20182019学年度期末质量检测试卷八年级数学.doc
2018—2019学年度(下)初中期末教学质量监测八年级数学参考答案.doc

2018—2019学年度(下)初中期末教学质量监测八年级数学参考答案选择题(每小题2分,共18分)二、填空题(每小题2分,共18分)10. 2021 11. −2 12. 十 13. 80°或20° 14. −415. 4 16. 2.6cm 17. 1 18.3 三、(每小题4分,共8分)19. (1)因式分解:32296y y x xy ++=)96(22x xy y y ++ ……2分 =2)3(x y y + ……4分(2)解不等式组:解:解不等式①,得 x ≤1 ……1分解不等式②,得 x<4……2分在同一数轴上表示不等式①②的解集,如图.……3分∴原不等式组的解集为:x ≤1 ……4分① ② ≥4, ⎪⎩⎪⎨⎧->+--.1321)2(3x x x x四、(每小题5分,共10分)20.(1)39631122-+÷+---+x xx x x x x =)1(3)3(3112+-⋅--++x x x x x x ……2分 =)1(111+++x x x =x1……4分 当23-=x 时,原式=231-=32- ……5分(2)解方程:14143=-+--xx x 解:方程两边都乘以4-x ,得 ……1分413-=--x x ……2分 解这个方程,得3=x ……3分 检验:将3=x 代入原方程 ……4分左边=右边=1∴原方程的根是3=x ……5分五、(每小题6分,共12分)21. (1)平移如图,△A 1B 1C 1即为所求.A 1的坐标(1,2)……3分(2) 如图,△A 2B 2C 2即为所求.A 2的坐标(−1,−2)……6分(第21题图)22.解:连接AD∵DF 垂直平分AB ,∴AD =BD =26∴∠DAB =∠B =22.5°,∠ADE =45°∵AE ⊥BC ,∴∠AED =90°∴∠EDA =∠EAD =45°∴AE = DE ,设AE= DE =a ,则222)26(=+a a∴a =6,即AE =6, ……4分在Rt △AEC 中,∵∠C =60°,∴∠EAC =30° 设EC =b ,则AC =2b ,∴36)2(22=-b b∴32=b ,即CE =32 ……6分六、(23题7分,24题8分,共15分)23.解:设摩托车速度为x 千米/时,抢修车速度是1.5x 千米/时, ……1分根据题意得:60155.13030+=x x ……3分 解这个方程得40=x ……4分 经检验:40=x 是原方程的根 ……5分 60405.15.1=⨯=x (千米/时) ……6分答:摩托车的速度为40千米/时,抢修车速度是60千米/时 ……7分 24.证明:(1)∵AO =CO ,OE =OF ,∠AOE =∠COF∴△AOE ≌△COF ,∴∠OAE =∠OCF ……2分∴AD ∥BC ,∴∠EDO =∠FBO∵OE =OF ,∠EOD =∠FOB∴△EOD ≌△FOB , ……4分 ∴OB =OD∴四边形ABCD 是平行四边形. ……5分 (2)∵EF ⊥AC ,AO =CO ,∴AF =FC∴AB +BF +AF =AB +BF +FC =15即AB +BC =15 ……7分 ∵□ABCD 中AD =BC ,AB =CD∴□ABCD 的周长是15×2=30. ……8分七、(本题9分)A25.由)100%(801001-+=x y 得,208.01+=x y 由)50%(90502-+=x y 得,59.02+=x y∴y 1,y 2与x 的函数关系式208.01+=x y ,59.02+=x y ……2分 由y 1>y 2得 59.0208.0+>+x x 150<x ……4分 由y 1=y 2得 59.0208.0+=+x x 150=x ……6分 由y 1<y 2得 59.0208.0+<+x x 150>x ……8分∴当小明购物金额少于150元时,去乙超市合算,等于150元时去两家超市一样,多于150元时去甲超市合算. ……9分八、(本题10分)26.(1)①AE CF CP =- ……1分证明:∵AB PD ⊥∴︒=∠=∠90C PDE , ∵BP 平分∠ABC ∴PD =PC 又∵PE =PF∴Rt △PDE ≌Rt △PCF ……2分 ∴DE =CF∵△ABC 中,∠C =90°,AC =BC ∴∠A =∠ABC =45° ∴∠APD =∠A =45° ∴AD =PD ∴AD =CP∵AD -DE =AE∴CP -CF =AE ……4分②∵△PCF ≌△PDE ∴∠DPE =∠CPF ∴∠EPF =∠DPC ∵∠ABC =45° ∴∠DPC =360°-90°-90°-45°=135°∴∠EPF =135° ……6分(2)∵∠EPF =135°,∠DPC =135°∴∠DPE =∠CPF又∵∠PCF =∠PDE =90°,PC =PD ∴△PDE ≌△PCF ∴DE =CF∵PC =PD ,∠PDB =∠PCB =90°,BP =BP ∴Rt △PCB ≌Rt △PDB∴BC =BD ……8分设DE =CF =x ,则BD =BC =x +-+163 AB =2BC =)163(2x +-+ ∵∠CFP =60°,∴∠CPF =30° ∴PF =2x ,x x x PC 3)2(22=-= ∴x PC AD PD 3===∴1633-+++=+=x x BE AE AB ∴1633)163(2-+++=+-+x x x ∴1=x ∴13+=AE ∴2332)13(321+=+=⨯=∆PD AE S AEP ……9分 (3)2)13(2m S AEP -=∆。
2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列长度的四根木棒中,能与长5cm 、11cm 的两根木棒首尾相接,钉成一个三角形的是 A. 5cmB. 6cmC. 11cmD.16cm2.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为 A. ①②③④B. ①③④C. ①②④D.②③④3.在北大、清华、复旦和浙大的校标LOGO 中,是轴对称图形的是A.B.C. D .4.若一个三角形的三个内角的度数之比为1∶2∶3,那么相对应的三个外角的度数之比为 A. 3∶2∶1B. 1∶2∶3C. 3∶4∶5 D .5∶4∶35.下列运算正确的是 A.224a a a+= B.62322a a a-÷=-C.222233ab a b a b ⋅= D.224()a a -=6.已知分式242x x -+的值等于零,那么x 的值是A .2B .-2C .±2D .07.不改变分式的值,把0.0230.35x x -+的分子、分母中含x 项的系数化为整数为A.2335x x -+B.23305x x -++C. 230030500x x -+ D .230030500x x +-+ 8.与单项式23a b -的积是32222629a b a b a b -+的多项式是A.23ab --B.2233ab b -+-C.233b - D .2233ab b -+9.如图,已知AC =BD ,添加下列条件,不能使△ABC ≌△DCB 的是 A. ∠ACB =∠DBCB. AB =DCC.∠ABC =∠DCB D .∠A =∠D =90°10.如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:①∠C =72°;②BD 平分∠ABC ;③BC =AD ;④△BDC 是等腰三角形.其中正确结论的个数是 A.1 B.2C.3 D .4 11.若a -b =2,则a 2-b 2-4b 的值是 A.0 B.2C.4 D .6 12.若22(3)1t t --=,则t 可以取的值有 A. 4个B. 3个C. 2个D .1个第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点A (3,b )与点(a ,-2)关于y 轴对称,则a +b = . 14.因式分解:2228mx my -= . 15.一个多边形的外角和是内角和的27,则这个多边形的边数为 . (第9题图)(第10题图)16.如图,在四边形ABCD 中,∠A =50°,直线l 与边AB 、AD 分别相交于点M 、N , 则∠1+∠2= .17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB =10,AC =8,△ABC 的面积为45,则DE 的长为 .18.如图,已知AB ∥CF ,E 是DF 的中点,若AB =9cm ,CF =6cm ,则BD = cm .19.已知,如图△ABC 为等边三角形,高AH =10cm ,D 为AB 的中点,点P 为AH 上的一个动点,则PD +PB 的最小值为 cm . 20.计算:2222()()x y xy --= (结果不含负指数幂).21.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,则轮船在静水中的速度是 千米/时. 22.观察下列等式:1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52;…请利用你所发现的规律写出第n 个等式: . 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.计算:(1)234(1)(43)(2)2a a a a -++-÷; (2)2.BAC =α,∠B =β(α>β).(第16题图) (第17题图)(第18题图) (第19题图)(1)若α=70°,β=40°,求∠DCE 的度数;(2)用α、β的代数式表示∠DCE = (只写出结果,不用写演推过程); (3)如图②,若将条件中的CE 改为是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α-β=30°,则∠DCE = (只写出结果,不用写演推过程). 26.(1)解方程:21133x xx x =---; (2)列方程解应用题:某超市用2000元购进某种干果销售,由于销售状况良好,超市又拨6000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多200千克.求该种干果的第一次进价是每千克多少元? 27.如图,△ABC 是等边三角形,BD ⊥AC ,AE ⊥BC ,垂足分别为D 、E ,AE 、BD 相交于点O ,连接DE .(1)求证:△CDE 是等边三角形; (2)若AO =12,求OE 的长.28.如图,AB =AC ,AB ⊥AC ,AD =AE ,AE ⊥AD ,B ,C ,E 三点在同一条直线上. (1)求证:DC ⊥BE ;(2)探究∠CAE 与∠CDE 之间有怎样的数量关系?写出结论,并说明理由.(第28题图)(第27题图)2018—2019学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.-5 ; 14.2(2)(2)m x y x y +-; 15.9 ; 16.230°;17.5; 18.3; 19.10; 20. 261x y ;21.21; 22.2(2)1(1)n n n ++=+. 三、解答题:(共74分)23.解:(1)234(1)(43)(2)2a a a a -++-÷=4a 2﹣4a +3a ﹣3﹣4a 2 ………………………………………………4分 =﹣a ﹣3 ………………………………………………5分 (2)(2x ﹣y )2﹣4x (x ﹣y )=4x 2﹣4xy +y 2﹣4x 2+4xy ……………………………………………9分 =y 2 ……………………………………………10分24.(1)解:原式=[9(a +b )+5(a ﹣b )][9(a +b )﹣5(a ﹣b )] ……2分=(14a +4b )(4a +14b ) ………………………………3分 =4(7a +2b )(2a +7b ) ………………………………5分(2)解:÷(﹣x ﹣1)﹣=…………………………7分=………………………………9分=………………………………………………10分= ………………………………………………11分 =………………………………………………12分25. 解:(1)∵∠ACB =180°﹣(∠BAC +∠B )=180°﹣(70°+40°)=70°, ………………2分 又∵CE 是∠ACB 的平分线,∴1352ACE ACB ∠=∠=︒. ………………………………4分∵CD 是高线,∴∠ADC =90°, ………………………………6分 ∴∠ACD =90°﹣∠BAC =20°,……………………………7分 ∴∠DCE =∠ACE ﹣∠ACD=35°﹣20°=15°.………………………………8分(2)2DCE αβ-∠=; …………………………………………10分(3)∠DCE 的度数为75°.………………………………………12分26.(1)解:方程的两边同乘3(x ﹣1),得6x =3x ﹣3﹣x , ………………………2分解得34x =-. ………………………4分检验:把34x =-代入3(x ﹣1)≠0. ………………………5分故原方程的解为34x =-. ………………………6分(2)解:设第一次的进价为x 元,由题意得 200060002200(120%)x x ⨯+=+ ………………………9分 解得 x =5 ……………………11分经检验:x =5是原分式方程的解,且符合题意. …………12分 答:该种干果的第一次进价是每千克5元. ……………………13分27. 解:(1)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠C =60°,BC =AC , CE =BC ,CD =AC ; ………………………………4分∴CD =CE , ……………5分 又∠C =60°,∴△CDE 是等边三角形.……………………………………6分 (2)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠ABC =∠BAC =60°, …………………………………7分12D B C A B D A B C∠=∠=∠, 12B A E B AC ∠=∠, ……………………………………8分 ∴30ABD BAE ∠=∠=︒ ,30DBC ∠=︒, ……………………………………9分 ∴AO =BO , ……………………………………10分 ∵30DBC ∠=︒,AE ⊥BC ,∴BO =2OE , ……………………………………11分 ∴AO =2OE , ……………………………………12分 又AO =12,∴OE =6. ……………………………………13分28. (1)证明:∵AB ⊥AC ,AE ⊥AD ,AB =AC ,∴∠BAC =∠DAE =90°, ……………………………1分∠B =∠ACB =45°, ……………………………2分(第27题图)∴∠BAC +∠CAE =∠DAE +∠CAE ,∴∠BAE =∠CAD , ……………………………3分 在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△ABE (SAS ), ……………………………5分∴∠ACD =∠B =45°, ……………………………6分 ∴∠BCD =∠ACD +∠ACB =90°,……………………7分 ∴DC ⊥BE . ……………………………8分(2)∠CAE =∠CDE . ……………………………10分理由:∵AD =AE ,AE ⊥AD ,∴∠AED =∠ADE =45°,……………………………11分 ∵由(1)知DC ⊥BE ,∴∠CDE +∠AEC +∠AED =90°,∴∠CDE +∠AEC =45°,……………………………12分 又∠CAE +∠AEC =∠ACB =45°,…………………13分 ∴∠CAE =∠CDE . ……………………………14分(第28题图)。
(北师大版)2018~2019学年下学期八年级期末教学质量检测数学试卷(含答案)

(北师大版)2018~2019学年下学期八年级期末教学质量检测数学(含答案)考生注意:1.本卷共三大题,23小题,全卷满分120分,考试时间为120分钟.2.请将各题答案填在答题卡上.一、填空题(本大题共6小题,每小题3分,共18分)= .2.在不等式4x ≥-12中,x 的最小值是 .3.正六边形的每一个内角的度数都为 .4.已知一组数据:8、6、2、x,它们的众数是8,则这组数据的中位数是 .5.如图,在Y □ABCD 中,若AB=5,AD=4,则△AOB 的周长比△AOD 的周长长 .6.若关于x 的分式方程2124x x mx x +-=--=1无解,则m 的值为 . 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.要使分式13x -有意义,x 必须满足的条件是( )A. x ≠3B. x ≠0C. x >3D. x=3 8.下列多项式中能用平方差公式分解因式的是( ) A.x 2+4 B.x 2-xy C.x 2-9 D.-x 2-y 29.下列美丽的图案中,不是中心对称图形的是( )10.不等式3x ≤-2x+5的解集在数轴上表示正确的是( )11.在四边形ABCD 的每个顶点处取一个外角,有三个外角的和为240°,则第四个外角的度数是( )A.120°B.60°C.150°D.240°12.如图,等边三角形ABC 的边长为2,连接其三边的中点构成一个新的三角形,则新的三角形周长为( )A.1B.2C.3D.413.已知x 、y 满足方程组 361x m y m+=-=,则无论m 取何值,x 、y 恒有关系式是( )A. x+y=1B. x+y=-1C. x+y=9D. x+y=-914.已知点A 、B 、C 、D 在同一平面内,若从①AB ∥CD,②AB=CD,③BC ∥AD,④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( ) A.3种 B.4种 C.5种 D.6种 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)解不等式组21390x x >--+≥.16.(本小题满分6分)分解因式:a 2x-6ax+9x.17.(本小题满分8分)先化简,再求值:21(1)11a a a a --÷++,最后选择一个你喜欢的数作为a 的值代入求值.18.(本小题满分6分)如图,四边形ABCD 为平行四边形,点E 、F 在对角线AC 上,且AE=CF.求证:四边形EBFD 是平行四边形.19.(本小题满分7分)已知关于x 的一次函数y=kx+b(k ≠0の)的图象过点A(2,4)、B(0,3). (1)求一次函数y=kx+b 的解析式;(2)若关于x 的一次函数y=mx+n(m<0)的图象也经过点A,则关于x 的不等式mx+n ≥kx+b 的解集为 .20.(本小题满分8分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB 于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.21.(本小题满分8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求解决下列问题:(1)画出将△ABC向右平移3个单位长度后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后得到的△A2B1C2;(2)在网格中建立平面直角坐标系,使点B的坐标为(0,4),点A2的坐标为(4,5).22.(本小题满分9分)智能时代引领铁路的高速发展,已知某铁路现阶段列车的平均速度是200千米/时,未来还将提速.在相同的时间内,列车现阶段行驶3000千米,提速后列车比现阶段多行驶450千米.问列车平均提速多少千米/小时?23.(本小题满分12分)如图1,将Y OABC放在平面直角坐标系中,O为原点,点C的坐标为(-6,0),点A在第一象限,OA=2,∠A=60°.(1)求A、B两点的坐标;(2)如图2,将Y OABC绕点O逆时针旋转得到Y OA´B´C´,当点A的对应点A´落在y轴正半轴上时,求旋转角及点B的对应点B'的坐标.。
2018-2019学年人教版八年级数学下册期末质量评估试卷(含答案)

期末质量评估试卷[时间:90分钟分值:120分] 一、选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是()A.- 2 B.12C.15 D.a22.下列说法错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形3.已知菱形的边长和一条对角线的长均为2 cm,则菱形的面积为()A.3 cm2 B.4 cm2C. 3 cm2 D.2 3 cm24.在平面直角坐标系中,将直线l1:y=-3x-2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=-3x-9 B.y=-3x-2C.y=-3x+2 D.y=-3x+95.[2018·道外区三模]一组数据从小到大排列为1,2,4,x,6,9.这组数据的中位数是5,那么这组数据的众数为()A.4 B.5C.5.5 D.66.一个装有进水管和出水管的容器,从某时刻开始的4 min内只进水不出水,在随后的8 min内既进水又出水,假设每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图1所示,则每分钟的进水量与出水量分别是()A.5,2.5 B.20,10C.5,3.75 D.5,1.25图17.如图2,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠DAO=30°,则FC的长度为()图2A.1 B.2C. 2 D. 38.菱形OACB在平面直角坐标系中的位置如图3所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()图3A.(3,1) B.(3,-1)C.(1,-3) D.(1,3)9.如图4,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA 上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()图4A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可能为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是()图5A.甲队开挖到30 m时,用了2 hB.开挖6 h时,甲队比乙队多挖了60 mC.乙队在0≤x≤6的时段,y与x之间的关系式为y=5x+20D.当x为4 h时,甲、乙两队所挖河渠的长度相等二、填空题(每小题4分,共24分)11.为参加2018年宜宾市初中毕业生升学体育考试,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是.12.已知四边形ABCD是平行四边形,下列结论中错误的有.①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.13.如图6,已知函数y =2x +b 与函数y =kx -3的图象交于点P (4,-6),则不等式kx -3>2x +b 的解集是 .图614.[2018·武侯区模拟]如图7,将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则AD = .图715.[2018·广安模拟]如图8,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =23,则CE 的长为 .图816.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km)与甲车行驶的时间t (h )之间的函数关系如图9所示.有下列结论:①甲车出发2 h 时,两车相遇;②乙车出发1.5 h 时,两车相距170 km ;③乙车出发257h 时,两车相遇;④甲车到达C 地时,两车相距40 km.其中正确的结论是 .(填序号)图9三、解答题(共66分) 17.(10分)计算:(1)4+(π-2)0-|-5|+⎝ ⎛⎭⎪⎫23-2;(2)8+⎝ ⎛⎭⎪⎫14-1-(5+1)(5-1).18.(10分)如图10,已知▱ABCD 的对角线AC ,BD 交于点O ,且∠1=∠2.图10(1)求证:▱ABCD 是菱形;(2)F 为AD 上一点,连接BF 交AC 于点E ,且AE =AF ,求证:OA =12(AF +AB ).19.(10分)“岳池米粉”是四川岳池的传统特色小吃之一,距今有三百多年的历史,为了将本地传统小吃推广出去,县领导组织20辆汽车装运A ,B ,C 三种不同品种的米粉42 t 到外地销售,按规定每辆车只装同一品种米粉,且必须装满,每种米粉不少于2车.(1)设用x求y与x的函数关系式,并求x的取值范围;(2)设此次外售活动的利润为w元,求w与x的函数关系式以及最大利润,并安排相应的车辆分配方案.20.(12分)《朗读者》自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展朗读比赛活动,九年级(1)班、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图11所示.图11(1)根据图示填写表格.(2)(3)如果规定成绩较稳定的班级胜出,你认为哪个班级能胜出?说明理由.21.(12分)(1)如图12,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC.(2)如图13,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,作FE⊥PC,垂足为E,交CG于点N,连接DN,求∠NDC 的度数.22.(12分)如图15,在平面直角坐标系中,过点C(1,3),D(3,1)分别作x轴的垂线,垂足分别为A,B.(1)求直线CD和直线OD的解析式.(2)点M为直线OD上的一个动点,过点M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A,C,M,N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由.(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为2t,△AOC与△OBD重叠部分的面积记为S,试求S 与t的函数关系式.图15参考答案期末质量评估试卷1.A 2.C 3.D 4.B 5.D 6.C 7.A 8.B 9.D 10.D11.2.40,2.43 12.④ 13.x <4 14.3 3 15.53或3 16.②③④ 17.(1)14 (2)22 18.略19.(1)y =20-2x ,x 的取值为2,3,4,5,6,7,8,9.(2)w =-1 040x +33 600,最大利润是31 520元,相应的车辆分配方案为:用2辆车装运A 种米粉,用16辆车装运B 种米粉,用2辆车装运C 种米粉.20.(1)85 85 100 (2)九(1)班的成绩较好,理由略. (3)九(1)班的成绩更稳定,能胜出,理由略. 21.(1)略 (2)成立,理由略. (3)∠NDC =45°.22.(1)直线CD 的解析式为y =-x +4,直线OD 的解析式为y =13x . (2)存在,满足条件的点M 的横坐标为34或214. (3)S =-16(t -1)2+13.。
2018-2019学年度下学期八年级数学期末试题卷

2018-2019学年度下学期期末检测八年级数学试题卷注意:1.试题卷满分为120分,考试用时120分钟。
2.考生必须在答题卡上作答,在试题卷上作答无效,考试结束,必须上交答题卡。
试题卷是否上交,由学校决定(中考除外)。
一、选择题(12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项符合题目要求。
每小题选出答案后,请用2b铅笔将答题卡上对应题目的答案标号涂黑。
)1.实数的值在(A)0和1之间(B)1和1.5之间(C)1.5和2之间(D)2和4之间2.下列二次根式是最简二次根式的是(A(B(C(D3.式子x的取值范围是(A)0x<(B)0x(C)2x(D)2x4.下列计算正确的是(A=(B)3=(C=(D-=2018-2019学年度下学期期末检测八年级数学试题卷第1页(共6页)2018-2019学年度下学期期末检测 八年级数学试题卷 第2页(共6页)5.某校篮球队队员的年龄分布情况如下表,则该校篮球队队员的平均年龄为年龄(岁) 12 13 14 15 人数1342(A )13岁(B )13.5岁(C )13.7岁(D )14岁6.平行四边形所具有的性质是 (A )对角线相等 (B )邻边互相垂直(C )两组对边分别相等(D )每条对角线平分一组对角7.矩形、菱形、正方形都具有的性质是 (A )对角线相等 (B )对角线互相垂直(C )对角线互相平分(D )对角线平分对角8.一次函数2y x =--的图象不经过的象限是 (A )第一象限 (B )第二象限(C )第三象限(D )第四象限9.如图,直线2y x =-+与x 轴交于点A ,则点A 的坐标是 (A )(20),(B )(02),(C )(11),(D )(22),10.星期天晚饭后,小吉同学从家里出去散步,如图描述了他散步过程中离家的距离()km 与散步所用的时间()min 之间的函数关系,依据图象,下面描述符合小吉同学散步情景的是 (A )从家出发,休息一会,就回家(B )从家出发,一直散步(没有停留),然后回家 (C )从家出发,休息一会,返回用时20分钟(D )从家出发,休息一会,继续行走一段,然后回家第9题2018-2019学年度下学期期末检测 八年级数学试题卷 第3页(共6页)第10题第11题第12题11.如图,在菱形ABCD 中,60A ∠=︒,4AD =,点P 是AB 边上的一个动点,点E ,F 分别是DP ,BP 的中点,则线段EF 的长为 (A )2(B )4(C )22(D )312.如图,在平行四边形ABCD 中,2BC AB =,CE AB ⊥于E ,F 为AD 的中点,若54AEF ∠=︒,则B ∠的大小是 (A )54︒(B )60︒(C )66︒(D )72︒二、填空题(6小题,每小题3分,共18分。
2018-2019学年度下学期初二年级期末考试数学试题

2018---2019学年度第下学期期末质量监测初二数学试题考生注意:1、考试时间为120分钟 2、全卷共三道大题,总分120分题 号 一二三总 分核分人得 分题所给出的四个选项中,只有一项是符合题目要求的.) 1. 在下列各数π3,0,2.0&,722,Λ1010010001.6,11131,27,3.14,中无理数的个数是 ( ) A . 4 B . 3 C . 2 D . 1 2.-8的立方根是( ) A.2± B.2 C . -2 D .243.如果03)4(2=-+-+y x y x ,那么y x -2的值为( ) A.-3 B .3 C .-1 D .1 4. 点A (3,y 1,),B (-2,y 2)都在直线32+-=x y 上,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 2>y 1 C .y 1=y 2 D .不能确定 5. 如图1,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与 A 点重合,则EB 的长是( ).A .3B .4C .6D .56. 如图2,△ABC 中∠ACB =90°,且CD ∥AB ,∠B =60°,则∠1等于( )A . 30°B . 40°C . 50°D . 60°(图1) (图2) (图3)7.一根竹竿竖直插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m8. 如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )A .±3B .3C .±4D .49.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )A .将原图向左平移两个单位B .关于原点对称C .将原图向右平移两个单位D .关于y 轴对称10.一次函数y =-bx -k 的图象如下,则y =kx+b 的图象大致位置是( )二、填空题(本大题共10小题,每小题3分,共30分)11. 写出一个解是⎩⎨⎧==21y x 的二元一次方程组 .12. 如果x<-2 ,2)2(+x = 13.若|a ﹣3|+b 2﹣2b +1=0,则a +b = .14.如果某公司一销售人员的个人月收入与其每月的销售量成一次函数(如图3所示),那么此销售人员的销售量在4千件时的月收入是 元。
2018-2019学年八年级上期末质量数学试卷含答案

2018-2019学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10个小题,每小题2分,共20分)下列各题均有四个选项,其中只有一个是符合题意的 .1有意义,则x 的取值范围是 A .1x >-且1x ≠ B .1x ≥-C .1x ≠D .x ≥-1且1x ≠2.下列各式从左到右的变形正确的是A .yx y x -+-= -1B .y x =11++y xC .y x x +=y +11D .2)3(y x -=223yx3.在实数722,3π23.14中,无理数有 A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是 A .22B .19C .17D . 17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6. 在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是 A .25B .35C .13D .127. 下列事件中,属于必然事件的是A. 2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B. 某班级11名学生中,至少有两名同学的生日在同一个月份C. 用长度分别为2cm ,3cm ,6cm 的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001⋅⋅⋅(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数 8.下列运算错误的是== = D.2(2=9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,S △ABC =10,DE =2,AB=4,则AC 长是 A.9B. 8C. 7D. 610. 我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=﹣1.其中正确的是A.①②B.①③C.②③D.①②③二、填空题(共10个小题,每小题2分,共20分)11.25的平方根是.12.计算:2= .13.若实数x y,0y=,则代数式2xy的值是.14. 已知:ABC∆中,AB AC=,30B A∠-∠=︒,则A∠=.15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x 颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是14,则y与x之间的关系式是.19.已知1132a b+=,则代数式254436a ab bab a b-+--的值为.(第17题图)20.已知: 如图,ABC △中,45ABC ∠=,H 是高AD 和BE的交点,12AD =,17BC =,则线段BH 的长为.三、解答题 (共12个小题,共60分)21.(4分)22.(5+23.(4分)1= , 3(2)64x y += ,求代数式22x yx y ++的值.24. (5分)先化简,再求值:2532236x x x x x -⎛⎫+-÷ ⎪--⎝⎭,其中x 满足2310x x +-=.25.(5分).已知: 如图,点B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5分) 解关于x 的方程:32211x x x +=-+ .27.(4分))在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个. (1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A .请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m 的值.28.(5分) 某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?29.(5分) 在ABC ∆中,AB ,BC ,AC 形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC ∆中,(即ABC ∆三个顶点都在小正方形的顶点处),如图1所示,这样不需要ABC ∆高,借用网格就能计算出它的面积.(1)△ABC 的面积为 ;(2)如果MNP ∆2的正方形网格(每个小正方形的边长为1)画出相应的格点MNP ∆,并直接写出MNP ∆的面积为 .30.(5分) 已知:如图,在ABC ∆中,90C ∠=︒.(1)求作:ABC ∆的角平分线AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若6AC =,8BC =,求CD 的长.31.(5分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是(填写序号即可); (2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值; (3) 在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b--=-小强:22344=a a ab b b b -⨯-原式()22244a a b a b b =--()()2244a a a b a b b--=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是: ,请你接着小强的方法完成化简. 32.(6分)已知:如图,D 是ABC ∆的边BA 延长线上一点,且AD AB =,E 是 边AC 上一点,且DE BC =. 求证:DEA C ∠=∠.顺义区2017---2018学年度第一学期期末八年级教学质量检测数学试题答案及评分参考二、填空题三、解答题21. 3分(各1分)=4分22. 解:原式=5(1512)--………………………………… 4分(前2分后2分)=8-5分23 解:∵1= , 3(2)64x y += ,∴ 124x y x y -=⎧⎨+=⎩………………………………………………2分(各1分)解得21x y =⎧⎨=⎩……………………………………………4分(各1分)∴2222213215x y x y ++==++………………………………………5分24 解:原式=(2)(2)5323(2)x x x x x x +---⎛⎫÷⎪--⎝⎭………………………1分 =293(2)23x x x x x --⨯--……………………………………………2分 =(3)(3)3(2)23x x x x x x +--⨯-- ……………………………3分=239x x +……………………………………………4分∵ 2310x x +-= ∴ 231x x +=∴ 原式=22393(3)313x x x x +=+=⨯=……………………5分25.证明:∵BD AE =,∴BD AD AE AD -=-.即AB DE =. ……………………………………………………………… 1分∵BC ∥EF ,∴B E ∠=∠. ……………………………………………………………… 2分又∵C F ∠=∠……………………………………………………………… 3分在ABC ∆和DEF ∆中,,,,B E C F AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ ABC ∆≌DEF ∆. ………………………………………………………4分 ∴ AC DF =. …………………………………………………………… 5分26. 解:方程两边同乘以(1)(1)x x +-,……………………………………………1分3(1)2(1)2(1)(1)x x x x x ++-=+-. ……………………………………………2分 223+32222x x x x +-=-. ……………………………………………3分解这个整式方程,得5x =-. …………………………………………… 4分 检验:当5x =-时,(1)(1)0x x +-≠.…………………………………………5分5x ∴=-是原方程的解.27.…………………………………………… 3分 (2)依题意,得64105m +=…………………………………………… 4分解得 2m =…………………………………………… 5分 所以m 的值为228. 解:设该服装厂原计划每天加工x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得105.130003000=-xx …………………………………3分 解这个方程得100x = …………………………………………4分 经检验,100x =是所列方程的根. ………………………………5分 答:该服装厂原计划每天加工100件服装.29. 解: (1)ABC ∆的面积为 4.5 …………………………………………2分正确画图………………………………………4分 (2)MNP ∆的面积为 7 ………………………………………… 5分30. 解:(1)如图 ………………1分(2)过点D 作DE ⊥AB 于E . ………………2分∵DE ⊥AB ,∠C =90° ∴由题意可知DE =DC , ∠DEB =90° 又∵DE =DC ,AD =AD ∴AD 2-ED 2=AD 2-DC 2 ∴AE =AC =6………………3分∵A B =10 ∴BE =AC -AE =4 ………………4分 设DE =DC =x ,则BD =8-x∴在Rt △BED 中 ()22168x x +=-∴x =3………………5分 ∴CD =3.31. (1)②………………1分 (2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分解:原式()222444a a ab a b b-+=-()24ab a b b =-()4aa b b =-24a ab b =-………………5分32.证明:过点D 作BC 的平行线交CA 的延长线于点F .……………… 1分∴C F ∠=∠.∵点A 是BD 的中点,∴AD=AB . …………………………… 2分 在△ADF 和△ABC 中,,,,C F DAF BAC AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADF ≌△ABC .………………… 3分 ∴DF=BC .…………………………… 4分 ∵DE=BC , ∴DE=DF .∴F DEA ∠=∠. ………………………………………………………… 5分 又∵C F ∠=∠,∴C DEA ∠=∠. …………………………………………………………… 6分其它证法相应给分。
2018--2019学年度八年级下学期数学期末试题及答案

2018-2019年八年级数学(下)期末检测题考试时间:120分钟满分:120分一.选择题(每小题2分,共12分)1.若二次根式21x-有意义,则x的取值范围是()A.x≤-12B.x≥-12C.x≥12D.x≤122.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5B.6C.7D.83.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.(5-1,0)C.(10-1,0)D.(5,0)4、如图,已知菱形ABCD的对角线AC,BD的长分别为6㎝和8㎝,AE⊥BC于点E,则AE的长为()A.53㎝B.25㎝C.㎝D.524㎝5、某移动通讯公司提供了A,B两种方案的通讯费用y(元)与通话时间x(分)之间的关系,如图所示,则以下说法错误的是()A.若通话时间少于120分,则A方案比B方案便宜20元,B.若通话时间超过200分,则B方案比A方案便宜12元,C.若通讯费为60元,则B方案比A方案的通话时间多,D.若两种方案通信费用相差10元,则通话时间是145分或185分,6.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股元方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么()2a b+的值为()A.13B.19C.25D.169二.填空题(每小题3分,共24分)7.化简18-108的结果是8.直角三角形的两条直角边长为3和4,则该直角三角形斜边上的高为9.在平面直角坐标系中,将正比例函数y=2x的图象向上平移一个单位,那么平移后的图象不经过象限10.将一根长24㎝的筷子,置于底面直径为5㎝,高为12㎝的圆柱形水杯中(如图),设筷子露在杯子外面的长度为h㎝,则h的取值范围是11.已知一组数据10,8,9,x,5,的众数是8,那么这组数据的方差是12.如图,正方形ABCD的边长为8,M在CD上,且DM=2,P是AC上的一个动点,则PD+PM的最小值是13.如图所示,在平行四边形ABCD中,E,F为对角线BD上的两点,要使四边形AECF为平行四边形,在不连接其他线段的前提下还需要添加的一个条件是14.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则BC的长为三.解答题(每题5分,共20分)15. 22525(+)-第10题第12题第13题16、148312242÷⨯-+17、如图,有一块地,已知,AD=4m ,CD=3m ,∠ADC=90°,AB=13m ,BC=12m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4题第3题ABCDE第6题2018-2019学年度期末质量检测试卷八年级数学一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项 1. 若a b >,则下列式子正确的是( )A .0.50.5a b >B .0.50.5a b ->-C . a c b c +<+D .a c b c -<- 2.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3. 如图,在正方形网格中,将△ABC 顺时针旋转后得到△A B C ''',则下列4个点中能作为旋转中心的是( ) A .点P B .点Q C .点R D .点S4. 如图在△ABC 中,DE 是线段AC 的垂直平分线,AE=4cm ,△ABD 的周长为14cm , 则△ABC 的周长为( ) A .18cm B .22cm C .24cm D .26cm5. 已知m 为整数,则下列各选项中解集可能为11x -<<的不等式组是( ) A .11mx x >⎧⎨>⎩B .11mx x >⎧⎨<⎩C .11mx x <⎧⎨>⎩D .11mx x <⎧⎨<⎩6. 如图,△ABC 为等边三角形,以AB 为边向△ABC 外侧作△ABD ,使得∠ADB= 120°,再以点C 为旋转中心把△CBD 沿着顺时针旋转至△CAE ,则下列结论:① D 、A 、E 三点共线; ②△CDE 为等边三角形; ③DC 平分∠BDA ;④DC=DB +DA ,其中正确的有( ) A .4个 B .3个 C .2个 D .1个二、填空题(本大题共8个小题,每小题3分,共24分)题号123456答 案7.不等式组22x x >⎧⎨>-⎩的解集为 ;8.在平面直角坐标系中,点M 坐标为(3,-4),点M 关于原点成中心对称的点记作M ',则两点M 与M '之间的距离为 ; 9.如果一个直角三角形斜边上的中线与斜边所成的锐角为50°,那么这个直角三角形的 较小内角的度数为 ;10.若21a b b +>+,则a b (用“>”或“=”或“<”填空);11.如图,在△ABC 中,AB=4,BC=6,∠B=60°,将△ABC 沿射线BC 的方向平移2个单位后,得到△A B C ''',连接A C ',则△A B C ''的周长为 ;12.如图,在等腰△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,∠DBC= 15°,则∠A 的度数是 ; 13.如图,已知∠AOB=60°,点P 在射线OA 上,OP=12,点M 、N 在射线OB 上,PM=PN ,若MN=2,则OM= ;14.等腰△ABC 被一腰上的中线分成两个三角形周长之差为2,若等腰△ABC 的底边长 为6,则等腰△ABC 的腰长为 . 三、解答题(本大题共4小题,每小题各6分,共24分) 15.解不等式2132121-≤-x x ,并把它的解集在数轴上表示出来.16.利用无刻度的直尺作图(不需要写作法):(1)在图1中画出等腰Rt △ABC 关于点O 的中心对称图形.(2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格 点三角形,在图2正方形网格(每个小正方形边长为1)中画出格点△DEF ,使第12题第13题A PBOMN第11题得该三角形为等腰三角形,且DE=DF=5,EF=10.17.如图,请在下列四个等式中,任选两个作为条件,推导出△AED是等腰三角形,并予以证明.(写出一种选法并证明即可)等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.已知:,(填入序号即可)求证:△AED是等腰三角形.证明:18.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受关注.某学校计划在教室内安装空气净化装置,需购进A、B两种设备.已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?四、(本大题共3小题,每小题各8分,共24分) 19.已知一元一次不等式m x mx +>-23 (1)若它的解集是23-+<m m x ,求m 的取值范围; (2)若它的解集是43>x ,试问:这样的m 是否存在?如果存在,求出它的值;如果不存在,请说明理由.20.如图,已知△ABC 中,∠C=90°,∠B=15°,AC=2cm ,分别以A 、B 两点为圆心, 大于12AB 的长为半径画弧,两弧分别相交于E 、F 两点,直线EF 交BC 于点D , 求BD 的长.21.已知:如图,在△ABC 中,AD ⊥BC ,D 点为垂足,BE ⊥AC ,E 点为垂足,M 点为 AB 边的中点,连接ME 、MD 、ED .(1)求证:△MED 与△BMD 都是等腰三角形; (2)求证:∠DME=2∠DAC .五、(本大题共2小题,每小题9分,共18分)22.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△P AB的周长.(2)问t为何值时,△PBC构成等腰三角形且PB=PC?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?23.阅读下列材料:解答“已知x+y=2,且x>1,y>0,试确定x-y的取值范围”有如下解法:解:∵x+y=2,∴x=-y+2.又∵x>1,∴-y+2>1,解得:y<1.又∵y>0,∴0<y<1.而x-y=(-y+2)-y=-2y+2,且-2·1+2<-2y+2<-2·0+2,∴x-y的取值范围为:0<x-y<2.请按照上述方法,完成下列问题:(1)已知x-y=3,且x>2,y<1,则x+y的取值范围是;(2)已知x-y=a(其中a<-2),且x<-1,y>1,求x+y的取值范围.(结果用含a的式子表示,要有详细的推导过程)六、(本大题共1小题,每小题12分,共12分)24. 将一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜 边AB=6cm ,DC=7cm ,把三角板DCE 绕点C 顺时针旋转15°得到△11D CE (如图乙).这时AB 与1CD 相交于点O ,与11D E 相交于点F . (1)求∠1OFE 和∠1AOD 的度数;(2)求线段1AD 的长;(3)若把△11D CE 绕着点C 顺时针再旋转30°得△22D CE ,这时点B 在△22D CE的内部,外部,还是边界上?(请同学们在备用图中自行作出相应图形,并证 明你的判断)2018-2019学年度期末质量检测试卷八年级数学答案一、选择题(本大题共6小题,每小题3分,共18分)1.A2. C3.A4.B5.D6.A二、填空题(本大题共8个小题,每小题3分,共24分)7. 2x > 8.10 9. 25° 10. > 11.12 12.50° 13.5 14.8或4 三、解答题(本大题共4小题,每小题各6分,共24分) 15.解:3-≥xACB备用图16.解:17.解:选择的条件可以是①③或①④或②③或②④.答案不唯一. 如果选择的是①③,则:B C AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴AE=DE ,即△AED 为等腰三角形.18.解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:2 3.52 2.5x y x y +=⎧⎨+=⎩,解得:0.51.5x y =⎧⎨=⎩. 答:每台A 种、B 种设备各0.5万元、1.5万元; (2)设购买A 种设备z 台,根据题意得出:()0.5 1.53030z z +-≤,解得:15z ≥.答:至少购买A 种设备15台.四、(本大题共3小题,每小题各8分,共24分)19.解:∵m x mx +>-23,整理,得:()23m x m ->+ (1)∵它的解集是23-+<m m x ,可知20m -<,∴2m <. (2)∵它的解集是43>x ,∴331824220m m m m m m +⎧=-=⎧⎪⇒⇒-⎨⎨>⎩⎪->⎩无解.20.解:由图可知,EF 为线段AB 的垂直平分线,∴AD=BD ,∴∠DAB=∠B=15°,∴∠ADC=∠DAB +∠B=30°,又在Rt △ACD 中,AC=2cm ,∴BD=AD=2AC=4cm .21.证明:(1)∵△ADB 和△AEB 均为直角三角形,M 为AB 中点, 由于直角三角形斜边上的中线等于斜边的一半, ∴MD=MA=MB ,ME=MA=MB ,即MD= ME=MA=MB .故△MED 与△BMD 都是等腰三角形.(2)∠DME=∠BME -∠BMD ,∠DAC=∠BAC -∠BAD , 由于ME=MA ,根据外角定理易得:∠BME=2∠BAC ;同理,由于MD=MA ,根据外角定理易得:∠BMD=2∠BAD , ∴∠BME -∠BMD=2(∠BAC -∠BAD ),即∠DME=2∠DAC .五、(本大题共2小题,每小题9分,共18分)22.解:(1)∵∠C=90°,AB=10cm ,BC=6cm ,根据勾股定理,可得AC=8cm .出发2s 后,点P 在线段AC 上,且CP=2cm , ∴BP=210cm ,AP=6cm . ∴△P AB 周长为(16+210)cm .(2)∵∠ACB=90°且PB=PC , 易得P 为AB 中点,∴点P 所走过的路程:CA +AP=13cm ,又点P 运动速度为每秒1cm , 故t=13s .(3)当P 点在AC 上,Q 在AB 上,则AP=8-t ,AQ=16-2t , ∵直线PQ 把△ABC 的周长分成相等的两部分, ∴8-t +16-2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP= t -8,AQ=2t -16, ∵直线PQ 把△ABC 的周长分成相等的两部分, ∴t -8+2t -16=12,∴t=12.∴当t 为4 s 或12s 时,直线PQ 把△ABC 的周长分成相等的两部分. 23.解:(1)15x y <+<;(2)∵x -y=a ,∴x=y +a .又∵x <-1,∴y +a <-1,解得y <-a -1. 又∵y >1,∴1<y <-a -1.而x +y=2y +a ,且2·1+a <2y +a <2·(-a -1)+a , ∴x +y 的取值范围为:2+a <x +y <-a -2. 六、(本大题共1小题,每小题12分,共12分)24.解:(1)如图,∠1OFE =∠1+∠B , 其中∠1=∠2=90°-∠3=75°, ∠B=45°, ∴∠1OFE =120°;∠1AOD =∠CAO +∠ACO , 其中∠CAO =45°,∠ACO =45°, ∴∠1AOD =90°.(2)易知O 为AB 中点,132OA OC AB ===cm ,114OD CD OC =-=cm , 根据勾股定理可得:15AD =cm .(3)点B 在△22D CE 内部(如图),理由如下: 设BC (或延长线)交22D E 于点P , 则∠2PCE =15°+30°=45°, 在Rt △2PCE 中,27222CP CE ==cm , ∵32CB =cm 722<cm ,即CB CP <,∴点B 在△22D CE 内部.。