基于MPX4115的数字压力测量仪器设计说明书
基于MPX传感器的数字压力测量仪电路图及源程序详询qq群

在proteus下按照下面的图画出电路图,再将所有程序用keil C编译后生成hex文件导入proteus即可仿真成功!我的另一个文档是关于此的课程设计,欢迎下载!基于MPX4115的数字压力测量仪步骤:(1)在Proteus软件画出电路图(2)用keil C 软件写出C程序,并生成.hex文件,导入到单片机当中,进行仿真,观察结果。
压力测试仪系统描述;输入15--115kPA压力信号输出00h--ffh数字信号(adc0832)在LED上显示实际的压力值,如果超限则报警线性区间标度变换公式:y=(115-15)/(243-13)*X+15kpa作者:单位:日期:2008.3.7********************************************************/#include <reg51.H>#include "intrins.h"#define uint unsigned int#define uchar unsigned char//ADC0832的引脚sbit ADCS =P2^0; //ADC0832 chip seclectsbit ADDI =P3^7; //ADC0832 k insbit ADDO =P3^7; //ADC0832 k outsbit ADCLK =P3^6; //ADC0832 clock signalunsigned char dispbitcode[8]={0xf7,0xfb,0xfd,0xfe,0xef,0xdf,0xbf,0x7f}; //位扫描unsigned char dispcode[11]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0xff}; //共阳数码管字段码unsigned char dispbuf[4];uint temp;uchar getdata; //获取ADC转换回来的值void delay_1ms(void) //12mhz delay 1.01ms{unsigned char x,y;x=3;while(x--){y=40;while(y--);}}void display(void) //数码管显示函数{char k;for(k=0;k<4;k++){P1 = dispbitcode[k];P0 = dispcode[dispbuf[k]];if(k==1) //加上数码管的dp小数点P0&=0x7f;delay_1ms();}}/************读ADC0832函数************///采集并返回unsigned int Adc0832(unsigned char channel) //AD转换,返回结果{uchar i=0;uchar j;uint dat=0;uchar ndat=0;if(channel==0)channel=2;if(channel==1)channel=3;ADDI=1;_nop_();_nop_();ADCS=0;//拉低CS端_nop_();_nop_();ADCLK=1;//拉高CLK端_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿1_nop_();_nop_();ADCLK=1;//拉高CLK端ADDI=channel&0x1;_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿2_nop_();_nop_();ADCLK=1;//拉高CLK端ADDI=(channel>>1)&0x1;_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿3ADDI=1;//控制命令结束_nop_();_nop_();dat=0;for(i=0;i<8;i++){dat|=ADDO;//收数据ADCLK=1;_nop_();_nop_();ADCLK=0;//形成一次时钟脉冲_nop_();_nop_();dat<<=1;if(i==7)dat|=ADDO;}for(i=0;i<8;i++){j=0;j=j|ADDO;//收数据ADCLK=1;_nop_();_nop_();ADCLK=0;//形成一次时钟脉冲_nop_();_nop_();j=j<<7;ndat=ndat|j;if(i<7)ndat>>=1;}ADCS=1;//拉低CS端ADCLK=0;//拉低CLK端ADDO=1;//拉高数据端,回到初始状态dat<<=8;dat|=ndat;return(dat); //return ad k}void main(void){while(1){ unsigned int temp;float press;getdata=Adc0832(0);if(14<getdata<243) //当压力值介于15kpa到115kpa之间时,遵循线性变换{int vary=getdata; //y=(115-15)/(243-13)*X+15kpapress=((10.0/23.0)*vary)+9.3; //测试时补偿值为9.3temp=(int)(press*10); //放大10倍,便于后面的计算dispbuf[3]=temp/1000; //取压力值百位dispbuf[2]=(temp%1000)/100; //取压力值十位dispbuf[1]=((temp%1000)%100)/10; //取压力值个位dispbuf[0]=((temp%1000)%100)%10; //取压力值十分位display();}}}程序完!。
验压仪测量仪说明书

Calibration Technology Starts HereDigital Test Gauge takes the concept of an analog Test Gauge,and brings it to a new level.The NEW BetaGauge P.I.PRO combines the accuracy of digital technology with the simplicity of an analog gauge and achieves performance,ease-of-use,and a feature set unmatched in the pressure measurement world.The BetaGauge PI PRO builds on the proven performance of the BetaGauge PI with a newpurpose designed Zinc-Aluminum Alloy High Pressure Cast housing.The new housing improves theenvironmental integrity of the gauge in a lighter and smaller yet more rugged form factor.Setup of the BetaGauge P.I.PRO is fast and straightforward,through a menu-driven display,that is simple enough to allow the gauge to be used anywhere in the world.Ease-of-use,performance,and features set the BetaGauge P.I.PRO Digital Pressure Test Gauge apart,just as you’ve come to expect from Martel Electronics!The BetaGauge P.I.PRO first and foremost,provides 0.05%of full scale accuracy of pressure in any one of seventeen (17)ranges.Readings may be displayed in any one of 18standard engineering units,or in 1custom unit you define,toeliminate tedious conversion calculations.The 5-1/2digit,0.65"high digital display and companion percent-of-range bar graph provide an easy to read display,even from a distance.A number of features provide additional ease of use.The reading sample rate can be user adjusted to match the type of measurement required.A power saving mode maximizes battery life to 2,000hours.Other featuresinclude MIN/MAX function,Auto Power Off and backlight control.Continued on backPrecision Digital Pressure Test Gauge The BetaGauge PI PROSingle-handed process validationGeneral Features.Accuracy of ±0.05%of F.S.(±0.04%of Reading for Reference Class Verse).Temperature compensated accuracy over 0to 50°C .17standard pressure ranges available .Data logging.Displays in 18standard or 1custom engineering unit .Displays ambient temperature in °C or °F.Large,back-lit,5-1/2digit display with 0.65"high digits and 20segment bar graph.Adjustable TARE zeros large system offsets.User-configurable sample rate maximizes measurement performance and battery life.User-configurable damping smooths readings from pulsating/plant air sources.Auto Shut-off for extended battery life .Low battery indicator.CSA intrinsically safe,Class 1,Div.2Groups A,B,C &D;ATEX approved;CE approved.Available with optional 24V external power input.Rubber boot standard on all stand-alone bottom mount gaugesFor more information:-Call us toll free at 800-821-0023or 603-434-1433-Fax us at 603-434-1653-Email us at ********************and ask for a BetaGauge PI Data Sheet -Or go to our website, and click on BetaGauge PI PRO -Online product comparisonBetaGauge PI PRO(Shown with optional pump)PROPump Kits shown with optionalOrder#BetaGauge-PI-xxx10”H20*/20mBAR,xxx=010;1psi*/70mBAR,xxx=001;15.000psi/1BAR,xxx=015;30.000psi/2BAR,xxx=030;100.00psi/7BAR,xxx =100;300.00psi/20BAR,xxx=300;500.00psi/30BAR,xxx=500;1,000.00psi/70BAR,xxx=01K;2,000.0psi/140BAR,xxx=02K;3,000.0psi/200BAR,xxx=03K;5,000.0psi/300BAR,xxx=05K;10,000psi/700BAR,xxx=10K;15,000psi/1035BAR,xxx=15K(Q42010);-15to+15psi*,xxx=015C;-15to+30psi*,xxx=030C-xPort Position Bottom(standard);x=__(leave blank);Back(option);x=RM -KitxKit(includes BetaGauge PI,case,rubber boot,pressure calibration handpump,hose andfittings)With MECP500pneumatic test pump(500psi and below);Kit5With MECP10K hydraulic test pump(above500psi);Kit3-24OPTIONAL:External24VDC Power InputATTENTION:All Rear Mount and24VDC External Input gauge configurationsare supplied in the previous BetaGauge PI housing.Only the standard bottommount configured gauges are supplied in the new BetaGauge PI PRO housing.BetaGauge P.I.PRO may beallows pressure reading dataoff-line analysis.(Requiresto a ZERO function thatsystem pressures can be nulledwhen combined with thedisplay,allows the BetaGaugeand volume measurements,easilytank,directly.Damping can be setsources,such as plant air.Anavailable for applications where theincorporated into a process line.Athe BetaGauge P.I.from damageavailable in a self-contained calibrationassociatedfittings.P.I.PRO gauges,the BetaGauge PIRGauge and combines it with theReference Class gauges providereading accuracy,especiallydigital test gauges arepsig,100psig,50010,000psig.Setup ofstraightforward,through aintuitive functions,thatanywhere in thedisplays.Pressure readingsengineering units,or in user-conversion calculations.high digital display andis temperature-compensatedtemperature sensor measurement can beBetaGaugePIR PROReferenceClassDistributed by:。
课程设计说明书_智能压力测量仪讲解

郑州华信学院课程设计说明书题目:智能压力测量仪姓名:杨巍院(系):机电工程学院专业班级:电气工程三班学号:1102120310指导教师:宋东亚杨坤漓成绩:时间:2013年12月17 日至2013 年12 月28 日郑州华信学院课程设计任务书题目智能压力测量仪专业、班级电气工程及其自动化三班学号 1102120310姓名杨巍主要内容:利用单片机计一个智能压力测量仪,要求显示压力数据。
基本要求:1.设计一个智能压力测量仪,要求显示当前压力数值。
2.利用proteus软件完成设计电路和仿真;3.掌握并口驱动数码管动态显示的方法;4.通过此次设计将单片机软硬件结合起来对程序进行编辑、校验,锻炼实践能力和理论联系实际的能力。
主要参考资料:[1]李全利,单片机原理及接口技术[M],高等教育出版社[2]王文杰,单片机应用技术[M],冶金工业出版社[3]朱清慧,PROTEUS教程——电子线路设计、制版与仿真[M],清华大学出版社[4]单片机实验指导书,天煌教仪[5]彭伟,单片机C语言程序设计实训100例[M],电子工业出版社完成期限:指导教师签名:课程负责人签名:年月日目录摘要 ...................................................................................................................................................... - 4 -1 引言 .................................................................................................................................................... - 4 -1.1 问题的提出 .................................................................................................................. - 4 -1.2任务与分析 ................................................................................................................... - 4 -2方案设计 ................................................................................................................................................. - 5 -2.1 系统方案设计论证....................................................................................................... - 5 -2.1.1系统的控制方案设计......................................................................................... - 5 -2.2最终设计方案总体设计框图........................................................................................ - 5 -3 系统硬件设计 ........................................................................................................................................ - 6 -3.1 AT89C51单片机 ........................................................................................................... - 6 -3.1.1 AT89C51单片机介绍 ........................................................................................ - 6 -3.1.2 选用AT89C51单片机原因 ...................................................................................... - 7 -3.2 时钟电路 ...................................................................................................................... - 8 -3.3 复位电路 ...................................................................................................................... - 8 -3.4 PG160128A显示电路................................................................................................... - 9 -3.5 A/D转换电路.............................................................................................................. - 10 -4 系统软件设计 ...................................................................................................................................... - 10 -4.1主程序框图 ................................................................................................................. - 10 -4.2显示子程序框.............................................................................................................. - 11 -5 系统调试过程 ...................................................................................................................................... - 12 -5.2 Keil程序调试.............................................................................................................. - 14 -5.3 Proteus仿真调试......................................................................................................... - 14 -结论 ...................................................................................................................................................... - 17 -致谢 .......................................................................................................................................................... - 18 -参考文献 .................................................................................................................................................. - 18 -附录一程序源代码 ................................................................................................................................ - 18 -附录二电路原理图及PCB图............................................................................................................... - 34 -附录三Proteus仿真截图........................................................................................................................ - 35 -摘要本课程设计是基于8051单片机为控制核心的压力检测系统。
MPX4115实验报告

}
/*写数据*/
void LCDdata(bit lcde,uchar temp){
delay(2);
E1=0;//禁止控制器
E2=0;
气压传感器MPX4115的管脚说明如表1所示:
表1 气压传感器MPX4115的管脚说明
气压传感器MPX4114的特性参数如表2所示:
表2气压MPX4115的特性参数
2.3
2.3.1
气压传感器MPX4115输出的是模拟电压,因此,必须进行模拟到数字的转换才能交由单片处理。关于A/D转换,本实验采用一种电压频率转换电路来实现模拟电压数字化的处理。
本设计要实现的数字气压计显示的是绝对气
压值,同时为了简化电路,提高稳定性和抗
干扰能力,要求使用具有温度补偿能力的气
压传感器。经过综合考虑,本设计选用美国
摩托罗拉公司的集成压力传感器。
MPX4115可以产生与所加气压呈线性
关系高精度模拟输出电压。
2.2.2
数据采集模块由气压传感器MPX4115
构成,采集的是大气压值。其中1脚是
数据转换模块原理图如图4所示 图4
LTC1297各引脚说 明:
引脚 1为片选输入:该引脚上的逻辑低电平将使能LTC芯片,该引脚上的高电平将使芯片处于掉电状态。
引脚 2 ,3 模拟输入端:输入必须是无噪音的(相对于GND)。
引脚 4 GND模拟地:GND必须直接连接到模拟地。
引脚 5 参考电压输入端:参考输入定义了A/D的跨度,并且它必须相对于GND而言没有噪音干扰。
兼容标准MCS-51指令系统,片内置通用8位中央处理
器(CPU)和Flash存储单元,功能强大AT89C51单
片机可为您提供许多高性价比的应用场合,可灵活
MP 110-MP 111-MP 115-MP 112 便携式差压仪 操作手册说明书

操作手册MP 110/111/115/112便携式差压仪1.注意事项请在使用本产品前, 详细阅读本操作手册, 且熟悉本产品的使用操作。
请将操作手册和本产品一同存放, 方便在您需要时可随时对照查阅。
1.1 避免产品损坏或使用人员受伤:►不可将测量仪或探头和溶剂储存。
►不可在有电设备附近或上面使用测量仪或探头。
1.2 产品保修有效/ 安全须知声明:►本产品仅可在技术规格中的量程内进行测量。
►不可使用外力破坏本产品, 并依照本操作手册中的方式使用本产品。
►依照本产品技术规格内的主机或探头的操作温度范围内使用。
►除了更换测量仪的电池或操作手册中允许的部分外, 不可自行打开测量仪或探头外壳。
►产品如有任何损坏, 请与本公司售后服务部联系安排产品检修, 不可自行进行维修。
1.3 产品回收和处理声明:►将使用完的电池送至专门提供的废电池收集点回收。
►如本产品使用寿命结束后, 请将产品寄回本公司。
我们将依照WEEE (2002/96/CE) 相关规定并保护环境的方式处理您所寄回的产品。
1.4 产品用途:►KIMO 研发设计和生产的高精度便携式差压测量仪, 用于空气或中性气体的差压或正/负压测量。
1.5 产品禁止使用:►本产品禁止用于防爆区域。
►本产品禁止用于医疗诊断。
2.产品介绍2.1 测量仪介绍2.2 按键说明(a)压力接口:正或负端压力接口(b)液晶显示屏:数字和图形液晶显示屏(c)ON / OFF 电源开关:开启电源或关闭电源ESC 键:回到上一层菜单选项(d)HOLD 键:测量值定格min / max 键:测量最小值或最大值(e)显示屏背光键:开启或关闭显示屏背光(f)菜单选项循环键:循环显示菜单的各个选项(g)OK 键:确认或差压零点校准+−(a)压力接口(b)液晶显示屏(c)ON / OFF 电源开关ESC 键(d)HOLD 键min / max 键(e)显示屏背光键(f)菜单选项循环键(g)OK 键3.1 开启电源按下键开启测量仪, 初始化时显示仪器型号, 并自动进行调零校准, 进入测量模式。
基于MPX4115的数字压力测量仪器设计说明书

大作业说明书基于MPX4115的数字压力测量仪器设计学生姓名:xxx学生学号:*****专业:测控技术与仪器指导教师:程xx(一)系统总体设计1:设计整体思想基于MPX4115的数字气压计包括软硬件的设计与调试。
软件部分通过对C 语言的学习和对单片机知识的了解,根据系统的特点编写出单片机程序。
硬件部分分为四大块,包括非电信号数据的采集、转换、处理以及显示:。
通过对设计的了解,选择适合的器件,画出原理图。
2:系统总体框图硬件部分由四部分构成,它们分别是:信息采集模块,数据转换模块,信息处理模块和数据显示模块。
(二)硬件电路设计及描述1:数字压力测量仪设计意义压力测量仪被广泛应用于国防领域、工业领域、医疗领域以及我们日常家庭生活中。
其中的核心元件就是压力传感器,它在监视压力大小、控制压力变化以及物理参量的测量等方面起着重要作用。
本系统设计的数字压力测量仪采用单片机控制,具有使用方便、精度高、显示简单和灵活性等优点,而且可以大幅提高被控气压的技术指标,从而能够大大提高产品的质量2:数据采集模块的芯片选择压力传感器对于系统至关重要,需要综合实际的需求和各类压力传感器的性能参数加以选择。
一般要选用有温度补偿作用的压力传感器,因为温度补偿特性可以克服半导体压力传感器件存在的温度漂移问题。
本设计要实现的数字气压计显示的是绝对气压值,同时为了简化电路,提高稳定性和抗干扰能力,要求使用具有温度补偿能力的压力传感器。
经过综合考虑,本设计选用美国摩托罗拉公司的集成压力传感器。
MPX4115可以产生高精度模拟输出电压。
数据采集模块由压力传感器MPX4115构成。
其中1脚是输出信号端,输出的是与气压值相对应的模拟电压信号。
数据采集模块的原理如图、数据采集模块原理图 MPX4115的实物图气压传感器MPX4115的原理MPX4115系列压电电阻传感器是一个硅压力传感器。
这个传感器结合了高级的微电机技术,薄膜镀金属。
还能为高水准模拟输出信号提供一个均衡压力。
精确数字压力计手册说明书

Storage Temperature: -4 to 140°F (-20 manual.
to 60°C).
Case Protection: IP54 (NEMA 3).
Humidity: Maximum 95% RH non-
Weight: 10.5 oz (300 g).
condensing.
Process Connections: Hose 4/6 mm or
Example: HM3531DLC100 (0 to 28 in w.c. with 0.05% accuracy); consult factory for pricing.
ACCESSORIES
Model Description
Price
HM28-0 1/8˝ NPT adapter (1 piece) $59.50
TEST & DATA
SERIES HM35
PRECISION DIGITAL PRESSURE MANOMETER
Up to 0.05% Accuracy, Graphical Display, Data Logging Capability
CALIBRATION SERVICES AVAILABLE
$1761.00 1692.00 1612.00 1692.00 1612.00 1612.00
Note: For higher accuracy models, change the 10th digit from a 3 to a 1 (0.05% FS), 2 (0.1% FS), or 6 (0.1% of reading); higher accuracies are only available on 0 to 28 in of w.c. range or higher.
压力机压力测试仪设计说明

压力机压力测试仪毕业设计摘要此设计为一压力测控仪,应用纯硬件电路,通过当前压力值和设定压力值的比较来自动控制输出。
控制部分应用组合逻辑电路,结构简单,性能稳定。
传感部分应用经典传感器电路,偏置电流小、失调小、增益高、共模抑制能力强、响应快、漂移低、性能稳、价格低廉。
输出部分采用光电耦合防止由于高压引起的干扰。
采用数码管作为本系统的显示部分,其体积小,功耗底,响应速度快,易于匹配,可靠性高和寿命长。
该系统优点在于速度快,抗干扰能力强,可靠性高。
此压力测控仪实用价值高,在控制中实现了一表多路显示,减少了机械表的使用量,不但降低了生产设备成本,同时确保了生产过程的一致性,使生产效率与产品质量得到了较大提高。
关键字:自动控制逻辑电路传感器AbstractThe design topic of this subject isa instrument of the pressure measures and control, applied pure hardware electric circuit, which compare the current pressure value with set up the pressure value to auto- control the exportation.The logical electric circuit of control is simple and stable. Classic electric circuit of sensor has many excellences such as excursionelectric current and maladjustment is less, magnifiedability is higher, feedback is faster,more stable and cheaper than others. Higher- voltageelectric circuit, which adopts phototube, can prevent of the interferences. The LED is used as the manifestation of this system, its volume is smaller, and the power is less, responding to the speed quicker, apt to match, the dependable is high with life span long. The advantages of this system are quick, the anti- interference ability is strong, and the dependable is high.This instrument’s the value of practiceis very high, which realizes thatsingle meter display many roads outputs, not only reduce the usage of the machine meter and equipments cost, but also insure the consistency of the production line at the same time, improve the efficiency and quantities.Key words:auto-controllogic circuitsensor目录引言51、任务书62、设计思路63、主要电路设计原理与计算73.1、传感器的选择73.1.1、传感器的正确选用原则73.1.2、传感器信号处理与放大电路113.2、输出控制123.2.1、选择继电器133.3、通道选择153.4、显示部分243.5、电源部分243.6、变压器选择263.7、总装图简介274、电路板284.1、电路板设计的一般原则284.1.1、电路板的选用284.1.2、电路板的尺寸284.1.3、布局294.1.4、布线304.1.5、焊盘304.1.6、大面积填充314.2、接地314.2.1、地线的共阻抗干扰314.2.2、任何连接地线324.3、抗干扰设计324.3.1、为增加系统抗电磁干扰能力应该采取的措施324.3.2、降低噪声与电磁干扰的窍门334.4、电路板设计指导344.5、电路板制作工艺355、调试过程356、外壳设计366.1、面板366.2、上盖376.3、侧底板386.4、后盖387、总结39辞41参考文献42引言在我国,金刚石生产占有较大的分额,拥有较多的生产设备,并且每年有上千台对外销售,其部分用多个机械仪表、采用继电器、接触器控制,控制系统教为落后,严重制约了生产效率与产品质量的提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大作业说明书基于MPX4115的数字压力测量仪器设计学生姓名:xxx学生学号:*****专业:测控技术与仪器指导教师:程xx(一)系统总体设计1:设计整体思想基于MPX4115的数字气压计包括软硬件的设计与调试。
软件部分通过对C 语言的学习和对单片机知识的了解,根据系统的特点编写出单片机程序。
硬件部分分为四大块,包括非电信号数据的采集、转换、处理以及显示:。
通过对设计的了解,选择适合的器件,画出原理图。
2:系统总体框图硬件部分由四部分构成,它们分别是:信息采集模块,数据转换模块,信息处理模块和数据显示模块。
(二)硬件电路设计及描述1:数字压力测量仪设计意义压力测量仪被广泛应用于国防领域、工业领域、医疗领域以及我们日常家庭生活中。
其中的核心元件就是压力传感器,它在监视压力大小、控制压力变化以及物理参量的测量等方面起着重要作用。
本系统设计的数字压力测量仪采用单片机控制,具有使用方便、精度高、显示简单和灵活性等优点,而且可以大幅提高被控气压的技术指标,从而能够大大提高产品的质量2:数据采集模块的芯片选择压力传感器对于系统至关重要,需要综合实际的需求和各类压力传感器的性能参数加以选择。
一般要选用有温度补偿作用的压力传感器,因为温度补偿特性可以克服半导体压力传感器件存在的温度漂移问题。
本设计要实现的数字气压计显示的是绝对气压值,同时为了简化电路,提高稳定性和抗干扰能力,要求使用具有温度补偿能力的压力传感器。
经过综合考虑,本设计选用美国摩托罗拉公司的集成压力传感器。
MPX4115可以产生高精度模拟输出电压。
数据采集模块由压力传感器MPX4115构成。
其中1脚是输出信号端,输出的是与气压值相对应的模拟电压信号。
数据采集模块的原理如图、数据采集模块原理图 MPX4115的实物图气压传感器MPX4115的原理MPX4115系列压电电阻传感器是一个硅压力传感器。
这个传感器结合了高级的微电机技术,薄膜镀金属。
还能为高水准模拟输出信号提供一个均衡压力。
在0℃-85℃的温度下误差不超过1.5%,温度补偿是-40℃-125℃。
3:单片机控制模块由AT89C51单片机、时钟电路、复位电路组成AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammable and Erasable Read OnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
4:A/D转换模块ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。
由于它体积小,兼容性,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。
学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。
8位分辨率双通道A/D转换输入输出电平与TTL/CMOS相兼容5V电源供电时输入电压在0~5V之间工作频率为250KHZ,转换时间为32μSADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。
其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0~5V之间。
芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。
独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。
通过DI 数据输入端,可以轻易的实现通道功能的选择。
正常情况下ADC0832 与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。
但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI 并联在一根数据线上使用。
当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。
当要进行A/D转换时,须先将CS使能端置于低电平并且保持低电平直到转换完全结束。
此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。
在第1 个时钟脉冲的下沉之前DI端必须是高电平,表示启始信号。
在第2、3个脉冲下沉之前DI端应输入2 位数据用于选择通道功能,其功能项见官方资料。
如资料所示,当此2 位数据为“1”、“0”时,只对CH0 进行单通道转换。
当2位数据为“1”、“1”时,只对CH1进行单通道转换。
当2 位数据为“0”、“0”时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。
当2 位数据为“0”、“1”时,将CH0作为负输入端IN-,CH1 作为正输入端IN+进行输入。
到第 3 个脉冲的下沉之后DI端的输入电平就失去输入作用,此后DO/DI端则开始利用数据输出DO进行转换数据的读取。
从第4个脉冲下沉开始由DO端输出转换数据最高位DATA7,随后每一个脉冲下沉DO端输出下一位数据。
直到第11个脉冲时发出最低位数据DATA0,一个字节的数据输出完成。
也正是从此位开始输出下一个相反字节的数据,即从第11个字节的下沉输出DATA0。
随后输出8位数据,到第19 个脉冲时数据输出完成,也标志着一次A/D转换的结束。
最后将CS置高电平禁用芯片,直接将转换后的数据进行处理就可以了。
作为单通道模拟信号输入时ADC0832的输入电压是0~5V且8位分辨率时的电压精度为19.53mV。
如果作为由IN+与IN-输入的输入时,可是将电压值设定在某一个较大范围之内,从而提高转换的宽度。
但值得注意的是,在进行IN+与IN-的输入时,如果IN-的电压大于IN+的电压则转换后的数据结果始终为00H。
5:显示模块采用LED动态扫描显示原理如下:(1)P23、P22、P21、P20输出高电平,关闭所有数码管;(2)显示个位——把要显示的数据送到P10~P17,P23送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P23送高电平;(3)显示十位——把要显示的数据送到P10~P17,P22送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P22送高电平;(4)显示百位——把要显示的数据送到P10~P17,P21送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P21送高电平;(5)显示千位——把要显示的数据送到P10~P17,P20送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P20送高电平。
(6)以此顺序循环,把它做成子程序,在主循环中调用。
现已DS8为个位来讨论,十、百、千为分别为DS7、DS6、DS5。
1、首先要了解的是此数码管为共阴极数码管,即三极管Q16、Q15、Q14、Q13导通时数码管才能点亮,亦即相应的单片机P23、P22、P21、P20为低电平。
2、动态扫描显示原理如下:(1)P23、P22、P21、P20输出高电平,关闭所有数码管;(2)显示个位——把要显示的数据送到P10~P17,P23送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P23送高电平;(3)显示十位——把要显示的数据送到P10~P17,P22送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P22送高电平;(4)显示百位——把要显示的数据送到P10~P17,P21送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P21送高电平;(5)显示千位——把要显示的数据送到P10~P17,P20送低电平,延时5豪秒(时间不能太长,否则数码管会闪烁),P20送高电平。
(6)以此顺序循环,把它做成子程序,在主循环中调用6:系统总体电路图(三)软件设计 流程图系统总流程图 A/D 转换程序流程图开始初始化函数A/D 转换器进行A/D 转换将转换后的电压转换为压力返回开始系统初始化 数据采集 处理读到的数据送LED 显示 结束显示流程图 主函数流程图主程序void main(void) {while(1) { unsigned int temp; float press; getdata=Adc0832(0);if(14<getdata<243) //当压力值介于15kpa 到115kpa 之间时,遵循线性变换 {int vary=getdata; //y=(115-15)/(243-13)*X+15kpapress=((10.0/23.0)*vary)+9.3; //测试时补偿值为9.3temp=(int)(press*10); //放大10倍,便于后面的计算dispbuf[3]=temp/1000; //取压力值百位 dispbuf[2]=(temp%1000)/100; //取压力值十位 dispbuf[1]=((temp%1000)%100)/10; //取压力值个位 dispbuf[0]=((temp%1000)%100)%10; //取压力值十分位 display(); }#define uint unsigned int#define uchar unsigned char//ADC0832的引脚sbit ADCS =P2^0; //ADC0832 chip seclectsbit ADDI =P3^7; //ADC0832 k insbit ADDO =P3^7; //ADC0832 k outsbit ADCLK =P3^6; //ADC0832 clock signalunsigned char dispbitcode[8]={0xf7,0xfb,0xfd,0xfe,0xef,0xdf,0xbf,0x7f}; //位扫描unsigned char dispcode[11]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0803072080x82,0xF8,0x80,0x 90,0xff}; //共阳数码管字段码unsigned char dispbuf[4];uint temp;uchar getdata; //获取ADC转换回来的值void delay_1ms(void) //12mhz delay 1.01ms{unsigned char x,y;x=3;while(x--){y=40;while(y--);}}void display(void) //数码管显示函数{char k;for(k=0;k<4;k++){P1 = dispbitcode[k];P0 = dispcode[dispbuf[k]];if(k==1) //加上数码管的dp小数点P0&=0x7f;delay_1ms();}}unsigned int Adc0832(unsigned char channel) //AD转换,返回结果{uchar i=0;uchar j;uint dat=0;uchar ndat=0;if(channel==0)channel=2;if(channel==1)channel=3;ADDI=1;_nop_();_nop_();ADCS=0;//拉低CS端_nop_();_nop_();ADCLK=1;//拉高CLK端_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿1_nop_();_nop_();ADCLK=1;//拉高CLK端ADDI=channel&0x1;_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿2_nop_();_nop_();ADCLK=1;//拉高CLK端ADDI=(channel>>1)&0x1;_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿3ADDI=1;//控制命令结束_nop_();_nop_();dat=0;for(i=0;i<8;i++){dat|=ADDO;//收数据ADCLK=1;_nop_();_nop_();ADCLK=0;//形成一次时钟脉冲_nop_();_nop_();dat<<=1;if(i==7)dat|=ADDO;}for(i=0;i<8;i++){j=0;j=j|ADDO;//收数据ADCLK=1;_nop_();_nop_();ADCLK=0;//形成一次时钟脉冲_nop_();_nop_();j=j<<7;ndat=ndat|j;if(i<7)ndat>>=1;}ADCS=1;//拉低CS端ADCLK=0;//拉低CLK端ADDO=1;//拉高数据端,回到初始状态dat<<=8;dat|=ndat;return(dat); //return ad5. 源程序代码:压力测试仪系统描述;输入 15--115kPA压力信号输出 00h--ffh数字信号(adc0832)080307208在LED上显示实际的压力值,如果超限则报警#include <reg51.H>#include "intrins.h"#define uint unsigned int#define uchar unsigned char//ADC0832的引脚sbit ADCS =P2^0; //ADC0832 chip seclectsbit ADDI =P3^7; //ADC0832 k insbit ADDO =P3^7; //ADC0832 k outsbit ADCLK =P3^6; //ADC0832 clock signal080307208unsigned char dispbitcode[8]={0xf7,0xfb,0xfd,0xfe,0xef,0xdf,0xbf,0x7f}; //位扫描unsigned char dispcode[11]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0xff}; //共阳数码管字段码unsigned char dispbuf[4];uint temp;uchar getdata; //获取ADC转换回来的值void delay_1ms(void) //12mhz delay 1.01ms{unsigned char x,y;x=3;while(x--){y=40;while(y--);}}void display(void) //数码管显示函数{char k;for(k=0;k<4;k++){P1 = dispbitcode[k];P0 = dispcode[dispbuf[k]];if(k==1) //加上数码管的dp小数点P0&=0x7f;delay_1ms();}}/************读ADC0832函数************///采集并返回unsigned int Adc0832(unsigned char channel) //AD转换,返回结果{uchar i=0;uchar j;uint dat=0;uchar ndat=0;if(channel==0)channel=2;if(channel==1)channel=3;ADDI=1;_nop_();_nop_();ADCS=0;//拉低CS端_nop_();_nop_();ADCLK=1;//拉高CLK端_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿1 _nop_();_nop_();ADCLK=1;//拉高CLK端ADDI=channel&0x1;_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿2 _nop_();_nop_();ADCLK=1;//拉高CLK端ADDI=(channel>>1)&0x1;_nop_();_nop_();ADCLK=0;//拉低CLK端,形成下降沿3 ADDI=1;//控制命令结束_nop_();_nop_();dat=0;for(i=0;i<8;i++){dat|=ADDO;//收数据ADCLK=1;_nop_();_nop_();ADCLK=0;//形成一次时钟脉冲_nop_();_nop_();dat<<=1;if(i==7)dat|=ADDO;}for(i=0;i<8;i++){j=0;j=j|ADDO;//收数据ADCLK=1;_nop_();_nop_();ADCLK=0;//形成一次时钟脉冲_nop_();_nop_();j=j<<7;ndat=ndat|j;if(i<7)ndat>>=1;}ADCS=1;//拉低CS端ADCLK=0;//拉低CLK端ADDO=1;//拉高数据端,回到初始状态dat<<=8;dat|=ndat;return(dat); //return ad k}void main(void){while(1){ unsigned int temp;float press;getdata=Adc0832(0);if(14<getdata<243) //当压力值介于15kpa到115kpa之间时,遵循线性变换{int vary=getdata;//y=(115-15)/(243-13)*X+15kpapress=((10.0/23.0)*vary)+9.3; //测试时补偿值为9.3temp=(int)(press*10); //放大10倍,便于后面的计算dispbuf[3]=temp/1000; //取压力值百位dispbuf[2]=(temp%1000)/100; //取压力值十位dispbuf[1]=((temp%1000)%100)/10; //取压力值个位dispbuf[0]=((temp%1000)%100)%10; //取压力值十分位display();}}}黄继鹏 080307208于2011/12/13。