浅谈传感器敏感材料发展动态
纳米传感器技术的进展和未来发展方向

纳米传感器技术的进展和未来发展方向纳米科技领域的快速发展为传感器技术带来了革命性的进展。
纳米传感器技术通过利用纳米材料的特殊性质和微纳加工技术,实现了对微观世界的高灵敏度和高选择性的探测,为各个领域的应用提供了巨大的潜力。
本文将探讨纳米传感器技术的进展和未来发展方向。
一、纳米传感器技术的进展1. 纳米材料的应用纳米材料是纳米传感器技术的核心。
纳米级的碳纳米管、金纳米颗粒、二维材料等具有独特的物理和化学特性,使得纳米传感器可以实现对多种参数的高灵敏度检测。
例如,碳纳米管能够实现对气体、化学物质和生物分子的高选择性检测,金纳米颗粒能够实现对环境和生物样品中目标物质的高灵敏度检测。
2. 微纳加工技术的发展微纳加工技术是纳米传感器技术的基础。
随着微纳加工技术的不断发展,纳米传感器可以实现更高的集成度、更小的尺寸和更低的能耗。
微纳加工技术的进展使得纳米传感器可以实现在微型芯片上集成多个传感单元,从而实现对多个参数的同时监测。
3. 传感器研究的跨学科合作纳米传感器技术的发展离不开不同领域的跨学科合作。
材料科学、工程学、物理学、化学等学科的知识汇聚起来,共同推动纳米传感器技术的进步。
跨学科合作使得研究人员可以通过分享知识和经验来解决技术挑战,提高纳米传感器的性能和可靠性。
二、纳米传感器技术的未来发展方向1. 智能化未来纳米传感器将向智能化方向发展。
通过引入人工智能和机器学习算法,纳米传感器可以实现对环境变量的自动检测和分析,从而实现自适应和自学习的功能。
智能化的纳米传感器将大大提高传感器的自动化水平,减少人为操作和干扰。
2. 多功能化纳米传感器将朝着多功能化方向发展。
传统的传感器通常只能对单个参数进行检测,而纳米传感器可以通过调整材料组分和结构设计,实现对多个参数的同时检测。
例如,可以设计一种纳米传感器,它可以同时检测温度、湿度和气体浓度等多个参数,从而实现对环境的全面监测。
3. 自供能未来的纳米传感器将朝着自供能方向发展。
复合材料柔性传感器及其发展趋势

复合材料柔性传感器及其发展趋势复合材料是由两种或多种不同材料组合而成的材料,具有优异的力学性能、化学稳定性和耐热性能。
复合材料在传感器领域中具有广泛的应用,尤其是在柔性传感器中,其已经成为关键材料。
复合材料柔性传感器是一种能够检测各种外部力或变化的传感器。
与传统的硬性传感器相比,复合材料柔性传感器具有以下优点:复合材料柔性传感器具有较高的灵敏度。
其灵敏度通常由压力、拉力、挠度等外部力对传感器的影响程度来衡量。
由于复合材料的特殊结构和材料组合,它们具有更高的灵敏度。
复合材料柔性传感器具有较大的变形范围。
由于复合材料的柔韧性和弹性,它们能够更好地适应外部变形。
这使得复合材料柔性传感器在弯曲、拉伸等场景中能够保持其传感性能。
复合材料柔性传感器具有较好的耐久性。
复合材料通常具有较高的耐磨损性和抗氧化性能,能够更好地应对不同的环境条件。
这使得复合材料柔性传感器在长时间使用或复杂应用场景下更加稳定和可靠。
复合材料柔性传感器具有较低的成本。
复合材料的制备工艺相对简单,成本较低,适合大规模生产。
这降低了复合材料柔性传感器的生产成本,使其更具竞争力。
复合材料的研究和应用将更加多样化。
随着科学技术的不断发展,新的复合材料将不断涌现,其特性和应用也将得到不断改进和扩展。
这将为柔性传感器的发展提供更多的选择。
复合材料柔性传感器将更加智能化。
随着物联网、人工智能等技术的快速发展,智能化的传感器将成为未来的发展方向。
复合材料柔性传感器将不仅能够感知外部力,还能够进行数据处理和分析,实现更丰富的功能。
复合材料柔性传感器将更加轻薄化和柔软化。
随着科学技术的进步,制备复合材料的方法将不断改进,使复合材料柔性传感器可以更加轻薄、柔软,以适应更多的应用场景。
复合材料柔性传感器将更加环保和可持续。
随着人们对环境问题的关注程度提高,材料的环保性将成为一个重要的考虑因素。
在复合材料的研究和应用中,将更加注重绿色和可循环利用的原则,以减少对环境的影响。
传感器技术的五大发展趋势

传感器技术的五大发展趋势一、智能化。
一个方向是多种传感功能与数据处理、存储、双向通信等的集成,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度的信息采集、可数据存储和通信、编程自动化和功能多样化等特点。
另一个方向是软传感技术,即智能传感器与人工智能相结合,目前已出现各种基于模糊推理、人工神经网络、专家系统等人工智能技术的高度智能传感器,并已经在智能家居等方面得到利用。
二、可移动化,无线传感网技术应用加快。
该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首。
目前研发重点主要在路由协议的设计、定位技术、时间同步技术、数据融合技术、嵌入式操作系统技术、网络安全技术、能量采集技术等方面。
迄今,一些发达国家及城市在智能家居、精准农业、林业监测、军事、智能建筑、智能交通等领域对技术进行了应用。
三、微型化,MEMS传感器研发异军突起。
随着集成微电子机械加工技术的日趋成熟,MEMS传感器将半导体加工工艺(如氧化、光刻、扩散、沉积和蚀刻等)引入传感器的生产制造,实现了规模化生产,并为传感器微型化发展提供了重要的技术支撑。
目前,MEMS传感器技术研发主要在以下几个方向:(1)微型化的同时降低功耗;(2)提高精度;(3)实现MEMS传感器的集成化及智慧化;(4)开发与光学、生物学等技术领域交叉融合的新型传感器。
四、集成化,多功能一体化传感器受到广泛关注。
传感器集成化包括两类:一种是同类型多个传感器的集成,即同一功能的多个传感元件用集成工艺在同一平面上排列,组成线性传感器(如CCD 图像传感器)。
另一种是多功能一体化,如几种不同的敏感元器件制作在同一硅片上,制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正,是当前传感器集成化发展的主要方向。
五、多样化,新材料技术的突破加快了多种新型传感器的涌现。
国内外传感器发展历程与现状及我国传感器应如何发展

国内外传感器发展历程与现状及我国传感器应如何发展传感器与通信、计算机被称为现代信息技术的三大支柱和物联网基础,其应用涉及国民经济及国防科研的各个领域,是国民经济基础性、战略性产业之一。
当前倍受国际关注的物联网、大数据、云计算技术,乃至智慧城市中的各种技术实现,对于传感器技术的需求也是巨大。
国内外发展历程与现状20世纪70年代初,西方发达国家大力发展计算机与通讯技术,忽视了传感器技术发展,造成了“大脑”发达,而“五官”迟钝的窘境,传感器产业相对惨淡。
80年代初,美、日、德、法、英等国家相继确立加速传感器技术发展的方针,视为涉及科技进步、经济发展和国家安全的关键技术,纷纷列入长远发展规划和重点计划之中。
并采取严格的保密规定对技术封锁和控制,禁止技术出口,尤其是针对中国。
日本1979年在《对今后十年值得注意的技术》中将传感器列为首位;美国国防部1985年公布的二十项军事关键技术中,被列为第十四项;《星球大战》计划、欧洲《尤里卡》计划、前苏联《军事航天》计划,英、法、德等国家高技术领域发展规划中均将传感器列为重点发展技术,并将其科研成果和制造工艺与装备列入国家核心技术。
美国认为,计算机技术是核心,敏感技术、光电子技术是关键和重点,新材料、微电子技术是支撑和基础。
通信与计算机结合,以及多元化、新技术的融合代表着美国信息技术发展方向。
福布斯认为,当前,甚至今后几十年内,影响和改变着世界经济格局和人们生活方式的10大科技产品,传感器列为10大科技产品之首。
美国国家科学发展基金会认为,本世纪的重大变革就是:通过网络,把物质世界联接起来,并赋予它一个电子神经系统,使它具有能够感知信息的生命,而能够担当这一重任的核心就是传感器”。
每年度财政预算约有69亿美元,用于传感器基础技术与应用研究,称其为“Sensor Revolution”(即:传感器革命)。
目前国际上缺乏制定国际标准的准则与规范,尚未制定出权威性的传感器标准类型。
新型传感器的研究现状及未来发展趋势

新型传感器的研究现状及未来发展趋势传感器是一种现代化技术所必需的元件,它能够将各种物理量转化为电信号。
传感器的应用范围广泛,例如自动化生产、交通运输、医疗诊断、安全监测等领域,因此传感器技术的发展对现代化生产、生活、科学技术的发展有着非常重要的作用。
传感器的种类很多,根据测量的物理量不同,可以分为温度传感器、压力传感器、流量传感器、湿度传感器、加速度传感器、光学传感器等等。
在这些传感器中,新型传感器是一种备受关注的技术。
一、新型传感器的研究现状1. MEMS技术传感器MEMS是微电子机械系统(Micro-Electro-Mechanical System)的缩写,它是一种微型化的电气机械系统,它能够将机械元件和电子元件进行集成化处理。
因此,MEMS技术传感器的优势在于体积很小、功耗低、响应速度快、可靠性高、价格便宜等等。
如今,MEMS技术传感器的应用已经非常广泛,例如手机中的加速度传感器、陀螺仪、磁力计、压力传感器等等,这些传感器的应用大大提升了手机的功能和用户体验。
2. 光纤传感器光纤传感器是一种基于光学原理的传感器,它使用光的传输来测量物理量。
与传统传感器相比,光纤传感器具有很多优势,例如高灵敏度、抗干扰能力强、安全可靠、经济实用,能够实现长距离传递、分布式检测等等。
目前,光纤传感器主要应用在石油天然气、交通运输、环境监测、生命科学等领域。
例如,在石油天然气开采中,光纤传感器可以测量油井的温度、压力、流量等参数,可以帮助确定油井的产量和工作状态,并且可以提高油井的生产效率。
3. 生物传感器生物传感器主要是应用在医疗诊断领域中的,它能够检测人体内的生物分子、细胞和组织等信息。
例如,可以测量血液中的血糖、白细胞计数、酸碱度等指标,可以帮助医生进行疾病的诊断和治疗。
目前,生物传感器技术发展非常迅速,尤其是以DNA、RNA 等为基础的生物传感器,它可以快速、准确地检测病原体、基因变异等信息,有望成为未来医疗诊断中的主要手段。
浅谈传感器技术的发展现状与趋势

浅谈传感器技术的发展现状与趋势摘要:传感器是新技术革命和信息社会的重要技术基础,传感器技术是实现测试与自动控制的重要环节。
本文阐述了传感器的含义和分类,分析了传感器的发展现状和发展趋势,对实际生产具有指导意义。
关键词:传感器技术发展现状发展趋势1.什么是传感器所谓传感器,即为能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
传感器技术是现代科技的前沿技术,许多国家已将传感器技术与通信技术和计算机技术列为同等重要的位置,称之为信息技术的三大支柱之一[1-2]。
2.传感器分类2.1按照其用途分类传感器按照其用途可分为压力敏和力敏传感器位置传感器、液面传感器能耗传感器、速度传感器加速度传感器、射线辐射传感器、热敏传感器、24GHz雷达传感器。
2.2按照其原理分类传感器按照其原理分类可分为振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。
2.3按照其输出信号为标准分类按照其输出信号为标准可将传感器分为模拟传感器、数字传感器、膺数字传感器和开关传感器。
模拟传感器是将被测量的非电学量转换成模拟电信号。
数字传感器是将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器是将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器是当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
2.4按照其材料为标准分类在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。
它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。
从所应用的材料观点出发可将传感器分成下列几类:(1)按照其所用材料的类别分:金属聚合物和陶瓷混合物;(2)按材料的物理性质分:导体绝缘体和半导体磁性材料;(3)按材料的晶体结构分:单晶、多晶和非晶材料。
传感器的发展趋势

传感器的发展趋势
1. 发现利用新现象、新效应
利用物理现象、化学反应和生物效应是各种传感器 工作的基本原理,所以发现新现象与新效应是发展传感 器技术的重要工作,是研制新型传感器的理论基础,其 意义极为深远。例如,日本夏普公司利用超导技术研制 成功高温超导磁性传感器,是传感器技术的重大突破, 其灵敏度之高,仅次于超导量子干涉器件。但它的制造 工艺远比超导量子干涉器件简单,可用于磁成像技术, 具有广泛的推广价值。
传感器的发展趋势
8. 传感器的智能化与数字化
利用计算机及微处理技术使传感器智能化是20世 纪80年代以来传感器技术的一大飞跃。智能传感器是一 种带有微处理器的传感器,与一般传感器相比它不仅具 有信息提取、转换等功能,而且具有数据处理、双向通 信、信息记忆存储、自动补偿及数字输出等功能。
传感器的发展趋势
随着人工神经网络、人工智能和信息处理技术(如多传感器信息 融合技术、模糊理论等)的进一步发展,智能传感器将具有更高级的分 析、决策及自学功能,可完成更复杂的检测任务。此外,目前传感器的 功能已突破传统的界限,其输出不再是单一的模拟信号,而是经过微处 理器处理过的数字信号,有的甚至带有控制功能,这就是所谓的数字传 感器。数字传感器的特点:一是将模拟信号转换成数字信号输出,提高 了传感器的抗干扰能力,特别适用于电磁干扰强、信号传输距离远的工 作现场;二是可通过软件对传感器进行线性修正及性能补偿,减少了系 统误差;三是一致性与互换性好。
传感器的发展趋势
6. 传感器的微型化与低功耗
目前,各种测控仪器设备的功能越来越强大,同时各个 部件的体积却越来越小,这就要求传感器自身的体积也要小 型化、微型化,现在一些微型传感器的敏感元件采用光刻、 腐蚀、沉积等微机械加工工艺制作而成,尺寸可以达到微米 级。此外,由于传感器工作时大多离不开电源,在野外或远 离电网的地方,往往是用电池或太阳能等供电,因此,开发 微功耗的传感器及无源传感器就具有重要的实际意义,这样 不仅可以节省能源,也可以提高系统的工作寿命。
2024年敏感元件及传感器制造市场发展现状

2024年敏感元件及传感器制造市场发展现状引言敏感元件及传感器在现代工业中起到了至关重要的作用。
随着科技的不断进步和工业的快速发展,敏感元件及传感器市场也在得到迅猛的发展。
本文将对敏感元件及传感器制造市场的发展现状进行深入分析,并探讨未来发展的趋势。
市场规模及增长概况敏感元件及传感器制造市场在过去几年呈现出强劲的增长态势。
根据市场研究机构的数据显示,2010年至2020年期间,全球敏感元件及传感器市场规模从100亿美元增长到250亿美元。
而预计未来五年内,市场规模将继续以年均10%的速度增长。
主要驱动因素敏感元件及传感器市场的快速发展主要得益于以下几个因素:1.工业自动化的推动:随着工业自动化水平的不断提升,对敏感元件及传感器的需求也随之增加。
敏感元件及传感器在工业过程中能够实时监测各种参数,从而提高生产效率和产品质量。
2.智能家居的兴起:智能家居市场近年来呈现出快速增长的势头。
敏感元件及传感器作为智能家居的核心技术之一,被广泛应用于灯光控制、温度调节、安全监测等方面。
3.汽车电子化的需求:随着汽车电子化水平的提高,对于敏感元件及传感器的需求也在增加。
例如,车载传感器可以实现对车速、气压、温度等参数的监测,从而提升汽车的智能驾驶能力。
主要市场细分敏感元件及传感器市场可以根据应用领域的不同进行细分,主要包括以下几个方面:1.工业制造领域:工业制造领域是敏感元件及传感器的主要应用领域之一。
在此领域中,敏感元件及传感器被广泛应用于测量和监测工业过程中的各种参数,提高生产效率和产品质量。
2.汽车行业:汽车行业对敏感元件及传感器的需求十分巨大。
敏感元件及传感器可以实时监测车辆各种参数,例如车速、油耗、轮胎压力等,提升汽车的性能和安全性。
3.智能家居领域:随着智能家居市场的快速发展,敏感元件及传感器在其中扮演着重要角色。
通过与其他智能设备的连接,敏感元件及传感器可以实现对家庭环境的监测和控制,提升家居的舒适性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈传感器敏感材料发展动态1 微型化(Micro)为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。
1.1 由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。
对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。
MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。
经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。
在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件[1],[2]。
目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。
1.2 微型传感器应用现状就当前技术发展现状来看,微型传感器已经对大量不同应用领域,如航空、远距离探测、医疗及工业自动化等领域的信号探测系统产生了深远影响;目前开发并进入实用阶段的微型传感器已可以用来测量各种物理量、化学量和生物量,如位移、速度/加速度、压力、应力、应变、声、光、电、磁、热、PH值、离子浓度及生物分子浓度等 2 智能化(Smart)智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。
此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测、网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。
2.1 智能化传感器的特点智能化传感器是指那些装有微处理器的,不但能够执行信息处理和信息存储,而且还能够进行逻辑思考和结论判断的传感器系统。
这一类传感器就相当于是微型机与传感器的综合体一样,其主要组成部分包括主传感器、辅助传感器及微型机的硬件设备。
如智能化压力传感器,主传感器为压力传感器,用来探测压力参数,辅助传感器通常为温度传感器和环境压力传感器。
采用这种技术时可以方便地调节和校正由于温度的变化而导致的测量误差,而环境压力传感器测量工作环境的压力变化并对测定结果进行校正;而硬件系统除了能够对传感器的弱输出信号进行放大、处理和存储外,还执行与计算机之间的通信联络。
通常情况下,一个通用的检测仪器只能用来探测一种物理量,其信号调节是由那些与主探测部件相连接着的模拟电路来完成的;但智能化传感器却能够实现所有的功能,而且其精度更高、价格更便宜、处理质量也更好。
与传统的传感器相比,智能化传感器具有以下优点:1.智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。
此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。
2.智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。
当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。
当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。
3.智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,而微处理器的介入使得智能化传感器能够更加方便地对多种信号进行实时处理。
此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性能,也能够使它们适合于各不相同的工作环境。
4.智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需要将它们存储起来。
存储大量信息的目的主要是以备事后查询,这一类信息包括设备的历史信息以及有关探测分析结果的索引等;5.智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算机进行通信联络和交换信息。
此外,智能化传感器的信息管理程序也非常简单方便,譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数据发送给远程用户等。
2.2 智能化传感器的发展与应用现状目前,智能化传感器技术正处于蓬勃发展时期,具有代表意义的典型产品是美国霍尼韦尔公司的ST-3000系列智能变送器和德国斯特曼公司的二维加速度传感器,以及另外一些含有微处理器(MCU)的单片集成压力传感器、具有多维检测能力的智能传感器和固体图像传感器(SSIS)等。
与此同时,基于模糊理论的新型智能传感器和神经网络技术在智能化传感器系统的研究和发展中的重要作用也日益受到了相关研究人员的极大重视。
指出的一点是:目前的智能化传感器系统本身尽管全都是数字式的,但其通信协议却仍需借助于4~20 mA的标准模拟信号来实现。
一些国际性标准化研究机构目前正在积极研究推出相关的通用现场总线数字信号传输标准;不过,在眼下过渡阶段仍大多采用远距离总线寻址传感器(HART)协议,即Highway Addressable Remote Transducer。
这是一种适用于智能化传感器的通信协议,与目前使用4~20mA模拟信号的系统完全兼容,模拟信号和数字信号可以同时进行通信,从而使不同生产厂家的产品具有通用性。
能化传感器多用于压力、力、振动冲击加速度、流量、温湿度的测量,如美国霍尼韦尔公司的ST3000系列全智能变送器和德国斯特曼公司的二维加速度传感器就属于这一类传感器。
另外,智能化传感器在空间技术研究领域亦有比较成功的应用实例[6]。
发展中,智能化传感器无疑将会进一步扩展到化学、电磁、光学和核物理等研究领域。
可以预见,新兴的智能化传感器将会在关系到全人类国民生的各个领域发挥越来越大作用。
3 多功能传感器(Multifunction)如前所述,通常情况下一个传感器只能用来探测一种物理量,但在许多应用领域中,为了能够完美而准确地反映客观事物和环境,往往需要同时测量大量的物理量。
由若干种敏感元件组成的多功能传感器则是一种体积小巧而多种功能兼备的新一代探测系统,它可以借助于敏感元件中不同的物理结构或化学物质及其各不相同的表征方式,用单独一个传感器系统来同时实现多种传感器的功能。
随着传感器技术和微机技术的飞速发展,目前已经可以生产出来将若干种敏感元件综装在同一种材料或单独一块芯片上的一体化多功能传感器。
3.1 多功能传感器的执行规则和结构模式概括来讲,多功能传感器系统主要的执行规则和结构模式包括:(1)多功能传感器系统由若干种各不相同的敏感元件组成,可以用来同时测量多种参数。
譬如,可以将一个温度探测器和一个湿度探测器配置在一起(即将热敏元件和湿敏元件分别配置在同一个传感器承载体上)制造成一种新的传感器,这样,这种新的传感器就能够同时测量温度和湿度。
(2)将若干种不同的敏感元件精巧地制作在单独的一块硅片中,从而构成一种高度综合化和小型化的多功能传感器。
由于这些敏感元件是被综装在同一块硅片中的,它们无论何时都工作在同一种条件下,所以很容易对系统误差进行补偿和校正。
(3)借助于同一个传感器的不同效应可以获得不同的信息。
以线圈为例,它所表现出来的电容和电感是各不相同的。
(4)在不同的激励条件下,同一个敏感元件将表现出来不同的特征。
而在电压、电流或温度等激励条件均不相同的情况下,由若干种敏感元件组成的一个多功能传感器的特征可想而知将会是多么的千差万别!有时候简直就相当于是若干个不同的传感器一样,其多功能特征可谓名副其实。
3.2 多功能传感器的研制与应用现状多功能传感器无疑是当前传感器技术发展中一个全新的研究方向,日前有许多学者正在积极从事于该领域的研究工作。
如将某些类型的传感器进行适当组合而使之成为新的传感器,如用来测量流体压力和互异压力的组合传感器。
又如,为了能够以较高的灵敏度和较小的粒度同时探测多种信号,微型数字式三端口传感器可以同时采用热敏元件、光敏元件和磁敏元件;这种组配方式的传感器不但能够输出模拟信号,而且还能够输出频率信号和数字信号. 从目前的发展现状来看,最热门的研究领域也许是各种类型的仿生传感器了,而且在感触、刺激以及视听辨别等方面已有最新研究成果问世。
从实用的角度考虑,多功能传感器中应用较多的是各种类型的多功能触觉传感器,譬如人造皮肤触觉传感器就是其中之一,这种传感器系统由PVDF材料、无触点皮肤敏感系统以及具有压力敏感传导功能的橡胶触觉传感器等组成。
据悉,美国MERRITT公司研制开发的无触点皮肤敏感系统获得了较大的成功,其无触点超声波传感器、红外辐射引导传感器、薄膜式电容传感器、以及温度、气体传感器等在美国本土应用甚广。
与其它方面的研究成果相比,目前在人工嗅觉方面的研究还似乎远远不尽人意。
由于嗅觉元件接收到的判别信号是非常复杂的,其中总是混合着成千上万种化学物质,这就使得嗅觉系统处理起这些信号来异常错综复杂。
人工嗅觉传感系统的典型产品是功能各异的Electronic nose(电子鼻),近10多年来,该技术的发展很快,目前已有数种商品化的产品在国际市场流通,美、法、德、英等国家均有比较先进的电子鼻产品问世。
“电子鼻”系统通常由一个交叉选择式气体传感器阵列和相关的数据处理技术组成,并配以恰当的模式识别系统,具有识别简单和复杂气味的能力,主要用来解决一般情况下的气味探测问题。
根据应用对象的不同,“电子鼻”系统传感器阵列中传感器的构成材料及配置数量亦有所不同,其中,构成材料包括金属氧化物半导体、导电聚合物、石英晶振等,配置数量则从几个到数十个不等。
总之,“电子鼻”系统是气体传感器技术和信息处理技术进行有效结合的高科技产物,其气体传感器的体积很小,功耗也很低,能够方便地捕获并处理气味信号。
气流经过气体传感器阵列进入到“电子鼻”系统的信号预处理元件中,最后由阵列响应模式来确定其所测气体的特征。