⎨⎪>⎩则的最大值为_________.13.观察下列式子222222131151117:1,1,1222332344+<++<+++<,…,根据上述规律,第n 个不等式应该为__________________________.14.在等式“”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数依次为_______、_______.15.下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab ”;②若命题,则;③若命题“”与命题“”都是真命题,则命题q 一定是真命题;④命题“若,则()1log 1log 1a a a a ⎛⎫+<+ ⎪⎝⎭”是真命题. 其中正确命题的序号是_________.(把所有正确命题序号都填上)三、解答题:本大题有6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤16. (本题满分12分)已知集合{}{}22log 8,0,14x A x x B xC x a x a x +⎧⎫=<=<=<<+⎨⎬-⎩⎭. (I )求集合;(II )若,求实数a 的取值范围.17. (本题满分12分)设命题p :函数在R 上是增函数,命题()2:,2310q x R x k x ∃∈+-+=,如果是假命题,是真命题,求k 的取值范围.18. (本题满分12分)已知函数.(I )若函数的图象在处的切线方程为,求a,b 的值;(II )若函数在R 上是增函数,求实数a 的最大值.19. (本题满分12分)已知二次函数()()2,f x x bx c b c R =++∈. (I )若,且函数的值域为,求函数的解析式;(II )若,且函数在上有两个零点,求的取值范围.20. (本题满分13分)某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161,04815,42x x y x x ⎧-≤≤⎪⎪-=⎨⎪-<≤10⎪⎩,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(I )若一次喷洒4个单位的去污剂,则去污时间可达几天?(II )若第一次喷洒2个单位的去污剂,6天后再喷洒a (1≤a ≤4)个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值(精确到0.1,参考数据:取1.4).21. (本题满分14分)设,函数.(I)求的单调递增区间;(II)设,问是否存在极值,若存在,请求出极值;若不存在,请说明理由;(III)设是函数图象上任意不同的两点,线段AB的中点为,直线AB的斜率为为k.证明:.T *35356 8A1C 訜21153 52A1 务24278 5ED6 廖37058 90C2 郂40714 9F0A 鼊B21961 55C9 嗉35803 8BDB 诛e24194 5E82 庂F。

天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析

天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析
当 时, , 单调递增,无极值;
当 时, 时, ,当 时, , 是极大值点.
∴ 极大值 .
(3)由(2)知 时, 的极大值为 ,
∴ ,即 ,
设 ,易知函数 在 上是增函数,而 ,
∴由 得 .
【点睛】本题考查用导数研究函数的极值,掌握导数与极值的关系是解题关键.本题属于中档题.
2Hale Waihona Puke .已知函数(1)若 ,求函数 在 处的切线方程;
(2)讨论函数 的单调性;
(3)若关于 的不等式 恒成立,且 的最小值是 ,求证: .
【答案】(1) ;(2)答案见解析;(3)证明见解析.
【答案】
【解析】
【分析】
不等式变形为 ( ),然后求出函数 的最小值即可得.
【详解】∵ ,∴不等式 可化为 ,
设 , ,
当 时, , 递减, 时, , 递增,
∴ ,
不等式 在 上恒成立,则 .
故答案为: .
【点睛】本题考查不等式恒成立问题,解题方法是分离参数法,转化为求函数的最值.
16.函数 是定义在 上的奇函数,对任意的 ,满足 ,且当 时, ,则 __________.
故选:D.
【点睛】本题考查命题的真假判断,考查了充分不必要条件的定义,命题的否定,基本不等式,函数的奇偶性与对称性等知识,属于中档题.
8.将函数 的图象上所有点的纵坐标缩短为原来的 ,再把所得图象上的所有点向右平移 个单位长度后,得到函数 的图象,若函数 在 处取得最大值,则函数 的图象()
A 关于点 对称B. 关于点 对称
10.函数 ,若函数 恰有 个零点,则 的取值范围为()
A. 或 B. 或 C. D.
【答案】D
【解析】
【分析】

吉林省长春市重点高中2021年高三上学期第一次月考理科数学试题及参考答案

吉林省长春市重点高中2021年高三上学期第一次月考理科数学试题及参考答案
【分析】
根据题意,分析得当 , 与 相交,在 有两个交点,再根据周期性,作出函数图像,数形结合求解即可.
【试题解析】
解:当 时, 即
当 时,直线 过点 ,此时直线与半圆 相交,
当 时,圆心 到直线 的距离为 ,此时直线与与半圆 相切,
所以当 , 与 相交,在 有两个交点,
因为 的周期为 , 的周期为 ,且 是奇函数,
A. B. C. D.
3.已知向量 , 满足 ,且 与 夹角为 ,则 ()
A. B. C. D.
4.下列函数中,既是 上的增函数,又是以 为周期的偶函数的是()
A. B.
C. D.
5.已知命题 :函数 在 内恰有一个零点;命题 :函数 在 上是减函数.若 为真命题,则实数 的取值范围是()
A. B.
C. D.
6.若 , , ,则 、 、 的大小关系为()
A. B. C. D.
7.已知函数f(x)=lg(x2-2x-3)在(-∞,a)单调递减,则a的取值范围是()
A.(-∞,-1]B.(-∞,2]C.[5,+∞)D.[3,+∞)
8.已知函数 则不等式 的解集为()
A. B.
C. D.
9.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆.嫦娥五号返回舱之所以能达到如此高的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100 m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60 m/s,则至少需要“打水漂”的次数为(参考数据:取ln 0.6≈-0.511,ln 0.9≈-0.105)()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(本题共10小题,每小题3分,共30分;在每小题给出的四个选项中,
只有一项是符合题目要求的。

)
1.集合,,则()
A. B. C. D.
2.已知,那么等于()
A. B. C. D.
3.函数的单调递减区间是()
A.B. C.D.
4.以下有关命题的说法错误的是()
A.命题“若,则”的逆否命题为“若,则”
B.“”是“”的充分不必要条件
C.若为假命题,则均为假命题
D.对于命题使得,则,均有
5.已知函数,则下列四个命题中错误的是()
A.该函数图象关于点(1,1)对称;
B.该函数的图象关于直线y=2-x对称;
C.该函数在定义域内单调递减;
D .将该函数图象向左平移一个单位长度,再向下平移一个单位长度后与函数
的图象重合
6.函数的图象的大致形状是( )
7.若函数分别是R 上的奇函数、偶函数,且满足,则有(
) A . B . C . D .
8.已知,不等式的解集是,则满足的关系是( ) A . B . C .
D .的关系不能确定
9.已知函数2()24(03),f x ax ax a =++<<若则
A .
B .
C .
D .与的大小不能确定
10.若命题“,使“为真命题。

则实数的取值范围( ) A . B .
C .
D .
B .
A
C .
D .
二.填空题(本题共5小题,每题4分,共20分) 11.当且时,函数的图象必过定点 . 12.幂函数3
222
)14(--+-=m m
x m m y 的图像过原点,则实数的值等于
13、若函数,则= .
14、若函数的定义域为,则的取值范围为_______.
15.设函数的定义域为D ,如果存在正实数,使对任意,都有,且恒成立,则称函数为D 上的“型增函数”.已知是定义在R 上的奇函数,且当时,,若为R 上的“xx 型增函数”,则实数的取值范围是 .
三.解答题(本题共5小题,每题10分,共50分) 16.已知,若且)10()(log 2≠>=a a k a f 且。

⑴确定k 的值;
⑵求的最小值及对应的值。

17.已知函数,(为正常数),且函数与的图象在轴上的截距相等。

⑴求的值;
⑵求函数的单调递增区间。

18、已知函数)()14(log )(4R k kx x f x ∈++=为偶函数. (1)求的值;
(2)若方程有且只有一个根, 求实数的取值范围.
19.已知函数的定义域是,且)
(1
)1(,0)2()(x f x f x f x f -
=+=-+,当时,, (1)求证:是奇函数; (2)求在区间上的解析式;
(20.21二选一,若两题都做,以第20题评分)。

选修4-5:不等式选讲 20、已知函数
(1) 证明:
(2) 求不等式的解集。

选修4-4:坐标系及参数方程
21、已知直线经过点,倾斜角, (1)写出直线的参数方程。

(2)设与圆相交与两点,求点到两点的距离之积。

河南卢氏一高
xx——xx第一学期月考(10月)
高三数学答题纸(理)
一、选择题(每小题3分)
二、填空题(每小题4分)
11. ; 12. .;
13. ; 14. ; 15. 。

三.解答题(本题共5小题,每题10分,共50分)
16.
17.
18.
19.
20.或21题写在背面
河南卢氏一高
xx——xx第一学期月考(10月)
高三数学参考答案(理)
一、选择题(每小题3分)
二、填空题(每小题4分)
11. (2,-2) ; 12. 4 .;
13. 1 ; 14. [-1,0] ; 15. 。

三.解答题(本题共5小题,每题10分,共50分)
16.解:⑴由题设有,∴
∵a≠1,∴lo g2a≠0,由②得lo g2a-1=0,∴a=2,代入①解得k=2。

⑵∵k=2,∴f(x)=x2-x+2=(x-)2+>0。

∴=f(x)+≥=6。

当且仅当f(x)=,即[f(x)]2=9时取等号。

∵f(x)>0,∴f(x)=3时取等号。

即x2-x+2=3,解得x=。

当x=时,取最小值。

17. .解:⑴由题意,,又,所以。

⑵()()12|1|2+++-=+x x x x g x f 当时,,它在上单调递增; 当时,,它在上单调递增。

18. 18、解:(1)因为为偶函数,所以
kx x x
x 2)14(log 4
1
4log 44=+-+ (2)依题意知: *

⎨⎧>-⋅⋅-⋅=+⇒0)2(2)2(14a a a a x
x x x 令 则*变为 只需其有一正根。

(1) 不合题意
(2)*式有一正一负根⎪⎩

⎨⎧<-=>--=∆011
)1(4212a t t a a 经验证满足 (3)两相等 经验证 综上所述或
19.
解:(1)由得1
(2)()(1)
f x f x f x +=-
=+,
所以是周期为2的函数.
∴即为,
故是奇函数. (2)当x ∈时, 1111
()[1(1)](1)(1)3
x
f x f x f x f x -=+-=-
==--.
所以, 当x ∈Z )时, =
20.21题写在背面 20解:
(I )3,
2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪
=---=-<<⎨⎪≥⎩
当25,327 3.x x <<-<-<时 所以
(II )由(I )可知,
当22,()815x f x x x ≤≥-+时的解集为空集;
当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为; 当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.
综上,不等式2()815{|56}.f x x x x x ≥-+-≤≤的解集为
21、解:(1
)12112
x t y t ⎧=+⎪⎪⎨
⎪=+⎪⎩ (2)点到两点的距离之积为
24464 5F90 徐
33225 81C9 臉39922 9BF2 鯲22147 5683 嚃L38583 96B7 隷30992 7910 礐RS\37412 9224 鈤32863 805F 聟32416 7EA0 纠28398 6EEE 滮。

相关文档
最新文档