算法设计与分析实验报告贪心算法
实验三-贪心算法

for(inti=0;i<s.length();i++){
buf.append(getEachCode(s.substring(i,i+1)));
}
returnbuf.toString();
}
publicString getEachCode(String name){
for(inti=0;i<buffer.length();i++){
if(name.equals(codes[i].name)){
returnhuffstring[i];
}
}
return"";
}
publicvoidgetCode(intn,String[] thecodes,String thebuffer){
importjava.util.Scanner;
classHuffmanCode{
Stringname;
doubleweight;
intlc,rc,pa;
publicHuffmanCode(){
name="";
weight=0;
lc=-1;rc=-1;pa=-1;
}
}
publicclassHuffman1 {
dist[j]=newdist;prev[j]=u;}}}}
(3)运行结果
3、题目三
(1)问题分析
设G=(V,E)是连通带权图,V={1,2,…,n}。构造G的最小生成树的Prim算法的基本思想是:首先置S{1},然后,只要S是V的真子集,就进行如下的贪心选择:选取满足条件i∈S,j∈V-S,且c[i][j]最小的边,将顶点j添加到S中。这个过程一直进行到S=V时为止。过程中所取到的边恰好构成G的一棵最小生成树。
算法设计与分析中的贪心算法与回溯法

算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。
本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。
一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。
贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。
贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。
例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。
然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。
在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。
因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。
二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。
它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。
回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。
在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。
如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。
回溯法常用于解决一些全排列、子集和组合等问题。
例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。
然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。
因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。
三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。
贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。
它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。
然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。
算法分析与设计实验报告 实验5:贪心算法的应用

sort(d,d+n,cmp);//按纵坐标升序排列 last=d[0].r;//记录当前线段被覆盖的最大坐标值
for(int i=1;i<n;i++) { if(d[i].l<=last && d[i].r>=last)//线段 d[i]的右坐标在 last 之后, 左坐标在 Last 之前的情况,即产生了覆盖。此时还要更新 last 坐标
} cout<<n.substr(0,l-s+x)<<endl;//只打印剩下的左边 l-(s-x)个数字 } return 0; } 2. #include<iostream> #include<cstdio> #include <algorithm> using namespace std; struct point {
课程实验报告
课程名称 算法分析与设计 班级 计算 161 实验日期
姓名
何严鸿
学号 20160701 实验成绩 9
实验名称
实验 5:贪心算法的应用
实
1.理解贪心算法的概念;
验
目
2.掌握贪心算法的基本思想。
的
及
要
求
实
操作系统:Windows
验
环
IDE:Visual C++
境
(1)删数问题
2018/5/06
{
length=d[i].r-d[i-1].l; last=d[i].r; } else if (d[i].r<=last) //线段 d[i]的右坐标在 last 之内,不产生覆盖 continue; else if (d[i].l>=last) //线段 d[i]的左坐标在 Last 之后,此时 last 之后的部分不会对之前的部分产生影响,更新 last 坐标。length 的值加上之 前的部分 { last=d[i-1].r; length=length+d[i].r-d[i].l; } } cout<<last<<endl; return 0; }
实验3贪心算法(定稿)

实验3贪心算法(定稿)第一篇:实验3 贪心算法(定稿)《算法设计与分析》实验报告实验3贪心算法姓名学号班级实验日期实验地点一、实验目的1、掌握贪心算法的设计思想。
2、理解最小生成树的相关概念。
二、实验环境1、硬件环境 CPU:酷睿i5 内存:4GB 硬盘:1T2、软件环境操作系统:Windows10 编程环境:jdk 编程语言:Java三、实验内容:在Prim算法与Kruskal算法中任选一种求解最小生成树问题。
1、你选择的是:Prim算法2、数据结构(1)图的数据结构——图结构是研究数据元素之间的多对多的关系。
在这种结构中,任意两个元素之间可能存在关系,即结点之间的关系可以是任意的,图中任意元素之间都可能相关。
图形结构——多个对多个,如(2)树的数据结构——树结构是研究数据元素之间的一对多的关系。
在这种结构中,每个元素对下(层)可以有0个或多个元素相联系,对上(层)只有唯一的一个元素相关,数据元素之间有明显的层次关系。
树形结构——一个对多个,如3、算法伪代码 Prim(G,E,W)输入:连通图G 输出:G的最小生成树T 1.S←{1};T=∅ 2.While V-S ≠∅ do3.从V-S中选择j使得j到S中顶点的边e的权最小;T←T∪{e}4.S←S∪{j}3、算法分析时间复杂度:O(n)空间复杂度:O(n^2)4、关键代码(含注释)package Prim;import java.util.*;publicclass Main { staticintMAXCOST=Integer.MAX_VALUE;staticint Prim(intgraph[][], intn){ /* lowcost[i]记录以i为终点的边的最小权值,当lowcost[i]=0时表示终点i加入生成树 */ intlowcost[]=newint[n+1];/* mst[i]记录对应lowcost[i]的起点,当mst[i]=0时表示起点i加入生成树 */ intmst[]=newint[n+1];intmin, minid, sum = 0;/* 默认选择1号节点加入生成树,从2号节点开始初始化*/ for(inti = 2;i<= n;i++){/* 标记1号节点加入生成树 */ mst[1] = 0;/* n个节点至少需要n-1条边构成最小生成树 */ for(inti = 2;i<= n;i++){/* 找满足条件的最小权值边的节点minid */ for(intj = 2;j<= n;j++){/* 输出生成树边的信息:起点,终点,权值 */System.out.printf(“%c1, minid + 'A''A' + 1;intj = chy-'A' + 1;graph[i][j] = cost;graph[j][i] = cost;for(intj = 1;j<= n;j++){ } graph[i][j] = MAXCOST;} } System.out.println(”Total:"+cost);} }5、实验结果(1)输入(2)输出最小生成树的权值为:生成过程:(a)(b)(d)(e)(c)四、实验总结(心得体会、需要注意的问题等)这次实验,使我受益匪浅。
贪心算法 实验报告

贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计策略,它通常用于求解最优化问题。
贪心算法的核心思想是在每一步选择中都选择当前最优的解,从而希望最终能够得到全局最优解。
本实验旨在通过实际案例的研究,探索贪心算法的应用和效果。
一、贪心算法的基本原理贪心算法的基本原理是每一步都选择当前最优解,而不考虑整体的最优解。
这种贪婪的选择策略通常是基于局部最优性的假设,即当前的选择对于后续步骤的选择没有影响。
贪心算法的优点是简单高效,但也存在一定的局限性。
二、实验案例:零钱兑换问题在本实验中,我们以零钱兑换问题为例,来说明贪心算法的应用。
问题描述:假设有不同面值的硬币,如1元、5元、10元、50元和100元,现在需要支付给客户x元,如何用最少的硬币数完成支付?解决思路:贪心算法可以通过每次选择当前面值最大的硬币来求解。
具体步骤如下:1. 初始化一个空的硬币集合,用于存放选出的硬币。
2. 从面值最大的硬币开始,如果当前硬币的面值小于等于待支付金额,则将该硬币放入集合中,并将待支付金额减去该硬币的面值。
3. 重复步骤2,直到待支付金额为0。
实验过程:以支付金额为36元为例,我们可以通过贪心算法求解最少硬币数。
首先,面值最大的硬币为100元,但36元不足以支付100元硬币,因此我们选择50元硬币。
此时,剩余待支付金额为36-50=-14元。
接下来,面值最大的硬币为50元,但待支付金额为负数,因此我们选择下一个面值最大的硬币,即10元硬币。
此时,剩余待支付金额为-14-10=-24元。
继续选择10元硬币,剩余待支付金额为-24-10=-34元。
再次选择10元硬币,剩余待支付金额为-34-10=-44元。
最后,选择5元硬币,剩余待支付金额为-44-5=-49元。
由于待支付金额已经为负数,我们无法继续选择硬币。
此时,集合中的硬币数为1个50元和3个10元,总共4个硬币。
实验结果:通过贪心算法,我们得到了36元支付所需的最少硬币数为4个。
算法分析与设计实验二贪心算法

算法分析与设计实验二贪心算法贪心算法是一种基于贪心策略的求解问题的方法,该方法在每一步都采取最优的选择,从而最终得到全局最优解。
本实验将介绍贪心算法的概念、特点以及实际应用。
1.贪心算法的概念和特点贪心算法是一种求解问题的策略,它在每一步都做出局部最优选择,以期望最终得到全局最优解。
它不考虑每一步选择的长远影响,而只关注眼前能得到的最大利益。
贪心算法有以下特点:1.1.子问题的最优解能够推导父问题的最优解:贪心算法解决的问题具有最优子结构,即问题的最优解包含其子问题的最优解。
1.2.贪心选择性质:通过选择当前最优解,可以得到局部最优解。
1.3.无后效性:当前选择的最优解不会对以后的选择产生影响。
2.实际应用2.1.背包问题背包问题是一个经典的优化问题,贪心算法可以用于解决背包问题的一种情况,分数背包问题。
在分数背包问题中,物品可以被分割成任意大小,而不仅仅是0和1两种状态,因此可以通过贪心算法求解。
2.2.最小生成树问题最小生成树问题是求解连通带权图的一种最优生成树的问题。
其中,普里姆算法和克鲁斯卡尔算法就是贪心算法的典型应用。
2.3.哈夫曼编码哈夫曼编码是一种用于对信息进行无损压缩的方法,它可以将出现频率较高的字符用较短的二进制编码表示。
贪心算法可以在构建哈夫曼树的过程中选择出现频率最低的两个字符进行合并。
3.贪心算法的设计步骤3.1.理解问题并找到最优解的子结构。
3.2.根据问题特点设计贪心策略。
3.3.利用贪心策略进行求解,并逐步推导得到全局最优解。
3.4.对求得的解进行检验,确保其满足问题的要求。
4.贪心算法的优缺点4.1.优点:贪心算法简单直观,易于实现和理解;对于一些问题,贪心算法可以得到全局最优解。
4.2.缺点:贪心算法无法保证得到问题的全局最优解;贪心策略的选择可能不唯一综上所述,贪心算法是一种基于贪心策略的求解问题的方法,通过每一步的局部最优选择,期望得到全局最优解。
贪心算法具有明显的优点和缺点,在实际应用中可以有效地解决一些问题。
计算机算法设计与分析-贪心算法

2023/10/8
计算机算法设计与分析
4
树的基本性质
连通无回路的图G称为树。 树是点比边多一的连通图,G连通且q=p–1 。 树是点比边多一的无回路图:G无回路且q=p–1 树若添条边就有回路:G无回路,但对任意的u,
v∈V(G),若uvE(G),则G+uv中恰有一条回路 树若减条边就不连通:G连通,但对e∈E(G),
图条 出且边 权该。 重回这 较路n小中–的1包n条含–边1e必条1。定边该包(回括在路了实中G现必的中有n体个条现顶不为点是n。e个的这 边样 顶e就 点i。得 的令到 选T’了择={G)T的+。e一1}棵–ei最。小T’生也成是树G的。生成树。又
cc矛K次不 要 是这((TTr盾选行 保 连u’’样))s。≤k择=! 证 通c做a故(cl权因 这 的T算(是T)必重为 或n,法)否定–+较不者T的1c’有可是小能是条(做e图1以G的保无边法) 的G–n证回构呢:的c最–(这路成在?e最1小1条的n树)保,小生–边。,证c生1成(。必条无e成1树)须边回树≤且使构路c包含(这成e的含i有)n树,前了边–?从提e1e1条而下1。。边依
初始化:Path中仅含有源v。
2023/10/8
计算机算法设计与分析
21
最临近算法中的数据结构
图用连接矩阵W[i][j]给出,即W[i][j]为 结点i到结点j的权重。
Path[]记录依次连接的城市,p记录当前 到达的最后一个顶点,cost为当前路径 长度。
如果节点k已经到达,则arrived[k]=true。
3
最小生成树
设G = (V, E)是一个无向连通带权图,即一个网 络。E的每条边(v, w)的权为c[v][w]。
算法分析与设计实验二贪心算法

算法分析与设计实验二贪心算法实验二:贪心算法【实验目的】应用贪心算法求解活动安排问题。
【实验性质】验证性实验。
【实验要求】活动安排问题是可以用贪心算法有效求解的很好的例子。
问题:有n个活动的集合A={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。
求解:安排尽量多项活动在该场地进行,即求A的最大相容子集。
设待安排的11个活动的开始时间和结束时间按结束时间的升序排列如下: i 1 2 35 3 06 4 57 5 38 6 59 7 6 10 8 8 11 9 8 12 10 2 13 11 12 14 s[i] 1 f[i] 4将此表数据作为实现该算法的测试数据。
【算法思想及采用的数据结构】【程序代码】【运行结果】【算法分析和心得体会】附加题:【实验要求】需要在某个城市的n个居民区之间铺设煤气管道,则在这n个居民区之间只要铺设n-1条管道即可。
假设任意两个居民区之间都可以架设管道,但由于地理环境的不同,所需经费不同。
选择最优的施工方案能使总投资尽可能少,这个问题即为求网的“最小生成树”问题。
参照以下居民区示意图,使得求解算法为:在可能架设的m条管道中选取n-1条,既能连通n-1个居民区,有使总投资达到“最小”。
网可采用邻接矩阵为存储结构,以定点对(i,j)的形式输出最小生成树的边。
D 23.1 675.9 C 41.1 56B A 38.2 441218.2 I 8.7 H 52.5 G 10.5E 98.7 居民区示意图 85F 79应用贪心算法策略,采用普里姆算法或Kruskal算法来求解居民区示意图的最小生成树,采用合适的数据结构。
用C语言或C++语言编写程序代码,选上述居民区示意图中的数据作为测试数据。
并调试输出正确结果。
【算法思想及采用的数据结构】【程序代码】【运行结果】【算法分析和心得体会】感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
printf("\n");
for(i=0;i<m;i++)
{
huffmantree[i].lchild=-1;
huffmantree[i].rchild=-1;
huffmantree[i].parent=-1;
}
for(count=n;count<m;count++)
算法设计与分析实验报告
贪心算法
班级:2013156学号:201315614姓名:张春 阳
哈夫曼编码
代码
#include<stdio.h>
float small1,small2;
int flag1,flag2,count;
typedef struct HuffmanTree
{
float weight;
int lchild,rchild,parent;
}huffman;
huffman huffmantree[100];
void CreatHuffmanTree(int n,int m)
{
int i;
void select();
printf("请输入%d个节点的权值:",n);
for(i=0;i<n;i++)
flag2=i;
if(small1>small2)
{
stemp=small1;
small1=small2;
small2=stemp;
ftemp=flag1;
flag1=flag2;
flag2=ftemp;
}
}
}
void huffmancode(int n)
{
int a[100];
int j,k,i,c;
{
select();
huffmantree[flag1].parent=count;
huffmantree[flag2].parent=count;
huffmantree[count].weight=small1+small2;
huffmantree[count].lchild=flag1;
huffmantree[count].rchild=flag2;
}
}
void select()
{
int i,a,b;
float stemp;
int ftemp;
a=0;b=0;
for(i=0;i<count;i++)
{
if(huffmantree[i].parent==-1)
{
if(a==0)
{
small1=huffmantree[i].weight;
flag1=i;
CreatHuffmanTree(n,m);
huffmancode(n);
}
截图
flag1=flag2;
flag2=ftemp;
}
for(i=0;i<count;i++)
if(huffmantree[i].parent==-1)
if((flag1!=i)&&(flag2!=i))
if(huffmantree[i].weight<small2)
{
small2=huffmantree[i].weight;
c=c+1;
j=k;
}
printf("节点%d的哈夫曼编码为:",i);
for(c=c-1;c>-1;c--)
printf("%d",a[c]);
printf("\n");
}
}
void main()
{
int n,m;
printf("请输入一共有几个节点:");
scanf("%d",&n);
m=2*n-1;
a=a+1;
}
else
if(b==0)
{
small2=huffmantree[i].weight;
flag2=i;
b=b+1;
}
}
if((a==1)&&(b==1))
break;
}
if(small1>small2)
{
stemp=small1;
small1=small2;
small2=stemp;
ftemp=flag1;
for(i=0;i<n;i++)
{
j=i;
c=0;
while(huffmantree[j].parent!=-1)
{
k=huffmantree[j].parent;
if(huffmantree[k].lchild==j)
a[c]=0;
if(huffmantree[k].rchild==j)
a[c]=1;