蝴蝶定理的证明及推广

合集下载

蝴蝶模型概念

蝴蝶模型概念

蝴蝶模型概念
蝴蝶模型又称梯形蝴蝶定理,是指在一个梯形中连接对角线后形成四个三角形。

梯形蝴蝶定理是一个平面几何中的重要定理,由于该定理的几何图形形状奇特,形似蝴蝶,所以以蝴蝶来命名。

梯形蝴蝶定理证明:
S1和S2的三角形是相似的,所以面积比=边长比的平方即a²︰b²。

S1和S4三角形同底等高,可知S1︰S4=OA︰OC ,又因为S1和S2是相似三角形,相似比=a︰b,所以S1︰S4=OA︰OC=a︰b=a²︰ab ;同理S1︰S3=a²︰ab。

所以S1︰S2︰S3︰S4=a²︰b²︰ab︰ab。

蝴蝶模型公式推导过程:
S1和S2的的三角形是相似的,所以面积比=边长比的平方即a²:b²。

设梯形高为h,S3+S2=1/2,bh=S4+S2,所以S3=S4。

设S4三角形高为h1(底为OB),可知S3:S1=S4:S1=OB:OA。

因为S1和S2的的三角形是相似三角形,S4:S1=OB:OA=b:a,所以S1︰S2︰S3︰S4=a²︰b²︰ab︰ab。

梯形蝴蝶定理是一个平面几何中的重要定理,由于该定理的几何图形形状奇特,形似蝴蝶,所以以蝴蝶来命名。

相似图形,面积比等于对边比的平方也就是S1:S2=a²/b²。

解析几何证明蝴蝶定理

解析几何证明蝴蝶定理

解析几何证明蝴蝶定理1. 建立坐标系。

- 设圆的方程为x^2+y^2=r^2,M点坐标为(m,0)(m≠± r)。

- 设直线AB的方程为y = k_1(x - m),直线CD的方程为y=k_2(x - m)。

2. 求交点坐标。

- 将y = k_1(x - m)代入圆的方程x^2+y^2=r^2,得到x^2+k_1^2(x - m)^2=r^2。

- 展开得x^2+k_1^2(x^2-2mx + m^2)=r^2,即(1 + k_1^2)x^2-2mk_1^2x+m^2k_1^2-r^2=0。

- 设A(x_1,y_1),B(x_2,y_2),根据韦达定理x_1+x_2=frac{2mk_1^2}{1 + k_1^2},x_1x_2=frac{m^2k_1^2-r^2}{1 + k_1^2}。

- 同理,将y = k_2(x - m)代入圆的方程x^2+y^2=r^2,对于C(x_3,y_3),D(x_4,y_4),可得(1 + k_2^2)x^2-2mk_2^2x+m^2k_2^2-r^2=0,x_3+x_4=frac{2mk_2^2}{1 + k_2^2},x_3x_4=frac{m^2k_2^2-r^2}{1 + k_2^2}。

3. 计算交点与M点所构成线段的比例关系。

- 由A、B、M共线,根据定比分点公式frac{y_1}{x_1-m}=frac{y_2}{x_2-m}=k_1。

- 设P为AD与BC的交点,P点坐标为(x_0,y_0)。

- 对于直线AD:y - y_1=frac{y_4-y_1}{x_4-x_1}(x - x_1);对于直线BC:y - y_2=frac{y_3-y_2}{x_3-x_2}(x - x_2)。

- 联立求解得x_0=frac{(x_1y_3-x_3y_1)(x_2-x_4)+(x_2y_4-x_4y_2)(x_1-x_3)}{(y_3-y_1)(x_2-x_4)+(y_4-y_2)(x_1-x_3)}。

椭圆中的蝴蝶定理是什么?

椭圆中的蝴蝶定理是什么?

椭圆中的蝴蝶定理是什么?
蝴蝶定理起源于圆,并可推广至圆锥曲线(椭圆、双曲线和抛物线),椭圆中的蝴蝶定理是高考中最常见的情况,对综合分析能力要求甚高。

一·何谓蝴蝶定理:
1815年,英国伦敦出版社,著名的数学科普刊物《男士日记》上刊登了如下的命题:
以上问题的图形,像一只翩翩起舞的蝴蝶,这正是该命题被称之为“蝴蝶定理”的原因。

由于蝴蝶定理意境优美,结论简洁,内涵丰富,两百多年来引无数数学家为之流连忘返,浮想联翩。

时至今日,人们不仅发现了蝴蝶定理的六十多种证明方法,而且还给出了定理的各种变形与推广。

二·蝴蝶定理的证明:
蝴蝶定理的证明方法非常之多,但利用曲线系方程来证明蝴蝶定理干净简洁,内涵丰富。

另外,如果将圆的方程换成圆锥曲线(椭圆、双曲线或抛物线)的方程,则得到对应这些曲线中的蝴蝶定理。

三·蝴蝶定理的推广:
对蝴蝶定理的探索与研究至今仍然没有结束,由人称它为欧氏平面几何里的一颗璀璨明珠。

四·典型高考题示例:
蝴蝶定理在高考数学中曾多次出现,下面仅举一例进行说明:
蝴蝶定理,butterfly thearem,古典欧氏几何最精彩的结果之一。

1815年首次被一个自学成才的中学教师W·霍纳以初等方式证明。

足可见,高等的东西用初等方法解决未必完全不可能。

以上,祝你好运。

数书九章 蝴蝶定理

数书九章 蝴蝶定理

数书九章蝴蝶定理一、定理描述蝴蝶定理是数书九章中的一条著名定理,其表述为:在任意一个二次函数f(x)=ax^2+bx+c(a≠0)中,其对称轴两侧的两个端点A、B和函数图像的最低点P构成的直线AP和BP的斜率之和等于零。

即:k1 + k2 = 0,其中k1、k2分别为直线AP、BP的斜率。

二、证明方法蝴蝶定理的证明方法有很多种,其中一种常用的证明方法是利用二次函数的性质和对称性。

通过设A、B、P三点的坐标,并利用对称性质和斜率公式,我们可以推导出k1 + k2 = 0。

三、应用举例蝴蝶定理在数学、物理、工程等多个领域有着广泛的应用。

例如,在解决一些几何问题时,可以利用蝴蝶定理来求解一些未知量;在解决一些物理问题时,可以利用蝴蝶定理来研究一些物体的运动轨迹;在解决一些工程问题时,可以利用蝴蝶定理来优化一些设计。

四、推广和变形蝴蝶定理可以推广到更高维度的空间中,并可以在不同的数学分支中得到应用。

此外,蝴蝶定理还有许多变种形式,如双曲线的蝴蝶定理等。

五、历史背景蝴蝶定理最早出现在中国的数书九章中,是古代数学家们研究二次函数时的一个重要成果。

随着时间的推移,蝴蝶定理逐渐被世界各地的数学家所认识和应用,成为数学史上的一个经典定理。

六、文化内涵蝴蝶定理不仅是一个数学定理,更是一种文化现象。

在中国文化中,蝴蝶常常被视为美丽、优雅和自由的象征。

因此,蝴蝶定理也被赋予了这些美好的寓意,成为了一种具有文化内涵的数学定理。

七、与其他数学定理的关系蝴蝶定理与其他数学定理之间有着密切的联系。

例如,它可以与勾股定理、射影定理等其他几何定理结合使用,来解决一些更复杂的数学问题。

此外,蝴蝶定理还可以被应用到复数、矩阵等领域中,与其他数学分支相互渗透。

八、当代研究现状随着数学的发展,蝴蝶定理的研究也在不断深入。

现代数学家们利用代数、几何、拓扑等各种工具对蝴蝶定理进行了深入的研究,揭示了它更深层次的数学内涵和意义。

同时,随着计算机技术的发展,数值计算和符号计算等方法也被应用到蝴蝶定理的研究中,为定理的应用提供了更多的可能性。

蝴蝶定理的证明及推广(1)

蝴蝶定理的证明及推广(1)

蝴蝶定理的证明及推广(1)蝴蝶定理是一个在混沌理论中非常重要的结果,它描述了一个微小的变化在一段时间后会带来巨大的影响。

蝴蝶定理最初由美国气象学家爱德华·洛伦兹提出,他在研究气象模型时发现,微小的初始条件的变化会导致大气系统的长期行为变得完全不同。

这个现象被形象地称为蝴蝶效应,因为洛伦兹在一个演讲中提到了“巴西一个蝴蝶在天空振翅,能够引发一场美国得克萨斯州的龙卷风”的情景。

蝴蝶定理的证明是基于混沌系统的非线性性质。

传统的科学方法假设系统是线性的,即系统的行为是可预测且稳定的。

然而,混沌系统是非线性的,因此无法通过简单的线性方程来描述其行为。

在证明蝴蝶定理时,我们可以使用一个简单的三维非线性动力学方程组来模拟混沌系统。

这个方程组被称为洛伦兹方程,形式如下:dx/dt = σ(y - x)dy/dt = x(ρ - z) - ydz/dt = xy - βz其中,x、y、z是系统的状态变量,t是时间,σ、ρ和β是常数。

通过数值计算,我们可以发现,当微小的初始条件变化时,系统的演化轨迹会发生巨大的变化。

即使初始条件只有微小的误差,经过一段时间后,系统的状态也会出现很大的差别。

这就是蝴蝶定理的实质。

蝴蝶定理的推广可以在很多领域中找到应用。

例如,在气象学中,小范围的初始数据误差会导致天气预报的偏差增大,从而使得长期天气预测变得困难。

在经济学中,微小的外部干扰可能会对市场产生巨大的影响,导致金融市场波动和经济危机。

在生物学中,一个微小的变化可能会改变生物种群的动态,从而影响整个生态系统的稳定性。

因此,蝴蝶定理揭示了一种复杂系统的本质:微小的变化可能会引起系统的剧烈变化,这使得我们无法准确预测和控制系统的行为。

蝴蝶定理通过非线性动力学方程的数值计算,证明了微小的初始条件变化会引起混沌系统长期行为的巨大变化。

这一定理的推广适用于各种复杂系统,揭示了微小的变化可能会带来巨大的影响。

它在气象学、经济学、生物学等领域中都有重要的应用。

蝴蝶定理的八种证明及三种推广

蝴蝶定理的八种证明及三种推广

蝴蝶定理的证明定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。

设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。

在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞!证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=︒ FVO FMO 90∠=∠=︒得M E U O 、、、共圆;M F V O 、、、共圆。

则AUM=EOM MOF MVC ∠∠∠=∠,又MADMCB ,U V 、为AD BC 、的中点,从而MUA MVC ∆∆,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。

证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即PC'CQ =。

又111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222∠∠()()故M F B D'、、、四点共圆,即MBF MD'F ∠=∠而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ∆≅∆,故ME=MF 。

证法 3 如图4,设直线DA 与BC 交于点N 。

对NEF ∆及截线AMB ,NEF ∆及截线CMD 分别应用梅涅劳斯定理,有FM EA NB 1ME AN BF ⋅⋅=,FM ED NC1ME DN CF⋅⋅= 由上述两式相乘,并注意到 NA ND NC NB ⋅=⋅ 得22FM AN ND BF CF BF CF ME AE ED BN CN AE ED⋅=⋅⋅⋅=⋅ ()()()()2222PM MF MQ MF PM MF PM ME MQ+ME PM ME -==-+--化简上式后得ME=MF 。

蝴蝶定理的证明与推广

蝴蝶定理的证明与推广

蝴蝶定理(Butterfly theorem),是古典欧氏平面几何的最精彩的结果之一。

这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形象一只蝴蝶。

这个定理的证法多得不胜枚举,至今仍然被数学热爱者研究,在考试中时有出现各种变形。

最基本的叙述为:设M为圆内弦PQ的中点,过M作弦AB和CD。

设AD和BC各相交PQ于点X和Y,则M是XY的中点。

该定理实际上是射影几何中一个定理的特殊情况,有多种推广:
从向和作垂线,设垂足分别为和。

类似地,从向和作垂
线,设垂足分别为和。

证明蝴蝶定理
现在,由于
从这些等式,可以很容易看出:
由于 =
现在,
因此,我们得出结论:,也就是说,是的中点。

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理一、蝴蝶定理的定义与公式蝴蝶定理是小学奥数几何篇中的一个重要模型,它描述了在等腰三角形中,一条平行于底边的线段将底边平分,并且这条线段与等腰三角形的两腰相交于同一点时,该线段的中点与等腰三角形的顶点、底边的中点以及两腰上的交点形成一个等腰三角形。

蝴蝶定理的公式如下:设等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,则AG=BG=CG。

二、蝴蝶定理的应用1. 在等腰三角形中求边长:通过蝴蝶定理,可以快速求出等腰三角形中未知边的长度。

例如,已知等腰三角形ABC中,AB=AC,底边BC 的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求AG的长度。

解答:根据蝴蝶定理,AG=BG=CG,又因为AB=AC,所以AG=AB/2=a。

2. 在等腰三角形中求角度:通过蝴蝶定理,可以求出等腰三角形中未知角的度数。

例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求∠AGB的度数。

解答:由于AG=BG=CG,所以△AGB是等边三角形,∠AGB=60°。

3. 在等腰三角形中求面积:通过蝴蝶定理,可以求出等腰三角形中未知部分的面积。

例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求△AGB的面积。

解答:由于△AGB是等边三角形,所以△AGB的面积=(a^2 √3)/ 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要蝴蝶定理想象洵美,蕴理深刻,近两百年来,关于蝴蝶定理的研究成果不断,引起了许多中外数学家的兴趣。

到目前为止,关于蝴蝶定理的证明就有60多种,其中初等证法就有综合证法、面积证法、三角证法、解析证法等。

而基于蝴蝶定理的推广与演变,能得到很多有趣与漂亮的结果。

关键词:蝴蝶定理;证明;推广;一摘要[1]作者简介:陈富,祖籍江苏泰州,现就读于湖南工业大学机械工程学院机械系。

[2]指导老师简介:刘东南,祖籍湖南邵阳,现任湖南工业大学讲师。

在20世纪20年代时,蝴蝶定理作为一道几何题传到我国中学数学界,严济慈教授在《几何证题法》中有构思奇巧的证明。

如可将蝴蝶定理中的圆“压缩变换”为椭圆,甚至变为双曲线、抛物线、筝形、凸四边形、两直线,都依然成立。

另外,如果将蝴蝶定理中的条件一般化,即M 点不再是中点,能得到坎迪定理、若M 、N 点是AB 的三等分点,两次应用坎迪定理,能得到“三翅蝴蝶定理”。

二 蝴蝶定理的证明(一)运用简单的初中高中几何知识的巧妙证明蝴蝶定理经常在初中和高中的试卷中出现,于是涌现了很多利用中学简单几何方法完成蝴蝶定理的方法。

1 带有辅助线的常见蝴蝶定理证明在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞!证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于EUO EMO 90∠=∠=︒ FVO FMO 90∠=∠=︒得M E U O 、、、共圆;M F V O 、、、共圆。

则AUM=EOM MOF MVC ∠∠∠=∠,又MAD MCB ,U V 、为AD BC 、的中点,从而MUA MVC ∆∆ ,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。

[1]证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即PC'CQ =。

又111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222∠∠()()故M F B D'、、、四点共圆,即MBF MD'F ∠=∠而 M B F E D M ∠=∠ ○2图 2图 3图 5D由○1、○2知,DME D'MF ∆≅∆,故ME=MF 。

证法 3 如图4,设直线DA 与BC 交于点N 。

对NEF ∆及截线AMB ,NEF ∆及截线CMD 分别应用梅涅劳斯定理,有F M E A N B 1M E A N B F ⋅⋅=,FM ED NC1ME DN CF⋅⋅= 由上述两式相乘,并注意到N A N DN C N B ⋅=⋅ 得22FM AN ND BF CF BF CFME AE ED BN CN AE ED⋅=⋅⋅⋅=⋅()()()()2222PM MF MQ MF PM MF PM ME MQ+ME PM ME-==-+--化简上式后得ME=MF 。

[2] 2 不使用辅助线的证明方法单纯的利用三角函数也可以完成蝴蝶定理的证明。

证法 4 (Steven 给出)如图5,并令DAB=DCB ADC=ABC DMP=CMQ AMP=BMQ PM MQ ME MF a x yαβγδ∠∠=∠∠=∠∠=∠∠=====, 由FCM AME EDM FMBFCM EDM FMB AMES S S S 1S S S S ∆∆∆∆∆∆∆∆⋅⋅⋅=,即 AM AE sin FM CM sin ED MD sin MF MB sin 1MC CF sin EM MD sin FB BM sin MA ME sin αγβδαγβδ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅化简得 ()()()()222222M F C F F BQ F F P M E A E E DP E E Q a y ay a y a x a x a x-+⋅⋅-====⋅⋅-+- 即 222222x y a y a x -=-,从而 ,ME MF x y ==。

证法 5 令PMD QMC QMB AMP αβ∠=∠=∠=∠=,,以点M 为视点,对图 4MBC ∆和MAD ∆分别应用张角定理,有()()sin sin sin sin sin sin MF MC MB ME MD MAαβαββαβα++=+=+,上述两式相减,得()()()11sin sin sin MC MD MB MA MF ME MC MDMA MB βααβ⎛⎫+-=--- ⎪⋅⋅⎝⎭ 设G H 、分别为CD AB 、的中点,由OM PQ ⊥,有()()MB MA 2MH 2OM cos 902OM sin MD MC 2MG 2OM cos 902OM sin ββαα-==︒-=-==︒-=于是 ()11sin 0MF ME αβ⎛⎫+-= ⎪⎝⎭,而180αβ+≠︒,知()sin 0αβ+≠,故ME=MF 。

(二) 运用解析几何的知识完成蝴蝶定理的证明在数学中用函数的方法解决几何问题也是非常重要的方法,所以解析几何上夜出现了许多漂亮的证明蝴蝶定理的方法,以下列出几个例子以供参考。

证法 6 (单墫教授给出)如图6,建立直角坐标系,则圆的方程可设为()222x y a R++=。

直线AB 的方程为1y k x =,直线CD 的方程为2y k x=。

由于圆和两相交直线组成了二次曲线系,其方程为()()()222120x y a R y k x y k x μλ⎡⎤++-+--=⎡⎤⎣⎦⎣⎦令0y =,知点E 和点F 的横坐标满足二次方程()()222120k k x a R μλμ++-=,由于x 的系数为0,则两根1x 和2x 之和为0,即12x x =-,故ME=MF 。

[5]证法 7 如图7建立平面直角坐标系,则圆的方程可写为()222x a y r -+=直线AB 、CD 的方程可写为1y k x =,2y k x =。

又设A B C D 、、、的坐标为(),,1,2,3,4i i x y i =,则14x x 、分别是二次方程()()2222222212,x a k x r x a k x r -+=-+=的一根。

AD 在y 轴上的截距为()()241111214411111214141k x k x x k k x x y y y x k x x x x x x x ----⋅=-=---。

同理,BC 在y 轴上的截距为()122332k k x x x x --。

注意到12x x 、是方程()22221120k x a x ar +-+-=的两根,34x x 、是方程()22222120k xax a r +-+-=的两根,所以34122212342x x x x ax x a r x x ++==-,从而易得341212340x x x x x x x x +=--,即ME MF =。

证法 8 如图8,以M 为极点,MO 为极轴建立极坐标系。

因C F B 、、三点共线,令BMx CMx αβ∠=∠=,,则()C F F B C B sin sin sin 22ππρρβρραρρβα⎛⎫⎛⎫-+-=- ⎪ ⎪⎝⎭⎝⎭即 ()C B F B C sin cos cos ρρβαρραρβ-=- ○1()A D E A D sin cos cos ρρβαρραρβ-=- ○2作OU CD ⊥于U ,作OV AB ⊥于V 。

注意到A B C D ρρρρ= ○3 由Rt OUM ∆与Rt OVM ∆可得D CB A cos cos ρρρραβ--=- ○4 将○3○4代入○1○2可得E F ρρ=,即ME=MF 。

图 8二蝴蝶定理的推广和猜想(一)猜想 1 在蝴蝶定理中, P、 Q分别是 ED、 CF和AB的交点. 如果 P、 Q分别是 CE、 DF和AB延长线的交点,我们猜想, 仍可能会有 PM = QM .推论 1过圆的弦 AB的中点M引任意两条弦 CD与 EF, 连结 CE、 DF并延长交 AB的延长线于 P、 Q. 求证: PM = QM.证明;设AM =BM = a, PM = x,QM = y ;∠PM E = ∠QM F =α,∠PCM = ∠DFM =β ;∠CM E = ∠DM F =γ,∠QDM = ∠CEM =δ ;记△PM E, △QM F,△PMC, △QMD的面积分别为 S1 , S2 , S3 , S4.则由恒等式S2·S3·S4·S1= 1知M P·M Esin αMQ·M Fsinα · FQ·FM sin (π- β)CP·CM sin β ··MCsin (α+γ)·MD sin (α+γ)·DQ·DM sin δEP·EM sin (π - δ )=·DQ·M P2·EP·MQ2 = 1,即 QF·QD·M P2= PC·PE·MQ2. ②又由割线定理知PC·PE = PA·PB = ( x - a) ( x + a) = x2- a2,QF·QD = QB·QA = ( y - a) ( y + a) = y2- a2.代入②式, 得 ( y2- a2) x2= ( x2- a2) y2. 即 a2x2= a2y2.由于 a ≠0, x, y > 0,所以 x = y .即 PM = QM.[3](二)猜想 2 在蝴蝶定理中, 显然 OM是 AB的垂线 (O是圆心) , 那么, 我们可以猜想,如果在保持 OM ⊥AB的前提下将圆 O的弦AB移至圆外, 仍可能会有 PM =QM .推论 2已知直线 AB与⊙O相离. OM ⊥AB, M 为垂足. 过 M作⊙O任意两条割线 MC, M E分别交⊙O于 C, D和 E, F. 连结DE,FC并延长分别交 AB 于 P, Q. 求证: PM = QM.证明:过 F作 FK∥AB, 交直线 OM于 N,交⊙O于 K .连结 M K交⊙O于 G. 连结 GQ, GC. 由于 ON ⊥FK,故有 FN = KN,从而M F =M K(因为M在 FK的垂直平分线上) .又由割线定理知M E·M F = MG·M K .因此 M E = MG. ③又由∠FMN = ∠KMN, OM ⊥AB,知∠EM P = ∠GMQ. ④从∠CQM = ∠CFK = ∠CGK知∠CGM +∠CQM= 180° , 从而 G,M, Q, C四点共圆. 所以∠MGQ =∠MCQ.又由于∠M EP = ∠DEF = ∠DCF = ∠MCQ, 知∠M EP = ∠MGQ. ⑤由③、④、⑤知△PM E ≌△QMG.所以 PM = QM.(三)猜想3既然蝴蝶定理对于双曲线是成立的, 而双曲线是两条不相交的曲线, 那么, 我们可以猜想,如果把两条不相交的曲线换成两条不相交的直线 (也即是两条平行线) , 仍可能会有 PM = QM .推论 3设点 A、 B分别在两条平行线 l 1、 l 2上,过AB的中点M任意作两条直线 CD和 EF分别交 l 1、 l 2于C、 D和 E、 F, 连结 ED、 CF交 AB 于 P、 Q. 求证: PM =QM.证明:由于 l 1 ∥ l 2 ,M 平分AB, 从而利用△MAC≌△MBD知M平分 CD, 利用△MAE≌△MBF知 M平分 EF.在四边形 CEDF中, 由对角线相互平分知 CEDF是平行四边形,从而 DE ∥CF. 又由于 M平分 EF,故利用△M EP ≌△M FQ知 PM = QM。

相关文档
最新文档