实验1++递归与分治算法

合集下载

递归与分治算法心得

递归与分治算法心得

递归与分治算法心得
递归与分治算法都是常用的算法思想,可以很好地解决复杂问题。

递归算法是通过将问题分解为相同或相似的子问题来解决整个问题,然后再逐步合并回原问题的过程。

递归算法通常需要明确边界条件,以确保递归能够正确地停止。

分治算法是将问题分解成若干个相同或相似的子问题,递归地解决这些子问题,然后合并这些子问题的解来解决原始问题。

通常,分治算法可以高效地解决问题,但需要注意分解问题的方式和合并子问题的解的过程。

在实际应用中,递归和分治算法可以相互结合,以解决更加复杂的问题。

例如,可以使用分治算法来将问题分解成多个子问题,然后使用递归算法来解决这些子问题。

此外,还可以在递归算法中使用分治算法来对子问题进行分解和合并。

总而言之,递归与分治算法都是非常有用的算法思想,可以在许多领域中得到应用。

但是,在实际使用时,需要仔细考虑问题的性质和算法的复杂度,以确保算法的正确性和效率。

- 1 -。

递归与分治算法心得

递归与分治算法心得

递归与分治算法心得
递归与分治算法是算法设计中常见的两种方法,它们在解决问题时都采用了“分而治之”的思想,将问题分解成更小的子问题,然后通过递归调用或者合并子问题的解来得到原问题的解。

通过我的学习和实践,我深刻认识到了递归与分治算法的重要性和优势。

首先,递归算法可以使问题的描述更加简单明了。

通过将问题转化为自身的子问题,我们可以建立起更为简洁优美的数学模型。

其次,递归算法可以使问题的解决过程更加自然。

在递归过程中,我们可以利用已知的子问题解决同类问题,实现代码的复用和模块化。

此外,递归算法还可以解决一些重要的数学问题,如斐波那契数列和二分查找等。

分治算法则更加注重问题的分解和合并。

它将问题划分成若干个规模相同或相近的子问题,然后将子问题的解合并起来得到原问题的解。

这种方法在解决某些复杂问题时具有很大的优势。

例如,在排序算法中,归并排序采用了分治算法的思想,将待排序的序列分成两个长度相等的子序列,然后递归地对子序列排序,最后将子序列合并成有序序列。

这种算法具有较高的稳定性和灵活性,常常被应用于海量数据的排序任务中。

总之,递归与分治算法是算法设计中不可或缺的两种方法。

在解决问题时,我们应该根据具体情况选择合适的算法,并在实践中不断探索、总结和优化。

只有这样,我们才能更好地应对日益复杂多变的计算机科学挑战。

分治算法实验

分治算法实验

分治算法实验(用分治法查找数组元素的最大值和最小值)算法分析与设计实验报告第一次实验实验步骤关键代码}else//当数组中元素个数少于2时,直接赋值处理1. 先解决小规模的问题,如数组中只有1个元素或者只有两个元素时候的情况。

2. 将问题分解,如果数组的元素大于等于3个,将数组分为两个小的数组。

3. 递归的解各子问题,将中分解的两个小的数组再进行以上两个步骤最后都化为小规模问题。

4. 将各子问题的解进行比较最终得到原问题的解。

//分治法处理整个数组,求出最大值与最小值void merge( int a[], int left, int right, int &Max, int &Min){int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于3时,才实行分治法{int mid=(right+left)/2;merge(a,left,mid,max1,mi n1);//左半边递归调用自身,求岀最大值与最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,mi n2);//右半边递归调用自身,求岀最大值与最小值,分别保存在max2,min2中if (max1>=max2)Max=max1; //子序列两两合并,求岀最大值与最小值elseMax=max2; //分别保存在Max与Minif (min1<=min2)Min=mi n1;elseMin=mi n2;测试结果实验心得Max=compmax(a,left,right);Min=compmi n( a,left,right);}}利用分治法(递归实现):非递归实现:请输入数据克1000093 32767The tine is1990003276? 9The tine is1000032767 0TJ IE tine is1000 32767 9The time is3276? RThe tine is內.0060-004TO通解,明白了分治法到底是怎样的一个过程,在代码实现分治法的时候,也使我加深了对于自己构造函数的理解,明白了分治法利用代码是怎样实现的,以及构造函数的传参与返回值等等地方需要注意的F;\鮒实验沁[p || B附录:完整代码(分治法)#include <iostream>#inelude <time.h>#include <iomanip> using namespacestd;//当数组中的元素个数小于3时,处理最大值int compmax(int A[], int start, int end) {int max;if (start<end) //有两个元素{if (A[start]<=A[end]) max=A[e nd];elsemax=A[start];}else //有一个元素max=A[start];return max;}//当数组中元素的个数小于2时,处理最小值int compmin(int A[], int start, int end){int min;if (start<end) //有两个元素{if (A[start]<=A[end]) mi n= A[start];elsemin= A[e nd];}else //有一个元素mi n=A[start];return mi n;}//分治法处理整个数组,求最大值与最小值void merge( int a[], int left, int right, int &Max,int &Min) 〃Max,Min 用来保存最大值与最小值//之所以使用&引用,是由于如果只是简单的使用变量,并不会改变Ma>与Min的值,使用指针也可以{int max1=0,min 1=0,max2=0,min2=0;if (right-left>2) //当数组中元素个数大于等于3时,进行分治{int mid=(right+left)/2;merge(a,left,mid,max1,min1); //左半边递归调用自身,求出最大值最小值,分别保存在max1,min1中merge(a,mid+1,right,max2,min2); //右半边递归调用自身,求出最大值最小值,分别保存在max2,min2中if (max1>=max2) //子序列两两合并,求出最大值与最小值,保存在Max与Mi n 中Max=max1;elseMax=max2;if (min 1<=min2)Min=min1;elseMin=min 2;}else //数组中元素个数小于3时的情况,直接赋值{Max=compmax(a,left,right);Mi n=compmi n( a,left,right);}}void ran( int *input, int n) //随机生成数组元素函数{int i;sran d(time(0)); for(i=0;i<n;i++) input[i]=ra nd();input[i]= '\0';}int a[1000000]; //定义全局变量用来存放要查找的数组int main(){int n;int i;int max;int min;coutvv "请输入要查找的序列个数:"<<e ndl;for (i=0;i<5;i++){cin>>n;ran (a,n);start=clock();en d=clock();over=end-start;start=clock();//调用分治法算法merge(a,0, n-1,max,min);coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); //显示运行时间}system( "pause"); // 停止运行窗口return 0;}完整代码(非递归方法)#include <iostream>#include <time.h>#include <iomanip> usingnamespacestd;void ran( int *input, int n) {//随机生成数组元素函数int i;sran d(time(0));for (i=0;i<n;i++)in put[i]=ra nd();input[i]= '\0';}int a[1000000];int main(){int max=a[0],min=a[0];int i,j,n;cout<<"请输入数据规模: "<<e ndl;for (j=0;j<5;j++){cin»n;ran( a, n);clock_t start,e nd,over;//计算程序运行时间的算法start=clock();en d=clock();start=clock(); for(i=1;i<n;i++) {if (a[i]>max)max=a[i];if (a[i]<min) min=a[i];}coutvvmax<<‘ " vvminvvendl;en d=clock();printf( "The time is %6.3f" ,( double )(end-start-over)/CLK_TCK); // 显示运行时间}system( "pause");return 0;}。

递归和分治法

递归和分治法

递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。

它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。

下面,我们来详细了解一下递归和分治法。

1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。

递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。

分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。

分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。

主函数负责将问题分解,子函数负责解决子问题。

2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。

(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。

3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。

分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。

4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。

分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。

总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。

算法实验报告

算法实验报告

实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。

2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。

3.学会利用分治算法解决实际问题。

二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。

假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。

并对自己的程序进行复杂性分析。

三.问题分析:一般思路:假设袋中有n 个金块。

可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。

找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。

这样,比较的总次数为2n-3。

分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。

当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。

第二步,分别找出在A和B中最重和最轻的金块。

设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。

第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。

在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。

该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。

当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。

首先处理n≤1的情况。

若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。

当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。

算法设计与分析课程教学大纲

算法设计与分析课程教学大纲

算法设计与分析课程教学大纲【适用专业】计算机科学与技术【课时】理论课时:32【学分】 2【课程性质、目标和要求】《算法设计与分析》是计算机科学与技术专业的专业课。

无论是计算科学还是计算实践,算法都在其中扮演着重要角色。

本课程的教学目的是讲授在计算机应用中常常遇到的实际问题的解法,讲授设计和分析各种算法的基本原理、方法和技术,培养学生对算法复杂性进行正确分析的能力。

课程基本要求是⑴掌握算法分析的基本概念和理论。

⑵掌握算法设计技术和分析算法以及算法复杂性。

【教学时间安排】本课程计 2 学分,理论课时32, 学时分配如下:【教学内容要点】第一章算法引论一、学习目的要求1.了解算法的计算复杂性分析方法2.理解算法分析的基本理论3.掌握算法分析的基本概念二、主要教学内容1. 算法的基本概念2. 表达算法的抽象机制3. 采用Java语言与自然语言相结合的方式描述算法的方法4. 算法的计算复杂性分析方法第二章递归与分治策略一、学习目的要求1.理解典型范例中递归与分治策略应用技巧2.掌握递归与分治策略3.掌握数学归纳法证明算法正确性方法二、主要教学内容1. 递归的概念2. 分治法的基本思想3. 二分搜索技术4. 大整数的乘法5. Strassen阵乘法6. 棋盘覆盖7. 合并排序8. 快速排序9. 线性时间选择10. 最接近点对问题11. 循环赛日程表第三章动态规划一、学习目的要求1.理解典型范例中动态规划算法的设计思想2.掌握动态规划算法的基本要求以及算法的设计要点二、主要教学内容1. 矩阵连乘问题2. 动态规划算法的基本要素3. 最长公共子序列4. 最大子段和5. 凸多边形最优三角剖分6. 多边形游戏7. 图像压缩8. 电路布线9. 流水作业调度10. 0—l背包问题11. 最优二叉搜索树12. 动态规划加速原理三、课堂讨论选题1. 最长公共子序列2. 0—l背包问题第四章贪心算法一、学习目的要求1.了解贪心算法的理论基础及基本要素2. 理解典型范例中贪心算法的设计思想3. 掌握贪心算法的设计要点二、主要教学内容1. 活动安排问题2. 贪心算法的基本要素3. 最优装载4. 哈夫曼编码5. 单源最短路径6. 最小生成树7. 多机调度问题8. 贪心算法的理论基础三、课堂讨论选题1. 最优装载2. 单源最短路径第五章回溯法一、学习目的要求1.理解回溯法的效率分析方法2.掌握回溯法的算法框架和应用技巧二、主要教学内容1. 回溯法的算法框架2. 装载问题3. 批处理作业调度4. 符号三角形问题5. n后问题6. 0—l背包问题7. 最大团问题8. 图的m着色问题9. 旅行售货员问题10. 圆排列问题11. 电路板排列问题12. 连续邮资问题13. 回溯法的效率分三、课堂讨论选题1. 0—l背包问题2. 图的m着色问题第六章分支限界法一、学习目的要求1.理解分支限界法的基本思想2.掌握典型范例中分支限界法的应用技巧二、主要教学内容1. 分支限界法的基本思想2. 单源最短路径问题3. 装载问题4. 布线问题5. 0-1背包问题6. 最大团问题7. 旅行售货员问题8. 电路板排列问题9. 批处理作业调度三、课堂讨论选题1. 0-1背包问题2. 批处理作业调度第七章概率算法一、学习目的要求1.理解概率算法的基本思想2.掌握典型范例中概率算法的应用技巧二、主要教学内容1. 随机数2. 数值概率算法3. 舍伍德算法4. 拉斯维加斯算法5. 蒙特卡罗算法第八章 NP完全性理论一、学习目的要求1.了解P类与NP类问题2.了解典型的NP完全问题二、主要教学内容1. 计算模型2. P类与NP类问题3. NP完全问题4. 一些典型的NP完全问题第九章近似算法一、学习目的要求1.掌握近似算法的基本思想2.掌握常用近似算法的应用二、主要教学内容1. 近似算法的性能2. 顶点覆盖问题的近似算法3. 旅行售货员问题近似算法4. 集合覆盖问题的近似算法5. 子集和问题的近似算法第十章算法优化策略一、学习目的要求1.掌握算法优化策略2.掌握算法优化的基本方法二、主要教学内容1. 算法优化策略的比较与选择2. 动态规划加速原理3. 问题的算法特征4. 优化数据结构5. 优化搜索策略【教学(实验)内容要点】算法设计与分析实验是算法设计与分析课的一个实践性教学环节。

分治算法的实验报告

分治算法的实验报告

一、实验背景分治算法是一种常用的算法设计方法,其基本思想是将一个复杂问题分解成若干个相互独立的小问题,然后将小问题递归求解,最终将子问题的解合并为原问题的解。

分治算法具有高效性、可扩展性和易于实现等优点,被广泛应用于各个领域。

本实验旨在通过实现分治算法解决实际问题,掌握分治算法的设计思想,并分析其时间复杂度。

二、实验目的1. 理解分治算法的基本思想;2. 掌握分治算法的递归实现方法;3. 分析分治算法的时间复杂度;4. 应用分治算法解决实际问题。

三、实验内容本实验选择两个分治算法:快速排序和合并排序。

1. 快速排序快速排序是一种高效的排序算法,其基本思想是将待排序序列分为两个子序列,其中一个子序列的所有元素均小于另一个子序列的所有元素,然后递归地对两个子序列进行快速排序。

(1)算法描述:① 选择一个基准值(pivot),通常取序列的第一个元素;② 将序列分为两个子序列,一个子序列包含所有小于基准值的元素,另一个子序列包含所有大于基准值的元素;③ 递归地对两个子序列进行快速排序。

(2)代码实现:```cvoid quickSort(int arr[], int left, int right) {if (left < right) {int pivot = arr[left];int i = left;int j = right;while (i < j) {while (i < j && arr[j] >= pivot) {j--;}arr[i] = arr[j];while (i < j && arr[i] <= pivot) {i++;}arr[j] = arr[i];}arr[i] = pivot;quickSort(arr, left, i - 1);quickSort(arr, i + 1, right);}}```2. 合并排序合并排序是一种稳定的排序算法,其基本思想是将待排序序列分为两个子序列,分别对两个子序列进行排序,然后将排序后的子序列合并为一个有序序列。

分治算法实验报告

分治算法实验报告

算法分析与设计实验报告第 1 次实验if(maxi>maxj)max=maxi;elsemax=maxj;if(mini<minj)min=mini;elsemin=minj;return;}}srand((unsigned int)time(NULL));cout <〈”随机产生的数据(0—100):”;for(int i=0; i〈m; i++)a[i] = rand()%100;测试结果附录:完整代码SelectMaxMin.cpp:#include <iostream>#include <ctime>#include 〈cstdio>#include <iomanip>#include 〈cstdlib〉using namespace std;void SelectMaxMin(int *a,int i,int j,int &max,int &min) {if(i==j){max= a[i];min =a[i];return;}else{int mid=(i+j)/2;int maxi,maxj,mini,minj;SelectMaxMin(a,i,(i+j)/2,maxi,mini);SelectMaxMin(a,((i+j)/2)+1,j,maxj,minj);if(maxi〉maxj)max=maxi;elsemax=maxj;if(mini<minj)min=mini;elsemin=minj;return;}}int main(){clock_t start,end,over;start=clock();end=clock();over=end—start;start=clock();//freopen("in。

txt",”r",stdin);//freopen(”out。

txt”,”w",stdout);int m;cout 〈<"Please input the number : ”;cin>〉 m;int a[m];srand((unsigned int)time(NULL));cout 〈〈 "随机产生的数据(0-100):";for(int i=0; i〈m; i++)a[i] = rand()%100;for(int i=0; i〈m; i++)cout <〈 a[i] 〈< " ";cout 〈< endl;int max,min;SelectMaxMin(a,0,m-1,max,min);cout 〈< "max = " 〈〈 max 〈〈 endl;cout <〈”min = " <〈 min 〈〈 endl;end=clock();printf(”The time is %6.3f”,(double)(end-start—over)/CLK_TCK); }。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮海工学院计算机工程学院实验报告书
课程名:《算法分析与设计》
题目:实验1 递归与分治算法
班级:
学号:
姓名:
实验1 递归与分治算法
实验目的和要求
(1)进一步掌握递归算法的设计思想以及递归程序的调试技术;
(2)理解这样一个观点:分治与递归经常同时应用在算法设计之中。

(3)分别用蛮力法和分治法求解最近对问题;
(4)分析算法的时间性能,设计实验程序验证分析结论。

实验内容
设p1=(x1, y1), p2=(x2, y2), …, pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对。

实验环境
Turbo C 或VC++
实验学时
2学时,必做实验
数据结构与算法
核心源代码
蛮力法:
#include <iostream.h>
#include <stdio.h>
#include <math.h>
int ClosestPoints(int x[ ], int y[ ], int n);
int main()
{
int x[3],y[3];
printf("请输入各点的横坐标: ");
for(int i=0;i<4;i++)
{
scanf("%d",&x[i]);
}
printf("请输入各点的纵坐标: ");
for(int j=0;j<4;j++)
{
scanf("%d",&y[i]);
}
ClosestPoints(x,y,4);
return 0;
}
int ClosestPoints(int x[ ], int y[ ], int n)
{
int index1, index2; //记载最近点对的下标
int d, minDist = 1000; //假设最大距离不超过1000 for (int i = 0; i < n - 1; i++)
for (int j = i + 1; j < n; j++) //只考虑i<j的点对
{
d =sqrt ((x[i]-x[j])* (x[i]-x[j]) + (y[i]-y[j])* (y[i]-y[j]));
if (d < minDist) {
minDist = d;
index1 = i; index2 = j;
}
}
cout<<"最近的点对是:"<<index1<<" 和"<<index2<<endl;
return minDist;
}
分治法:
#include <iostream.h>
#include <math.h>
const int n = 4;
struct point //定义点的结构体
{
int x, y;
};
double Closest(point S[ ], int low, int high);
double Distance(point a, point b);
int Partition(point r[ ], int first, int end);
void QuickSort(point r[ ], int first, int end);
int main()
{
point S[n] = {{1,1},{3,2},{5,4},{1,2}}; //存放点集合
double minDist = Closest(S,0,n-1);
cout<<"最近点对之间的距离为:"<<minDist<<endl;
return 0;
}
double Closest(point S[ ], int low, int high)
{
double d1, d2, d3, d;
int mid, i, j, index;
point P[n]; //存放P1和P2
if (high - low == 1) //只有两个点返回两点之间的距离return Distance(S[low], S[high]);
if (high - low == 2) //只有三个点求最近对距离
{
d1 = Distance(S[low], S[low+1]);
d2 = Distance(S[low+1], S[high]);
d3 = Distance(S[low], S[high]);
if ((d1 < d2) && (d1 < d3))
return d1;
else if (d2 < d3)
return d2;
else return d3;
}
mid = (low + high)/2; //计算中间点
d1 = Closest(S, low, mid); //递归求解子问题1
d2 = Closest(S, mid+1, high); //递归求解子问题2
if (d1 <= d2) d = d1; //以下为求解子问题3
else d = d2;
index = 0;
for (i = mid; (i >= low) && (S[mid].x - S[i].x < d); i--) //建立点集合p1 P[index++] = S[i];
for (i = mid + 1; (i <= high) && (S[i].x - S[mid].x < d); i++) //建立点集合p2 P[index++] = S[i];
QuickSort(P, 0, index-1); //对集合p1和p2按y坐标升序排列
for (i = 0; i < index; i++)//依次处理集合p1和p2中的点
{
for(j = i + 1; j < index; j++)
{
if (P[j].y - P[i].y >= d) //超出y坐标的范围,点p[i]处理完毕
break;
else
{
d3 = Distance(P[i], P[j]);
if (d3 < d)
d = d3;
}
}
}
return d;
}
//求两点之间的距离
double Distance(point a, point b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
int Partition(point r[ ], int first, int end) //划分
{
int i = first, j=end; //初始化待划分区间
while (i < j)
{
while (i < j && r[i].y <= r[j].y) j--; //右侧扫描
if (i < j) {
point temp = r[i]; r[i] = r[j]; r[j] = temp; //将较小记录交换到前面
i++;
}
while (i < j && r[i].y <= r[j].y) i++; //左侧扫描
if (i < j) {
point temp = r[i]; r[i] = r[j]; r[j] = temp; //将较大记录交换到后面
j--;
}
}
return i; // 返回轴值记录的位置
}
//快速排序
void QuickSort(point r[ ], int first, int end) //快速排序
{
int pivot;
if (first < end) {
pivot = Partition(r, first, end); //划分,pivot是轴值在序列中的位置
QuickSort(r, first, pivot-1); //求解子问题1,对左侧子序列进行快速排序QuickSort(r, pivot+1, end); //求解子问题2,对右侧子序列进行快速排序}
}
实验结果
实验体会
本次实验做的是集合之中距离最近的点对,首先对最近点对进行分析,可以用蛮力法和分治法解决。

蛮力法在处理比较少的数据时比较简单,个人感觉也比较简单易于理解。

主要是将各点的横坐标和纵坐标分别放入两个数组中,在两个for循环来计算两个点之间的距离,并记录距离较短的时候的点对坐标。

分治法的算法相对来说比较复杂,首先将问题进行划分,然后在求解子问题,最后在进行合并。

分治法是照着书上敲的,书上提供了最近点对和求距离的方法,在此基础上又写了快速排序和划分的方法,最后才完整的运行出来。

整体感觉自己的代码敲写能力还有待加强,算法设计的逻辑能力还欠缺,不能独立的解决问题。

相关文档
最新文档