伺服阀和比例阀
高频响电液伺服阀与比例阀的能源效益比较分析

高频响电液伺服阀与比例阀的能源效益比较分析引言:在工业自动化领域中,液压系统广泛应用于各种工程设备和机械装置中,起到传动、控制和调节作用。
而电液伺服阀和比例阀作为液压系统中重要的执行元件,对系统的性能和能源效益有着直接的影响。
本文将对高频响电液伺服阀和比例阀的能源效益进行详细比较分析。
1. 高频响电液伺服阀的能源效益高频响电液伺服阀是一种特殊的电液伺服阀,其具有快速响应、高精度和抗载荷能力强等优点。
这种阀可以实现快速的开启和关闭动作,并能根据外部信号即时调整流量和压力。
这种特性使得高频响电液伺服阀在一些对动态响应要求高、频繁启闭的工况下具备较高的能源效益。
首先,高频响电液伺服阀的快速开启和关闭动作可以减少液压系统中的能量损失。
传统的电液伺服阀在开启和关闭过程中会存在一定的延时,导致液压油流不能立即进入或截断流通,从而引起能量损耗。
而高频响电液伺服阀几乎可以实现即时开启和关闭,大大减少了这种能量损失。
其次,高精度的流量和压力调节使得高频响电液伺服阀能够更加精确地控制液压系统的流量和压力。
通过实时调整和优化流体流量,可以确保系统始终处于最佳工作状态,减少能量浪费和功耗。
最后,高频响电液伺服阀的抗载荷能力强,可以实现更加精确的负载控制。
在工程机械和重载设备中,由于工作负载的变化和波动,若无法精确控制液压系统的负载输出,将导致能源浪费和低效率工作。
高频响电液伺服阀通过准确感知负载压力变化,并迅速动态调整阀门位置和流量输出,实现精准负载控制,提高能源效益。
2. 比例阀的能源效益比例阀是一种常见的电液转换器,通过电信号调节液压阀芯的运动位置,从而控制液压系统中液压油的流量和压力。
比例阀适用范围广泛,常用于机床、冶金、石化等行业的液压控制系统中。
比例阀具有灵活性强、可控性好、响应速度快等优点。
通过电信号的调节,可以实现对液压系统流量和压力的精确控制,达到节能和提高系统效率的目的。
首先,比例阀可以根据实际需求进行流量和压力的在线调节。
比例阀与伺服阀有哪些区别

比例阀与伺服阀有哪些区分美国MOOG比例阀维护保养方法MOOG比例阀的维护和修理:在实际的维护和修理过程中,对存在问题的零部件可以实行直接更换的方法,同时还要对该阀的电气零点和死区进行调整,假如有试验条件还要对维护和修理后阀的行程进行验证。
1、更换存在问题的零部件更换法是对存在问题的零部件进行整体或者部分更换。
更换法在工程机械阀的维护和修理中应用相当广泛,该方法的关键是查找显现问题的部件,找到问题后就可以更换一个与之相同的完好部件,一般情况下通过这种维护和修理方法就能使阀实现正常工作。
导致比例阀失效比较普遍的原因是阀的密封件过度磨损、阀芯位移传感器探针折断,而集成放大器一般不会显现问题。
2、电气零点的调整在工程机械中,比例阀一直工作在恶劣的环境下,而其电气零点易受到外界环境的干扰,MOOG比例阀因此在更换了失效的零部件后就应当对其电气零点进行检测,对不符合要求的应重新标定。
一般检测方法如下:给比例阀的放大器供电(一般情况下0一24V,MOOG比例阀确保阀芯处于断电状态,用万用电表(直流挡,0.25V量程、检测阀芯位移反馈信号,在阀芯没有接受指令的条件下,要求阀芯位移反馈电压为零。
假如不为零就应调整阀芯位移传感器的调整螺母,直至阀芯反馈电压为零。
美国MOOG比例阀维护保养方法1、由于插头组件的接线插座〔基座)老化、接触不良以及电磁铁引线脱焊等原因,导致比例电磁铁不能工作(不能通人电流)。
此时可用电表检测,如发觉电阻无限大,可重新将引线焊牢,修复插座并将插座插牢。
2、线圑组件的故障有线圈老化、线圉烧毁、线圈内部断线以及线圈温升过大等现象。
线圈温升过大会造成比例电磁铁的输出力不足,其余会使比例电磁铁不能工作。
对于线圈温升过大,可检查通人电流是否过大,线圈是否漆包线绝缘不良,阀芯是否因污物卡死等,一一査明原因并排出之;对于断线、烧坏等现象,须更换线圑。
3、衔铁组件的故唪重要有衔铁因其与导磁套构成的摩擦副在使用过程中磨损,导致阀的力滞环加添。
高频响电液伺服阀与比例阀在机器人控制中的应用研究

高频响电液伺服阀与比例阀在机器人控制中的应用研究摘要:机器人技术在自动化领域中发挥着越来越重要的作用。
高频响电液伺服阀和比例阀是机器人控制中的关键元件,它们能够实现精确且快速的运动控制。
本文将研究并探讨高频响电液伺服阀与比例阀在机器人控制中的应用,包括其原理、优势以及在不同领域中的具体应用案例。
1. 引言随着科技的发展,机器人技术逐渐成为各个行业中提升生产效率和质量的重要工具。
机器人控制系统中的高频响电液伺服阀和比例阀起着重要作用,能够实现精确、高速的运动控制。
本文将对这两种元件的原理进行研究,并探讨它们在机器人控制中的应用案例。
2. 高频响电液伺服阀原理高频响电液伺服阀是一种通过电流信号控制液压流量的元件。
其原理是通过电压信号的输入,驱动电磁铁开关阀芯,从而控制液压流量的大小。
高频响电液伺服阀具有响应速度快、工作精度高等优点,在机器人控制中扮演重要角色。
3. 高频响电液伺服阀在机器人控制中的应用3.1 机械臂运动控制在机器人的机械臂运动控制中,精细的运动调节是十分关键的。
高频响电液伺服阀能够快速响应和实现高精度的控制,从而使机械臂的运动更加准确和稳定。
3.2 机器人协作在多台机器人协作的场景中,高频响电液伺服阀可以实现机器人之间的精确同步控制。
例如,当一个工作任务需要多台机器人同时进行配合时,高频响电液伺服阀能够确保多台机器人动作的一致性和准确性。
4. 比例阀原理比例阀是一种通过改变控制信号的电流或电压大小来调节阀口开度的元件。
其原理是根据输入信号的大小,改变阀芯的开度,从而控制流体的流量。
比例阀具有调节范围广、工作精度高的优点,在机器人控制中应用广泛。
5. 比例阀在机器人控制中的应用5.1 工作环境控制在一些特殊的工作环境中,机器人需要根据外界环境的变化来调节自身的动作。
比例阀可以根据传感器信号的变化,实时调节机器人的动作,从而适应不同的工作环境。
5.2 工装夹持力控制在某些工装夹持任务中,精确的夹持力是非常重要的。
解决比例阀和伺服阀污染的对策

一览液压英才网袁工认为在液压比例、伺服系统中,油液污染对比例阀、伺服阀造成的危害性越来越受到重视。
下面简单介绍比例阀和伺服阀的污染失效及对策。
1污染失效模式伺服阀和比例阀属于阀类元件,其阀芯、阀座的失效模式有冲蚀失效、淤积失效、卡阻失效、腐蚀失效。
1.1冲蚀失效冲蚀失效是由比阀芯或阀套的表面更硬的颗粒冲蚀阀芯的节流棱边引起的。
如图l,在阀芯开口较小时,液压油中的硬质颗粒冲刷阀芯和阀套的棱边,其作用类似切削加工,当阀芯或阀套的节流棱边被损坏,成为类似钝角时,就会降低阀的压力增益,增加零位泄漏,导致控制功能失效。
图11.2 淤积失效伺服阀的阀芯与阀套的配合间隙为l~2.5 um,比例阀的为2-6 um。
当阀芯静止并处于受压力控制时,污染物中与半径间隙尺寸接近的颗粒就有可能随着油液的流动淤积在阀芯与阀套之间。
随着污染物的聚积,阀芯与阀套间的滑动摩擦和静摩擦力逐渐加大,使阀的响应变慢,当污染物聚积严重时,阀芯可能会无法动作。
1.3 卡阻失效卡阻失效与阀芯、阀套的配合特性有直接关系,阀在工作一段时期后,由于阀芯并不是始终工作在全行程工况,阀芯、阀套出现不均匀的磨损,它们的配合间隙存在差异,阀体在工作时,受液动力的作用,产生侧向载荷,造成阀芯与阀套的卡紧,使阀芯在阀套中的滑动不平稳。
严重时,阀芯会卡阻在阀套内。
1.4 腐蚀失效阀芯/阀套往往还由于受液压油中的水和其他含氯离子的溶剂腐蚀而失效。
污染严重时,由于系统中氯化溶剂的存在,伺服阀的节流棱边几小时内就会因腐蚀而失效。
2 污染控制手段为了减少因液压油污染造成的伺服阀、比例阀提前失效,可以采取确保系统冲洗、合理设置过滤装置等措施。
2.1 系统冲洗2.1.1相关设备的冲洗泵站、油箱、阀台(块)等设备在出厂前必须达到清洁度等级NASl638 5级或ISO4406 14/10,冲洗时,优先选用同品牌的基础油作为设备冲洗液,避免系统组装后不同品牌的液压油混合,因添加剂特性不同.引起添加剂析出,造成过滤器的堵塞。
气比例阀、伺服阀的工作原理

典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。
压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。
由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。
还取决于执行元件的负载大小。
因此精确地控制气体流量往往是不必要的。
单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。
电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。
但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。
电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。
一、滑阀式电---气方向比例阀流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。
图示即为这类阀的结构原理图。
它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。
位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。
控制放大器的主要作用是:1)将位移传感器的输出信号进行放大;2)比较指令信号Ue和位移反馈信号U f,得到两者的差植3)放大,转换为电流信号I输出。
此外,为了改善比例阀的性能,控制放大器还含有对反馈信号Uf和电压差U的处PID调节等。
带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传感器的反馈电压Uf=0。
若阀芯受到某种Uf,控制放大器将得到的U=-Uf放大后输出给电流比例电磁铁,电磁Ue>0,则电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。
《伺服阀与比例阀》课件

伺服阀和比例阀的工作原理
伺服阀通过调节阀芯的位置来控制流体流量和压力,而比例阀则根据输入信号的大小调节阀芯的开度来控制流 量。
伺服阀的组成部分及其功能
伺服阀包括阀体、阀芯和传动装置。阀体提供流体通道,阀芯控制流体流量和压力,传动装置将输入信号转化 为阀芯位置调节。
伺服阀的调节方式和控制原则
伺服阀可以通过手动控制、反馈控制或自动控制来实现精确的流量和压力调节。其控制原则基于反馈信号的比 较和调整。制、反馈系统和数字控制等。
伺服阀和比例阀的控制系统
伺服阀和比例阀通常作为控制系统的关键组成部分,用于实现流量和压力的 精确控制。
伺服阀和比例阀的控制系统的 框图
伺服阀和比例阀的控制系统通常由输入信号、控制器、阀芯驱动和反馈信号 组成,框图显示了各个组件之间的关系。
伺服阀和比例阀控制系统的稳态和动态特 性
伺服阀和比例阀的控制系统在稳态和动态操作下具有不同的特性,稳态保持恒定输出,动态响应能够快速调节。
比例阀的控制精度和响应特性
比例阀可以实现很高的控制精度,并具有快速的响应特性,适用于对流量要求较高的应用。
伺服阀和比例阀的性能比较
伺服阀和比例阀在控制精度、响应速度和适用范围等方面具有不同的特点和 性能,可以根据具体需求选择。
伺服阀和比例阀在工业控制领域的应用案 例
伺服阀和比例阀在机械加工、印刷机械、液压系统等领域有广泛的应用,提高了生产效率和质量。
伺服阀和比例阀的未来发展趋 势
伺服阀和比例阀的未来发展趋势包括智能化、节能环保、数字化控制等方面 的创新和应用。
伺服阀与比例阀
这个PPT课件将介绍伺服阀和比例阀的基本知识和应用,以及它们之间的区别。 我们将探讨它们的结构、工作原理、调节方式和控制系统,以及它们在工业 控制领域的应用案例和未来发展趋势。
伺服阀与比例阀-知识总集2

电源
输出 电压
(34 V) 最大
24 V
(20 V) 最小
应确保纹波电压不低于所规定的最小电压值。
122
控制信号
输入信号装置至 功率放大器电缆 中的电噪声将被 放大,并使比例 阀动作不稳定。
123
EUROCARD 安装
这里,将功率放大 器安装在带屏蔽的电气 柜中的支架上,比例阀 并没有安装阀芯位移传 感器,因此该安装就相 当好地隔离了电噪声。
Eaton Hydraulics 2000
118
接口
Steve Skinner, Eaton Hydraulics, Havant, UK Copyright
Eaton Hydraulics 2000
119
典型安装
典型比例阀安装由下列几部分 组成:比例阀( A)、功率放大器 (B)、电源(C)和输入信号装置 ( D)。安装时,每一部分都应仔 细考虑。
B D
24V DC
A
C
120
电源
输出 电压 最大
(34 V)
纹波电压 (4 V)
最小
24 V
最小
(20 V)
尽管在有些场合功率放大器的电源电压可选为12 V,但通常为24 V DC。电压适用范围非常大,一般为20V ~ 34V,在满负载条件下,必 须保证最小电压。直流电电压来自于交流电整流,通常在直流电中含 有一些残余纹波电压,但不应超过4V。
70
155
先导式比例方向阀(单级反馈)
中等性能的比例阀,适合于 大流量速度控制场合; 需要专用的功率放大器。
KFDG5V - 8
KFDG5V - 7
KFDG5V - 5
比例阀与伺服阀的基础知识

闭环变量泵调试注意事项
• 接头编号 •1 •2 •3 •4
信号 QIN COM PIN SMP
斜盘传感器 电源(+8V) 0V 输入 屏闭线
压力传感器 电源(+5V)
0V 输入
COM
电源 0V +24V 0V
_
比例阀与伺服阀的性能比较
•
伺服阀 伺服比例阀 带反馈比例阀 不带反馈
比例阀
• 滞环% 0.1-0.5 0.2-0.5
0.3-1
3-7
• 中位死区 理论为零 理论为零
± 5-20 %
• 频宽/HZ 100-500 5制系统
闭环控制系统
开环控制及闭环速度控
• 过滤精度 13/9-15/11 16/13-18/14 16/13-18/14 16/1318/14
大机插装油路液压系统
大机液压原理图(锁模阀板)
大机液压原理图分析(锁模阀板)
• 1.开合模回路 • 2.低压模保回路 • 3.液压安全保护回路 • 4.差动回路(快速锁模回路) • 5.液控回路 • 6.慢速开模 • 7.防气蚀回路
大机液压原理图(注射阀板)
大机液压原理图分析(注射阀板)
比例阀与伺服阀的基础知识
• 比例控制系统(含开环控制和闭环控制)所采 用的元件为比例阀和比例泵.其采用的驱动控 制装置为比例电磁铁,其特点是感应负载大, 电阻小,电流大,驱动力大,但响应低.
• 伺服控制系统(只有闭环控制)采用的控制元 件为伺服阀.其采用的驱动控制装置为力马达 或力矩马达,其特点是输出功率小,感抗小, 驱 动力小,但响应快.
• (ISO4406)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服阀与比例阀的主要共同点有:
一、伺服阀与比例阀的主要共同点有:
1、用电信号进行控制;
2、阀口开度是连续可调;
二、伺服阀与比例阀的主要差异点
1、伺服阀控制阀口采用零遮盖结构,可以用于任何闭环系统;比例阀采用正遮盖阀口,有较大的零位死区,可方便用于速度闭环系统,电控器中配置阶跃信号发生器,可用于力闭环与位置闭环。
但总存在一定的不便。
2、伺服阀通过提高加工精度、油液过滤精度,加上将油源压力的三分之一用于控制阀口,因而频响很高,从几十到几百Hz,相应的弱点就是成本高、维护难,能量利用率较低;而比例阀在加工、过滤要求上低一个档次,阀口压差也较小,所以频响比伺服阀低一个档次,一般在几个到100Hz以内,相应的强项就是成本低、较易维护。
可靠性比较高,能量损失相对小。
3、伺服阀一般都是在零位附近工作,而比例阀除了在零位附近工作外,经常需要在大开口位置工作,即其工作模式有较大差别,这是目前还不能使伺服阀与比例阀形成统一系列的重要原因。
4、伺服阀运行中常会出现零飘,而比例阀有较大的零位死区,就不存在零飘的问题。
5、伺服阀只用于闭环系统,比例阀还经常用于开环系统;
6、现在一般首先从要求的频响,就可大体确定选用甚么阀,频响要求高的只能选伺服阀,频响要求相对低的就选比例阀。
另外就要综合考虑性能、成本、维护、可靠性等因素,决定取舍。
一般的原则是:
A.能用传统阀的,不用比例阀;能用比例阀的不用伺服阀;
B.非用伺服阀的,不用比例阀;非用比例阀的不用传统阀。
7、在伺服阀与一般比例阀之间的伺服比例阀(闭环比例阀,高频响比例阀,调节阀),特性介于两者之间。
有意进一步了解者,可阅读“新编实用电液比例技术”第九章9.7节伺服比例阀。
进口压力补偿器是什么元件啊是控制压力还是控制流量啊
在比例换向阀控制回路中,为保证比例阀进、出口压差恒定,减小负载压力波动对调速性能的影响,经常在比例换向阀下面叠加一个压力补偿器
1)比例方向阀加进口压力补偿器的目的,就是尽可能排除负载变化对控制流量的影响,也可以将加了以定差减压阀作为进口压力补偿器的比例方向阀理解称为比例方向流量阀,而将以定差溢流阀作为进口压力补偿器的比例方向阀,理解称为负载敏感阀。
2)加定差减压阀的,为了保持比例换向阀口两端压差基本不变,将多余能量消耗在补偿阀口,属于耗能型。
加定差溢流阀的,是一种节能型的负载敏感控制,定量泵的出口压力不再为常数,而是仅仅比负载高一个定值。
定差溢流补偿器上如配上个先导阀,当系统压力达到其调定值时,定差溢流阀就转换角色成为系统的安全阀。
3)进口压力补偿器,一般不能实现对超越负载的控制,除了其他附加措施外,常采用出口压力补偿器。
进口压力补偿器原理上处于泵与比例方向阀之间,出口补偿器原理上处于比例方向阀与负载之间,管住执行器的出油流量。
也就是说,进口补偿器像中国的高考制度,严格管住进大学的资格与人数(流进执行器的流量);出口压力补偿器像欧美的办法,什么人都可以进大学,但严格控制大学毕业的资格与人数。
现在有些高档次的平衡阀,原理上与出口压力补偿器相近。
出口压力补偿器比较复杂昂贵,像不能走考大学这个独木桥一样,对付超越负载还有很多其他办法。
相同点:
以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。
不同点:
伺服阀与比例阀之间的差别并没有严格的规定,因为比例阀的性能越来越好,逐渐向伺服阀靠近,所以近些年出现了比例伺服阀。
非要说差别,主要体现在一下几点:
1.伺服阀中位没有死区,比例阀有中位死区;
2.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz;
3.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些。
比例伺服阀性能介于伺服阀和比例阀之间。
比例换向阀属于比例阀的一种,用来控制流量和流向。
阀对流量的控制可以分为两种:
一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁直通阀、电磁换向阀、电液换向阀。
另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。
所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。
滑阀结构
伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。
也就是说,伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。
而我们知道,当负载为零的时候,如果四通滑阀完全打开,p口压力=t口压力+阀口压力损失(忽略油路上的其它压力损失),如果阀口压力损失很小,t口压力又为零,那么p口的压力就不足以供给前置级阀来推动主阀芯,整个伺服阀就失效了。
所以伺服阀的阀口做得偏小,即使在阀口全开的情况下,也要有一定的压力损失,来维持前置级阀的正常工作。
伺服阀其实缺点极多:能耗浪费大、容易出故障、抗污染能力差、价格昂贵等等等等,好处只有一个:动态性能是所有液压阀中最高的。
就凭着这一个优点,在很多对动态特性要求高的场合不得不使用伺服阀,如飞机火箭的舵机控制、汽轮机调速等等。
动态要求低一点的,基本上都是比例阀的天下了。
一般说来,好像伺服系统都是闭环控制,比例多用于开环控制;其次比例阀类型要多,有比例压力、流量控制阀等,控制比伺服药灵活一些。
从他们内部结构看,伺服阀多是零遮盖,比例阀则有一定的死区,控制精度要低,向应要慢。
但从发展趋势看,特别在比例方向流量控制阀和伺服阀方面,两者性能差别逐渐在缩小,另外比例阀的成本比伺服阀要低许多,抗污染能力也强!
比例阀的死区就是在有输入信号的条件下,比例阀理应有输出,但实际上并没有输出信号(压力或流量).留有零位死区是因为采用了负开口(正重叠),这样可以降低比例阀阀芯的加工精度,减小成本,同时还可以提高抗污染能力和工作可靠性等,使之能克服伺服阀的缺点.。