风量计算

合集下载

风量的计算公式

风量的计算公式

风量的计算公式风量是指单位时间内空气的流量,在很多领域都有着重要的应用,比如通风系统的设计、空调系统的配置等等。

那风量到底怎么计算呢?咱们一起来瞅瞅。

风量的计算,说起来其实就是根据一些特定的公式和参数来得出结果。

常见的风量计算公式有两种,一种是基于风速的,另一种是基于体积流量的。

基于风速的风量计算公式是:风量 = 风速 ×风道截面积。

这就好比在一条河道里,水的流速乘以河道的横截面积,就能算出单位时间里流过的水量。

风速就相当于水流的速度,风道截面积就相当于河道的横截面积。

举个例子啊,比如说有一个风道,它的宽度是1 米,高度是0.5 米,风速是 5 米每秒。

那风道的截面积就是 1×0.5 = 0.5 平方米。

风量就是5×0.5 = 2.5 立方米每秒。

基于体积流量的风量计算公式是:风量 = 体积流量 ÷时间。

这就好像你有一桶水,知道这桶水的总体积,再知道装满这桶水用的时间,就能算出单位时间里流进桶里的水量。

我记得有一次,我们公司的通风系统出了点问题。

那时候夏天,办公室里热得不行,大家都怨声载道的。

我就被派去查看咋回事,一检查发现可能是风量不够。

我就拿着工具,测量风道的尺寸,还有风速啥的。

那时候可紧张了,因为要是弄不好,同事们还得继续在“蒸笼”里工作。

我一边算一边对照着公式,心里默默祈祷可别出错。

最后算出来风量确实比设计的小了不少,赶紧调整了设备,这才让办公室又凉快起来。

在实际应用中,要准确计算风量,还得考虑很多因素。

比如说空气的密度、风道的阻力、温度和湿度的影响等等。

这些因素可能会让计算变得复杂一些,但只要咱把基本原理搞清楚,一步一步来,也不是啥难事。

而且不同的场景,对风量的要求也不一样。

像一些工厂车间,可能需要大量的新风来排除有害气体,这时候风量就得算得大一些;而像一些对环境要求比较高的实验室,不仅要考虑风量,还得考虑空气的洁净度和稳定性。

总之啊,风量的计算虽然有公式可循,但要真正应用好,还得结合实际情况,多观察、多思考。

风量风速计算方法

风量风速计算方法

风量风速计算方法风量和风速是气象学和风力学中常用的两个重要概念。

风量是指单位时间内通过一个垂直面积的风流量,通常用立方米每秒(m³/s)为单位表示。

而风速是指风流通过一定垂直面积的速度,通常用米每秒(m/s)为单位表示。

风量和风速的计算方法有多种,以下将介绍常用的几种计算方法。

一、风量的计算方法:1.数学模型法:这种计算方法基于流体力学原理建立了数学模型来计算风量。

最常用的数学模型是管道流动模型,它假设风流是通过一个管道流动,根据压差和流速的关系来计算风量。

其计算公式为:风量(m³/s)=面积(m²)×风速(m/s)2.物理模型法:这种计算方法基于实际物理模型来测量风量。

最常用的物理模型是风洞模型,通过在风洞中测量压差和流速来计算风量。

该方法适用于实际工程中需要准确测量风量的场合。

二、风速的计算方法:1.风速计仪器法:这是最常用的测量风速的方法,通过使用专用的风速计仪器(如风速计、风传感器等)来直接测量风流的速度。

风速计仪器根据不同的原理和结构,可以测量不同范围和精度的风速。

2.压差法:这种方法通过测量通过一个垂直面积的风流的压差来计算风速。

常用的压差计法有差压计法和双管法。

差压计法通过测量气流两侧的压差来计算风速,双管法通过测量气流两侧的流速差来计算风速。

3.线速度法:这种方法通过测量在一个平行于风流方向的线上经过的风流点的时间间隔和距离来计算风速。

一般使用光电传感器或激光测距仪来测量时间和距离,然后根据时间和距离的关系计算风速。

需要注意的是,风量和风速的计算方法会受到多种因素的影响,如风流的不均匀性、地形的影响、测量设备的精确度等。

因此,在实际应用中要根据具体情况选择适当的计算方法,并进行准确的数据处理和分析。

风量计算——精选推荐

风量计算——精选推荐

一、风量计算的依据本细则主要依据《煤矿安全规程》103条对风量计算的要求,并结合矿区的具体条件而制定。

二、基本方法:以一个采、掘、开工作面为计算单位。

下列方法中取风量最大值。

1、按人数计算供井下工作人员呼吸用的新鲜风量,每人不少于4m3/min.计算公式:Q=NK/15 (m3/s) ⑴其中:Q:需要风量。

(m3/s)(以下相同)N:工作面最多人数。

(按循环作业劳动组织设计人数)K:备用系数。

取1.252、按稀释有害气体计算。

有害气体允许浓度见表1。

这里以稀释瓦斯为例。

计算公式:Q=1.7K W * q w /(C-C O) (m3/s) ⑵其中:q w:工作面瓦斯绝对涌出量。

(m3/min)C:回风流瓦斯允许浓度。

(1)C O:进风流瓦斯含量。

(最大不允许超过0.5)K W:瓦斯涌出不均衡系数。

取1.2~2.0a、我公司井下有害气体主要为瓦斯、二氧化碳。

《煤矿安全规程》规定,回采工作面瓦斯最大绝对涌出量超过5 m3/min时应采取抽放措施(掘进工作面为3m3/min)。

已采取瓦斯抽防措施的工作面的瓦斯绝对涌出量应减去抽放瓦斯量。

b、工作面瓦斯绝对涌出量q w可按最近年份同一区域,同一煤层,同一开采层次等相同条件的工作面的瓦斯鉴定值计算。

如果工作面实际瓦斯涌出量大于鉴定值,按实际涌出量计算风量。

新水平的可q w用瓦斯梯度推测出工作面瓦斯绝对涌出量。

c、二氧化碳绝对涌出量大于瓦斯时,按二氧化碳计算风量。

有其他有害气体时,按《煤矿安全规程》规定的允许浓度计算。

规定见表。

矿井有害气体最高允许浓度表1d、瓦斯涌出不均衡系数受地质条件,采掘方法,采掘工艺、速度等因素影响很大,计算时可以据本矿实际情况在1.2~2.0范围内选用。

3、调节气候条件所需风量。

影响井下气候的主要因素是温度,湿度及风速。

调整风速是目前调整井下气候的有效方法。

对应各种温度所需风速见下表。

适宜气候的风速和温度表表2计算公式:Q=sv (m3/s) ⑶其中:v:工作面温度对应的风速。

风量风速计算公式

风量风速计算公式

风量风速计算公式
风速与风量计算公式是,风量=风速*截面积,以直径为600毫米,风速为12
米每秒为例,风量=12*3600*3.14*0.6*0.6/4。

1、风量(Q):所谓风量(又称体积流率)指的是风管之截面积所通过气流之流速,一般在使用上以下式来表示:
Q=60VAQ(风量)=m3/min V(风速)=m/sec A(截面积)=m2。

2、风速与风量是怎么换算的?
风速与风量换算公式:L=3600*F*V。

公式中:F风口通风面积m2。

V测得的风口平均风速(m/s)。

计算排风机出口的风量,风速,管道直径:管径D(m);风速U(m/s);风量Q(m3/h);S截面积(m)。

L管道长度(m)D=√
{4Q/(3.14U3600)}U=Q*4/{(D/2)^2*3.14*3600}。

符号:
风冷散热器风扇每分钟送出或吸入的空气总体积,如果按立方英尺来计算,单位就是CFM;如果按立方米来算,就是CMM,散热器产品经常使用的风量单位是CFM。

在散热片材质相同的情况下,风量是衡量风冷散热器散热能力的最重要的指标。

显然,风量越大的散热器其散热能力也越高。

这是因为空气的热容是一定的,更大的风量,也就是单位时间内更多的空气能带走更多的热量。

当然,同样风量的情况下散热效果和风的流动方式有关。

风量风压计算公式

风量风压计算公式

风量风压计算公式风量和风压是风机工程中常常涉及到的两个重要指标。

风量表示单位时间内通过风机的空气流量,而风压则表示风机产生的空气压力。

在风机设计和选择过程中,准确计算出风量和风压是非常重要的,可以帮助工程师选择合适的风机和进行系统设计。

下面将介绍风量和风压的计算公式。

1.风量的计算公式:风量的计算公式如下:Q=V×A其中,Q表示风量(m³/h),V表示风速(m/s),A表示截面积(m²)。

在实际工程中,常用的单位换算关系为:1m/s=3600m³/h如果知道风机的风速和截面积,可以通过上述公式计算出风量。

2.风压的计算公式:风压的计算公式如下:P=(ρ×V²)/2其中,P表示风压(Pa),ρ表示空气密度(kg/m³),V表示风速(m/s)。

在大气条件下,空气密度约为1.225 kg/m³,可以根据实际情况进行调整。

如果知道风机的风速,可以通过上述公式计算出风压。

3.风量和风压的关系:风量和风压之间存在一定的关系,可以通过以下公式相互转换:P=Q×ΔP/1000其中,P表示风压(Pa),Q表示风量(m³/h),ΔP表示风阻(Pa/m)。

根据实际情况,可以计算出风阻,并利用上述公式将风量转换为风压,或者反之。

4.其他因素的影响:以上公式是在理想条件下进行计算的,实际工程中还需要考虑其他因素的影响,例如风机的效率、管道摩擦阻力、风机系统的气密性等。

这些因素都会对实际的风量和风压产生一定的影响,因此在实际工程中还需要进行修正和计算。

总结:风量和风压是风机工程中常用的两个指标,可以通过上述公式进行计算。

在实际工程中,还需要考虑其他因素的影响,进行修正和计算。

准确计算风量和风压可以帮助工程师选择合适的风机和进行系统设计。

风量计算公式

风量计算公式

风量计算风量(Q :所谓风量(又称体积流率)指的是风管之截面积所通过气流之流速,一般在使用上以下式来表示:Q=60VAQ (风量)=m3/minV (风速)=m/secA (截面积)=m2压力常用换算公式1Pa= 1mbar= 1mmHg= 1psi=703mmAq 1Torr= 1Torr= 常用单位换算表- 风量1m3/min( CMM) =1000 l/min = 35.31 ft3/min (CFM) 常用名词说明(1)标准状态:为20 C,绝对压力760mmHg相对湿度65%。

此状态简称为STP 一般在此状态下1m3之空气重量为1.2kg 。

( 2)空气之绝对压力:为当地大气压计所显示的大气压力再加上表压力之和,一般用kgf/m2或mmac来表示。

(3)基准状态:为0C,绝对压力760mmHg相对湿度0%。

此状态简称为NTP, —般在此状态下1m3之空气重量为1.293kg 。

压力(1)静压(Ps):所谓静压就是流体施加於器具表面且与表面垂直的力,在风机中一般是由於重力与风扇之推动所造成,在使用上常以kgf/m2或mmac来表示,且可以直接经过量测取得。

而在风机之风管中,任何方向之静压值皆为定值且也有正负之分,若静压值为正则表示风管目前正被胀大,若静压值为负则表示风管目前正受挤压。

(2)动压(Pv):所谓动压就是流体在风管内流动之速度所形成之压力,在使用上常以kgf/m2或mmac来表示.(3)全压(PT):所谓全压就是静压与动压之和,在使用上常以kgf/m2或mmac来表示。

在风机中全压值是属固定,并不会因风管缩管而产生变化.风压与温度温度变化会影响空气之密度。

故在其他条件不变的情况下,温度变化时,其风压必须依下面之关系加以校正,以获得标准情况下之风压值P = P' [(273 + t )/293] (mm AC同样,当空气密度变更时,其风压值可作如下之修正:P = P '(Y)(mm AC式中,等号右侧之值如P'、仁丫等之实测压力、温度与空气密度。

风量的计算方法_风压和风速的关系

风量的计算方法_风压和风速的关系

风量的计算方法_风压和风速的关系在通风、空调、工业通风等领域,风量的计算是一项非常重要的工作。

风量的准确计算对于保证系统的正常运行、达到预期的效果以及节能都具有关键意义。

而风压和风速又与风量密切相关,理解它们之间的关系对于风量的计算至关重要。

首先,我们来了解一下风量的概念。

风量是指单位时间内通过某一截面的空气体积,通常用立方米每秒(m³/s)或立方米每小时(m³/h)来表示。

常见的风量计算方法有以下几种:1、基于风速的计算如果我们能够直接测量或估算出通过某一截面的风速,那么风量就可以通过风速与截面面积的乘积来计算。

假设风速为 v(m/s),截面面积为 A(m²),则风量 Q(m³/s)可以表示为:Q = v × A 。

例如,一个风道的截面为矩形,长为 2 米,宽为 1 米,测得风速为 5 m/s,那么风量 Q = 5 × 2 × 1 = 10 m³/s 。

2、基于流量系数的计算在一些特定的设备或风道中,由于存在阻力和流动特性的影响,不能简单地使用风速乘以面积来计算风量。

此时,会引入流量系数 K 来进行修正。

风量 Q = K × v × A 。

流量系数需要通过实验或厂家提供的数据来确定。

接下来,我们探讨一下风压和风速的关系。

风压是指空气在流动过程中,垂直作用于物体表面的压力。

风速则是空气流动的速度。

它们之间存在着一定的数学关系。

根据伯努利方程,在忽略空气的粘性和可压缩性的理想情况下,风压 P(Pa)与风速 v(m/s)的关系可以表示为:P =05 × ρ × v² ,其中ρ 是空气的密度(kg/m³),在标准大气压和常温下,约为 12 kg/m³。

从这个公式可以看出,风压与风速的平方成正比。

也就是说,风速增加一倍,风压将增加四倍。

在实际应用中,我们可以利用风压和风速的关系来计算风量。

风量的计算方法风压和风速的关系

风量的计算方法风压和风速的关系

风量的计算方法风压和风速的关系风量,又称风流量,是指单位时间内通过其中一横截面的空气体积。

在工程中,风量的计算是非常重要的,尤其在通风系统设计和空气流动分析中。

以下是几种常见的风量计算方法:1.基本风量计算方法:基本风量计算主要是通过实际测量得到的数据进行计算。

通常使用的方法有风速和风口截面积法,以及温度差和质量流量法。

-风速和风口截面积法:通过测量风口截面的面积和风口的风速,可以计算出单位时间内通过该风口的风量。

公式为:风量=风口截面积×风速。

-温度差和质量流量法:通过测量空气流动前后的温度差和空气的质量流量,可以计算出单位时间内通过该横截面的风量。

公式为:风量=质量流量/空气密度。

2.风速计算法:在一些实际应用场景中,可能无法直接测量风量,但可以通过测量风速来计算。

常用的风速计算方法包括理论风量法和风道阻力法。

-理论风量法:通过设定一定的风速和风口形状,根据通风原理和流体力学计算方法,计算出理论上通过该风口的风量。

这种方法适用于通风系统初期设计时的估算,计算结果一般较为粗略。

公式为:风量=风速×风口截面积。

-风道阻力法:通过测量风道中的风压差(更准确地说是风道两侧的总压差)和风道的阻力特性,结合流体力学的计算方法,计算出单位时间内通过该风道的风量。

公式为:风量=风压差/风道总阻力。

风压和风速的关系:风压和风速是风量计算中的两个重要参数,它们之间存在一定的关系。

风压是指风力作用于单位面积上的压力,常用帕斯卡(Pa)作为单位。

风速则是指单位时间内空气流过其中一点的速度,常用米每秒(m/s)作为单位。

在理想条件下,风压与风速之间是成正比关系的,即风压随着风速的增大而增大。

这是由于风速的增大会导致单位面积上受到的风力增大,从而使得风压增大。

具体的关系可以用以下公式表示:风压=0.5×ρ×v²其中,ρ为空气密度,v为风速。

可以看出,当空气密度保持不变时,风压与风速的平方成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某隧道通风设计与计算
某隧道全长4176米,其中我们施工2176米,该隧道分为主洞,平导两个断面,中线间距42.5米,洞身开挖时工作面最多达到4个,爆破时所产生的有害气体较多,洞内作业人员基本保持在60多人;况且出渣运输全部采用的是无轨运输,机械、车辆的功率较大,排烟量大,对隧道内的空气污染很严重,爆破产生的气体及机械,车辆排Array
放的尾气是隧道内空气的主要污染源,某隧道口海拔2182.5米,空
气较稀薄,当隧道掘进至300多米时就急需解决隧道内的通风问题。

某隧道的通风采用了三种形式,即压入式通风,巷道式通风和混
合式通风,在隧道掘进到1200米以前,主要要用压入式通风和混合
式通风,后期则采用巷道式通风,与此同时再辅助高压喷水降尘等措
施,效果更佳,具体实施方案如下:
主洞开挖260多米时遇到暗河,掘进受阻,平行导洞掘进过二横
后,主洞从二横开始分两个工作面开挖,这时主洞内的污浊气体很难
排出,我们当时采用的是压入式通风,当时洞内作业人数在40人左
右,按一般长大隧道每人每分需新鲜空气量q=3米3/分,则Q需
k*m*q=1.1*40*3=132米3/分,由于当时受场地等的限制,通风机只
能安装在平导洞口,这时离主高速工作面有500米,我们使用的风管
直径为1200毫米,通风时间计划30分钟(按一般要求),主洞开挖
采用的是台阶法,净断面面积约40米2,平导净断面面积约30米3,
爆破耗药量约90kg,通过计算风量及风阻决定通风机的台数则计算
出:
0.13 0.13 0.13 Q=——— A*L 2*S 2= ——— 90*5002*702=———
*4795 t 30 30
-20.78M 3/S=1247m 3/分
而我们当时工地上只在天津产88—1型通风机,风量为1000m 3/分,若放炮时间错开安装一台还是能满足要求的。

计算风阻S=πR 2=3.14*(0.6)2=1.13m 2,管道周边长U=πD=3.768米。

聚氯乙烯的α值为0.00016, L.U.Q 2 500*3.768*132
则H 磨=α* =0.0016* S 3 1.133
=5252.3/1.44=3647pa
88—1型通风机风压为5000pa ,说明一台能满足现在的需要,通过计算可以看出,风量在500米距离时基本能满足,根据风阻可以算出最长的供风量离L=5000/7.294=685米(其中7.294为每米风管的磨擦阻力),由于通风管在安装时不是理想的平顺也将导致风阻增加,因此实际的供风距离还要短,若增长送风距离,送风至作业面时由于压力低,风速将达不到最小0.25米/秒的要求,废气将无法排出。

随着开挖深度的增加,压入式通风将不能满足需要,废气不能压出洞外,因此我们又采用了混合式通网,具体实施方法是:压入的风机向内转移,增加一台抽出的通风机,原来接的通风管不动,改为向外抽出的风管,由于废气比重比空气大。

因此压入的风机安装时根据现场情况尽量抬高,而抽出的通风机安装在地面上即可,压入式通风机的风管离工作面始终保持在50米左右,抽出通风机离工作面100米左右。

根据前面的计算可以看出隧道内实际需要氧量不是很大,而爆破时产生的废气及机、车尾气却很大,掘进到一定深度后,这些污
浊的气体自然排风是很难排出洞外的,
主要靠抽出式通风机排出洞外。

抽出的通风机我们使用的也是天津产88—1型,理论供风距离680米,实际上只能达到500—600米,距离加长后需安装接力的通风机,在某工地只在三台通风机。

我们将其中一台拆开当做两台小型通风机,一台当做接力使用,另一台当做备用。

当隧道掘进至1200米后,由于洞内空气流动差,压入式通风机吸入的气体质量差(由于洞内机、车运输尾气多),抽出的通风管距离长以后不易于维修,若通风管短将会重新抽进去,烟尘只在洞内转。

因此,根据某隧道的特点,结合当时的实际(暗河段已通过,车辆可以行驶),我们及时采用了巷道式通风。

在已打通的横通道处安装帘门(用彩条布等做成门),机械、车辆尽量从主洞行走,半导作为一个大的进风道,主洞作为一个出风道,这样做效果较明显,具体安装1、压入通入机 2、抽出通风机 3、小型通风机 4、帘门
图中的安装位置(六横)离分界线还有500多米,压入式通风机的供风距离基本能满足要求,抽出式采用接力。

3号小型通风机是原来在横通道使用过的7.5KW 、12KW 的接力风机,直径只有Ф50,安装在衬砌台车上,做12米长的通风管接力向外抽,由于在施工过程中,发现衬砌台车阻挡烟尘外移,只有在衬砌台车上部安装两台小型通风机才能使洞内的烟尘排出洞外。

通过某隧道的施工,在通风排烟方面我们根据隧道的掘进深度先后采取了几种方法,取得了一定的经验,但也发现了一些问题,一是在通风机的配置上不太合理,某工地三台大型通风机都是110kw,若有一台220kw的向外抽,既减少了数量、操作作员等;由于流量大一倍,通风时间将缩短很多,虽然采用接力可以弥补,但由于风管等原因结果还是有差别,二是在选购风管时,一定要考虑到使用时间,承受压力、直径等因素,有条件的尽量采用硬质通风管以减少风阻,直径上在符合要求范围内尽量大一点,通过计算可以发现直径1米与1.2米的风阻即H磨每米长度相差3.86pa,风管所能承受的压力很关键,88—1型的出风压力是5000pa,由于使用时间长风管老化等原因靠近通风机的地方很容易损坏,将直接影响通风效果,三是在开始使用通风机时有一个长远规划,尽量避免反复安装,四是提前计划通风机的用电,由于通风机的功率较大(110KW),到后期低压进洞电压降过大,将不能满足需要,需提前高压进洞。

五是在出渣作业时,若洞内含水量低,需要高压水喷降尘,降低洞内的粉尘含量,同时也保护了通风机,通风等,以上只是我根据某工地的情况总结出的不太理想的通风排烟的做法,随着科技的发展,将会有更加先进的通风排烟技术出现。

相关文档
最新文档