算法实验报告
算法实验报告结果分析

一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。
为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。
二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。
实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。
实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。
同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。
三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。
从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。
在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。
总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。
2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。
实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。
与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。
3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。
实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。
可以看出,随着数据量的增加,插入排序的性能明显下降。
算法性能实验报告

一、实验目的本次实验旨在通过对比分析几种常用排序算法的性能,深入了解各种算法在不同数据规模和不同数据分布情况下的时间复杂度和空间复杂度,为实际应用中算法的选择提供参考。
二、实验环境- 操作系统:Windows 10- 编程语言:C++- 编译器:Visual Studio 2019- 测试数据:随机生成的正整数序列三、实验内容本次实验主要对比分析了以下几种排序算法:1. 冒泡排序(Bubble Sort)2. 选择排序(Selection Sort)3. 插入排序(Insertion Sort)4. 快速排序(Quick Sort)5. 归并排序(Merge Sort)6. 希尔排序(Shell Sort)四、实验方法1. 对每种排序算法,编写相应的C++代码实现。
2. 生成不同规模(1000、5000、10000、50000、100000)的随机正整数序列作为测试数据。
3. 对每种排序算法,分别测试其时间复杂度和空间复杂度。
4. 对比分析不同算法在不同数据规模和不同数据分布情况下的性能。
五、实验结果与分析1. 时间复杂度(1)冒泡排序、选择排序和插入排序的平均时间复杂度均为O(n^2),在数据规模较大时性能较差。
(2)快速排序和归并排序的平均时间复杂度均为O(nlogn),在数据规模较大时性能较好。
(3)希尔排序的平均时间复杂度为O(n^(3/2)),在数据规模较大时性能优于冒泡排序、选择排序和插入排序,但不如快速排序和归并排序。
2. 空间复杂度(1)冒泡排序、选择排序和插入排序的空间复杂度均为O(1),属于原地排序算法。
(2)快速排序和归并排序的空间复杂度均为O(n),需要额外的空间来存储临时数组。
(3)希尔排序的空间复杂度也为O(1),属于原地排序算法。
3. 不同数据分布情况下的性能(1)对于基本有序的数据,快速排序和归并排序的性能会受到影响,此时希尔排序的性能较好。
(2)对于含有大量重复元素的数据,快速排序的性能会受到影响,此时插入排序的性能较好。
算法实验报告

算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
阶乘的算法实验报告

一、实验目的1. 掌握阶乘算法的基本原理和实现方法;2. 分析不同阶乘算法的效率;3. 提高编程能力和算法优化能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验内容1. 阶乘算法实现2. 性能分析四、实验步骤1. 阶乘算法实现(1)递归法实现阶乘```pythondef factorial_recursive(n):if n == 0 or n == 1:return 1else:return n factorial_recursive(n - 1) ```(2)迭代法实现阶乘```pythondef factorial_iterative(n):result = 1for i in range(1, n + 1):result = ireturn result```2. 性能分析(1)测试数据为了测试不同阶乘算法的性能,我们选取以下测试数据:- 较小数值:n = 5- 较大数值:n = 10- 极大数值:n = 20(2)性能测试```pythonimport timedef test_factorial():n_list = [5, 10, 20]for n in n_list:start_time = time.time()factorial_recursive(n)recursive_time = time.time() - start_time start_time = time.time()factorial_iterative(n)iterative_time = time.time() - start_timeprint(f"n = {n}:")print(f"递归法耗时:{recursive_time:.6f}秒")print(f"迭代法耗时:{iterative_time:.6f}秒")print("")test_factorial()```五、实验结果与分析1. 实验结果(1)n = 5递归法耗时:0.000002秒迭代法耗时:0.000001秒(2)n = 10递归法耗时:0.000003秒迭代法耗时:0.000001秒(3)n = 20递归法耗时:0.000016秒迭代法耗时:0.000002秒2. 分析(1)从实验结果可以看出,迭代法在计算阶乘时比递归法具有更高的效率。
现代密码算法实验报告(3篇)

第1篇一、实验目的1. 了解现代密码学的基本原理和数论基础知识;2. 掌握非对称密码体制的著名代表RSA加密算法的工作原理和流程;3. 设计实现一个简单的密钥系统;4. 掌握常用加密算法AES和DES的原理及实现。
二、实验内容1. RSA加密算法实验2. AES加密算法实验3. DES加密算法实验三、实验原理1. RSA加密算法RSA算法是一种非对称加密算法,由罗纳德·李维斯特、阿迪·沙米尔和伦纳德·阿德曼三位密码学家于1977年提出。
其基本原理是选择两个大质数p和q,计算它们的乘积n=pq,并计算欧拉函数φ(n)=(p-1)(q-1)。
选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。
计算e关于φ(n)的模逆元d。
公开密钥为(e,n),私有密钥为(d,n)。
加密过程为C=Me mod n,解密过程为M=Cd mod n。
2. AES加密算法AES(Advanced Encryption Standard)是一种分组加密算法,采用128位分组大小和128、192或256位密钥长度。
AES算法主要分为四个阶段:初始轮、密钥扩展、中间轮和最终轮。
每个轮包括字节替换、行移位、列混淆和轮密钥加。
3. DES加密算法DES(Data Encryption Standard)是一种分组加密算法,采用64位分组大小和56位密钥长度。
DES算法主要分为16轮,每轮包括置换、置换-置换、S盒替换和密钥加。
四、实验步骤及内容1. RSA加密算法实验(1)选择两个大质数p和q,计算n=pq和φ(n)=(p-1)(q-1);(2)选择一个整数e,满足1<e<φ(n)且e与φ(n)互质,计算e关于φ(n)的模逆元d;(3)生成公开密钥(e,n)和私有密钥(d,n);(4)用公钥对明文进行加密,用私钥对密文进行解密。
2. AES加密算法实验(1)选择一个128、192或256位密钥;(2)初始化初始轮密钥;(3)进行16轮加密操作,包括字节替换、行移位、列混淆和轮密钥加;(4)输出加密后的密文。
算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
FFT算法分析实验实验报告

FFT算法分析实验实验报告一、实验目的快速傅里叶变换(Fast Fourier Transform,FFT)是数字信号处理中一种非常重要的算法。
本次实验的目的在于深入理解 FFT 算法的基本原理、性能特点,并通过实际编程实现和实验数据分析,掌握 FFT 算法在频谱分析中的应用。
二、实验原理FFT 算法是离散傅里叶变换(Discrete Fourier Transform,DFT)的快速计算方法。
DFT 的定义为:对于长度为 N 的序列 x(n),其 DFT 为X(k) =∑n=0 到 N-1 x(n) e^(j 2π k n / N) ,其中 j 为虚数单位。
FFT 算法基于分治法的思想,将 N 点 DFT 分解为多个较小规模的DFT,从而大大减少了计算量。
常见的 FFT 算法有基 2 算法、基 4 算法等。
三、实验环境本次实验使用的编程语言为 Python,主要依赖 numpy 库来实现 FFT 计算和相关的数据处理。
四、实验步骤1、生成测试信号首先,生成一个包含不同频率成分的正弦波叠加信号,例如100Hz、200Hz 和 300Hz 的正弦波。
设定采样频率为 1000Hz,采样时间为 1 秒,以获取足够的采样点进行分析。
2、进行 FFT 计算使用 numpy 库中的 fft 函数对生成的测试信号进行 FFT 变换。
3、频谱分析计算 FFT 结果的幅度谱和相位谱。
通过幅度谱确定信号中各个频率成分的强度。
4、误差分析与理论上的频率成分进行对比,计算误差。
五、实验结果与分析1、幅度谱分析观察到在 100Hz、200Hz 和 300Hz 附近出现明显的峰值,对应于生成信号中的频率成分。
峰值的大小反映了相应频率成分的强度。
2、相位谱分析相位谱显示了各个频率成分的相位信息。
3、误差分析计算得到的频率与理论值相比,存在一定的误差,但在可接受范围内。
误差主要来源于采样过程中的量化误差以及 FFT 算法本身的近似处理。
算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。
本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。
二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。
具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。
实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。
三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。
- 实现顺序搜索和二分搜索算法。
2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。
3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。
4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。
- 多次重复同样的操作,取平均值以减小误差。
5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。
四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。
- 插入排序:执行效率一般,在中等规模数据排序中表现良好。
- 快速排序:执行效率最高,适用于大规模数据排序。
2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。
- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。
实验结果表明,不同算法适用于不同规模和类型的问题。
正确选择和使用算法可以显著提高程序的执行效率和性能。
五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。
2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。
3.学会利用分治算法解决实际问题。
二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。
假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。
并对自己的程序进行复杂性分析。
三.问题分析:一般思路:假设袋中有n 个金块。
可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。
找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。
这样,比较的总次数为2n-3。
分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。
当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。
第二步,分别找出在A和B中最重和最轻的金块。
设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。
第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。
在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。
该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。
当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。
首先处理n≤1的情况。
若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。
当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。
在for 循环中,外层if 通过比较确定( w [ i ] , w [ i + 1 ] )中的较大和较小者。
此工作与前面提到的分而治之算法步骤中的2) 相对应,而内层的i f负责找出较小重量值和较大重量值中的最小值和最大值,这个工作对应于3 )。
for 循环将每一对重量值中较小值和较大值分别与当前的最小值w [ M i n ]和最大值w [ M a x ]进行比较,根据比较结果来修改M i n和M a x(如果必要)。
源程序#include<iostream>#include<string.h>#include<algorithm>using namespace std; 0float max(float g1,float g2)//比较找大值{return(g1>g2?g1:g2);}float min(float g1,float g2)//比较找小值{return(g1<g2?g1:g2);}float Search_Max(float g[],int left,int right)//用二分法递归找最大值{if(left==right) //当只有一个数时,直接返回该值{float max;max=g[right];return max;}if(right-left==1){float LM,RM;LM=g[left];RM=g[right];return(max(LM,RM));}if(right-left>1){float LM,RM;int mid=(left+right)/2;//取中点LM=Search_Max(g,left,mid);RM=Search_Max(g,mid,right);//左半部分,右半部分的最大值比较找最大return(max(LM,RM));}}float Search_Min(float g[],int left,int right)//用二分法递归找最小值{if(left==right){float min;min=g[right];return min;}if(right-left==1){float LM,RM;LM=g[left];RM=g[right];return(min(LM,RM));}if(right-left>1){float LM,RM;int mid=(left+right)/2;LM=Search_Min(g,left,mid);RM=Search_Min(g,mid,right);//左半部分,右半部分的最小值比较找最小return(min(LM,RM));}}int main(){float gold[100];int n;cout<<"请输入金块的数目: ";cin>>n;cout<<"请输入各金块的重量: ";for(int i=0;i<n;i++){cin>>gold[i];}cout<<"最重的金块: "<<Search_Max(gold,0,n-1)<<endl;cout<<"最轻的金块: "<<Search_Min(gold,0,n-1)<<endl;return 0;}实验结果输入金块数量:5得到最轻和最重的金块实验总结通过这次实验,我深刻了解到分治法的实用性,有效性。
当遇到规模较大的问题,用我们以前学过的方法就太不明智了。
将原问题划分成若干个较小规模的子问题,再继续求解,划分,能够简化问题。
递归法,是一个很重要的方法,具有结构自相似的特性,刚开始学习编写的时候遇到了很多问题,不知道要找边界,不知道如何划分问题。
关于这次算法,我觉得,类的部分还是一个难点,也就是说,不会将问题分解成抽象的概念,这也是我以后需要重点学习的地方。
实验二动态规划算法的应用一、实验目的1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。
2.熟练掌握分阶段的和递推的最优子结构分析方法。
3.学会利用动态规划算法解决实际问题。
二、实验内容最长单调递增子序列问题设计一个O(n2)复杂度的算法,找出由n个数组成的序列的最长单调递增子序列。
思路分析1、把a1,a2,...,an排序,假设得到a'1,a'2,...,a'n,然后求a的a'的最长公共子串,这样总的时间复杂度为o(nlg(n))+o(n^2)=o(n^2);2、动态规划的思路:另设一辅助数组b,定义b[n]表示以a[n]结尾的最长递增子序列的长度,则状态转移方程如下:b[k]=max(max(b[j]|a[j]<a[k],j<k)+1,1);(见状态转移方程)状态转移方程设辅助数组b[],定义b[n]表示以a[n]结尾的最长递增子序列的长度,状态转移方程表示为:b[k] = max ( max(b[j]|a[j]<a[k], j<k)+1, 1 )其中0<=k<=n-1,在a[k]前面找到满足a[j]<a[k]的最大b[j],a[k]作为后继,得到a[k]的最长递增子序列的长度,如果a[k]前面没有更小的a[j],此时a[k]形成序列,长度为1,继续计算,最后整个序列的最长递增子序列:max(b[k] |0<=k<=n-1),此时时间复杂度仍为O(n^2)。
另外定义一数组c,c中元素满足c[b[k]]=a[k],即当递增子序列的长度为b[k]时子序列的末尾元素为c[b[k]]=a[k]。
实现代码第一种思路:#include<stdio.h> //时间复杂度O(n^2)int main(){int i,j,k,n,a[100],b[100],c[100],max;while(scanf("%d",&n)!=EOF){for(i=0;i<n;i++)scanf("%d",&a[i]);b[0]=1; //初始化,以a[0]结尾的最长递增子序列长度为1c[0]=a[0]; k=1;for(i=1;i<n;i++){b[i]=1; //b[i]最小值为1for(j=0;j<i;j++)if(a[i]>a[j] && b[j]+1>b[i]){b[i]=b[i]+1;}}for(max=i=0;i<n;i++) //求出整个序列的最长递增子序列的长度if(b[i]>max)max=b[i];printf("%d\n",max);}return 0;}运行结果实验总结通过实现动态规划的这个题目,对动态规划算法有了进一步的了解。
先分析问题,判断是否具有最优子结果和重叠字问题的性质实验三贪心算法的应用一、实验目的1.掌握贪心算法的基本概念和两个基本要素2.熟练掌握贪心算法解决问题的基本步骤。
3.学会利用贪心算法解决实际问题。
二、实验内容题目三:程序存储问题设有n个程序{1,2,3,…,n}要存放在长度为L的磁带上。
程序i 存放在磁带上的长度是l i,1≤i≤n。
要求确定这n个程序在磁带上的一个存储方案,使得能够在磁带上存储尽可能多的程序。
输入数据中,第一行是2个正整数,分别表示程序文件个数和磁带长度L。
接下来的1行中,有n个正整数,表示程序存放在磁带上的长度。
输出为最多可以存储的程序个数。
输入数据示例6 502 3 13 8 80 20输出数据5三. 题目分析:题目要求计算给定长度的磁带最多可存储的程序个数,先对程序的长度从小到大排序,再采用贪心算法求解。
3、算法设计:a. 定义数组a[n]存储n个程序的长度,s为磁带的长度;b. 调用库函数sort(a,a+n)对程序的长度从小到大排序;c. 函数most()计算磁带最多可存储的程序数,采用while 循环依次对排序后的程序长度进行累加,用i计算程序个数,用sum计算程序累加长度(初始i=0,sum=0):① sum=sum+a[i];②若sum<=s,i加1,否则i为所求;③ i=n时循环结束;d. 若while循环结束时仍有sum<=s,则n为所求。
源程序:#include<iostream>using namespace std;#include<algorithm>int a[1000000];int most(int *a,int n,int s){int i=0,sum=0;while(i<n){sum=a[i]+sum;if(sum<=s)i++;else return i;}return n;}main(){int i,n,s;scanf("%d %d\n",&n,&s);for(i=0;i<n;i++)scanf("%d",&a[i]);sort(a,a+n);printf("%d",most(a,n,s));return 0;}实验总结此次实验让我对贪心算法的思想有了初步的了解,并且学会了用贪心算法解决一些实际问题。