半导体材料的分类及应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体材料的分类及应用

能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具, 极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器, 无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表, 在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。

1 元素半导体

周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定, 易发挥; 灰Sn 在室温下转变为白Sn, 已金属; B、C 的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

表1 具有半导体性质的元素

周期ⅢA ⅣA ⅤA ⅥA ⅦA

B C

S i P S

Ge As S e

S n Sb Te I

Se 曾广泛地用作光电池和整流器, 晶体管发明后,Ge 迅速地兴起, 但很快又被性能更好的Si 所取代。现在Se 在非晶半导体器件领域还保留一席之地, Ge 在若干种分立元件( 低压、低频、中功率晶体管以及光电探测器等) 中还被应用, 而Si 则一直是半导体工作的主导材料, 这种情况预计到下个世纪初也不会改变。Si 能成为主角的原因是: 含量极其丰富( 占地壳的27%) , 提纯与结晶方便; 禁带宽度1. 12eV, 比Ge 的0. 66eV 大, 因而Si 器件工作温度高; 更重要的是SiO2 膜的纯化和掩蔽作用, 纯化作用使器件的稳定性与可靠性大为提高,掩蔽作用使器件的制和实现了平面工艺, 从而实现了大规模自动化的工业生产和集成化, 使半导体分立器件和集成电路以其低廉的价格和卓越的性能迅速取代了电子管, 微电子学取代了真空电子学, 微电子工程成为当代产业中的一支生力军。据报导, 1995 年世界半导体器件销售额为1464 亿美元, 硅片销费量约为30. 0 亿平方英寸, 1996 年市场规模为1851 亿美元, 增长了26. 4%, 消费硅片则达33. 46 亿平方英寸。

硅材料分为多晶硅, 单晶硅和非晶硅。单晶硅分为直拉单晶硅( CZ) 、区熔单晶硅( FZ) 和外延单晶硅片( EPI) 。其中, CZ 单晶

硅的特点是直径大、机械强度高、电阻率低、氧含量较高, 主要用于制造集成电路、晶体管、低电压小功率二极管、传感器和太阳能电池; FZ 单晶硅的特点是电阻率高、补偿度小、少数载流子寿命长、NT D 单晶硅电阻率均匀性好, 主要用于电力电子器件( SR、SCR、GTO 等) 高反压晶体管和射线探测器; 外延单晶硅片的特点是薄膜单晶、气相生产表面, 主要用于各种类型晶体管, 近年来为克服集成电路的软失效( So ft er ro r ) 和锁存效应( Catch up) , 用于高速CM OS 电路; 浇铸多晶硅和淀积或溅射非晶硅, 主要用于低成本太阳能电池。为提高计算机的贮存容量的速度以及不断地降低成本, 要求其贮存器芯片尽量减少每个元件的面积并提高集成度, 需要大面积无缺陷的硅单晶片作保证。目前16 兆的动态随机贮存器( DRAM ) 及0. 5m 工艺已实现大批量生产, 64 兆位的DRAM 正在开发, 预计2000 年将生产出IG 的DRAM。与此相应, 硅材料制备技术已达到十分完美的程度。5 英寸和6 英寸的硅单晶片已占硅片生产总量的70%以上, 1994 年以后世界各国都在大力扩大8 英寸片的生产能力, 12 英寸的单晶硅也已问世。另方面, 高压大功率器件的发展, 区熔硅单晶生产水平也有很大提高, 4 英寸和5 英寸区熔硅单晶已可工业化生产, 6 英寸的也已研制成功, 并投入生产。

2 化合物半导体及其固溶体

人们在探索元素半导体以外的半导体材料的努力中, 很自然地把目标转向化合物材料。50 年代就开始了对化合物半导体的研究, 1952 年WelkeV 首先把Ⅲ—Ⅴ化合物半导体作为新的重要半导体族,

现在已经发现了许多种具在半导体性质的化合物, 包括Ⅰ族与Ⅴ、Ⅵ、Ⅶ族; Ⅱ族与Ⅳ、Ⅴ、Ⅵ、Ⅶ族; Ⅲ族与Ⅴ、Ⅵ族; Ⅳ族与Ⅳ、Ⅵ族; Ⅴ族与Ⅵ族; Ⅵ族与Ⅵ族的许多化合物。但这当中有实用价值或工艺上目前达到实用阶段的并不多, 主要集中在Ⅲ—Ⅴ及Ⅱ—Ⅵ族化合物及其多元固溶体上。早期( 上世纪末至二战前) 曾广泛使用的天然矿石检波器( 方铅矿、黄铁矿、闪锌矿) 及Cu2O 整流器是人们最早使用的化合物半导体, 如今只有史料价值了。

2. 1 Ⅲ—Ⅴ族化合物及其固溶体半导体

Ⅲ—Ⅴ族合化物指周期表中Ⅲ—A( B、Al、Ga、I n)与VA( N、P、As、Sb) 族元素构成的16 种化合物, 但B系及N 系化合物由于制备困难、能源过宽以及自补偿效应等原因, 只BN 及AIN 有一些研究报导。Al 系化合物一般不稳定、易潮解, 只在三元系固溶体中作为一个组元而被使用。因此, 研究得较多的是Ga、I n 与As、P和Sb 的化合物, 尤其是GaAs 和InP。GaAs 的能隙为1. 43eV, 因而有比Si 更高的使用温度( 可达400℃) , 其载流子电子的迁移率是Si 的6倍, 是制作高速器件的理想材料, 此外其抗辐射能力也比Si 强。因此在高速集成电路的领域已向硅提出了强有力的挑战。目前构成砷化镓基超高速集成电路( GaAsVHSIC) 的主要器件是GaAs MESFET ( 金属半导体场效应晶体管) 、HEMT ( 高电子迁移率晶体管) 和HBT( 异质结双极晶体管) 。GaAs M ESFET 是1974 年研制成功的, 在GaAs VHSIC 中用得最多, 也是最基本的有源器件。HEM T 和HBT 分别在1980 年和1984 年问世, 它们都是采用MBE( 分子束外延) 或MOCVD( 金属有

相关文档
最新文档