数值计算方法第五章第二节 复化求积公式

合集下载

复化求积公式

复化求积公式

h[ 2
f ( x0 )
n1
2
k 1
f ( xk )
f ( xn )]
复化梯形公式
Tn
h 2
[
f
(
x0
)
n1
2
k 1
f ( xk )
f ( xn )]
复化梯形公式
计算方法
2.复化辛浦生公式
计算方法
在每个小区间[xk1, xk ]上应用辛浦生公式得:
xk
xk 1

f
b
( x)dx h[ f 6
计算方法
在 每 个 小 区 间[ xk1, xk ]上 应 用 梯 形 公 式 得 :
xk xk 1
f ( x)dx
h 2
[
f
(
xk1
)
f ( xk )]

b
n
f (x)dx =
xk f (x)dx
a
k 1 xk1
n k 1
h[ f 2
(xk1)
f
(xk )]
计算方法
x0 x1 x2 x3
2
三、区间逐次分半求积法
计算方法
复化求积公式可有效提高计算精度,但对给定 的误差限,如何确定节点的个数,即[a,b]应多少等 份?由截断误差可以估计步长的取值情况,但需要 给出各阶导数的最大值,这往往是比较困难的,且 估计值往往偏大.
接下来,我们将考虑步长的更为实用的选取方 法.
计算方法
若用Tn及T2n分别表示将[a, b]n等分及2n等分的复化 梯形公式,则
f(x) 1 0.997 0.9896 0.976 0.95 0.936 0.908 0.877 0.841 3978 158 7267 8851 1556 8516 1925 4709

数值分析(18)复化求积法

数值分析(18)复化求积法

1 2
h2
b
4
a
,
直到 T2n Tn 为止,将T2n作为积分的近似值。
数值分析
数值分析
下面推导由n到2n的复化梯形公式
给出误差限,将[a,b]n等分,步长hn
b
a n
,
用复化梯形公式:
在[xk , xk1 ]上,T1k
hn 2
(
f
( xk )
f ( xk1 ))
在[a, b]上,
T (hn ) Tn
理查逊外推算法流程 1,0
1,1 2,0
1,2 2,1 3,0
M
M
MO
1,n 2,n1 3,n2 L n1,0
数值分析
数值分析
二、龙贝格(Romberg)方法
龙贝格(Romberg)算法是将理查逊(Richardson)外推法应 用于数值积分,由低精度求积公式推出高精度求积公式的算法。
h
ba 2k
数值分析
数值分析
变步长复化梯形公式的递推公式: (由n到2n)
T2n
1 2 Tn
Hn 2
其中Tn
hn 2
(
f (a)
n1
f (b)) hn
k 1
f ( xk )
n1
H n
hn
k0
f
(
x
k
1
)
2
实际计算中的递推公式为
ba
T1
[ f (a) f (b)] 2
1
b a n1
ba
T2n 2 Tn
复 化 梯 形 公 式 的 截 断 误差 有 展 开 式
b a
f ( x)dx Tn
C2h2

复化求积公式

复化求积公式
数值计算方法
复化求积公式 由梯形、辛卜生和柯特斯求积公式余项可知,
随着求积节点数的增多,对应公式的精度也会相应 提高。但由于n≥8时的牛顿—柯特斯求积公式开始 出现负值的柯特斯系数。根据误差理论的分析研究, 当积分公式出现负系数时,可能导致舍入误差增大, 并且往往难以估计。因此不能用增加求积节点数的 方法来提高计算精度。在实际应用中,通常将积分 区间分成若干个小区间,在每个小区间上采用低阶 求积公式,然后把所有小区间上的计算结果加起来 得到整个区间上的求积公式,这就是复化求积公式 的基本思想。常用的复化求积公式有复化梯形公式 和复化辛卜生公式。
(b)

Tn
h 2
f
n1
(a) 2
k 1
f
(xk ) f
(b)
(6.5)
(6.5)式称为复化梯形公式。
当f(x)在[a,b]上有连续的二阶导数,在子区间
xk , xk1 上梯形公式的余项已知为
RTk
h3 12
f (k )
在[a,b]上的余项
k xk ,x k1
RT
n1
RTk
k 0
1.4 复化辛卜生求积算法实现 (1)复化辛卜生公式计算步骤
① 确定步长h=(b-a)/N,S1=f (a+h/2) , S2=0 ( N 为等分数 )
② 对k=1,2,…,N-1,计算
S1= S1+f (a+kh+h/2) , S2= S2+f (a+kh) ③ S = h f (a) +4S1+ 2 S2+ f (b)/6
n1 k 0
h3 12
f
(k
)
设 f (x)在[a,b]上连续,根据连续函数的介值定理知,

复化求积公式

复化求积公式

复化求积公式复化求积公式是计算定积分的一种常用方法。

它的基本思想是将区间分成多个小区间,用每个小区间上的函数近似代替原函数,然后将这些小区间的近似结果相加得到总的近似结果。

这个方法的优点是能够适用于各种函数类型,而且在计算机上也可以很方便地实现。

具体来说,我们可以将区间[a, b]均匀地分成n个小区间,每个小区间的长度都为Δx = (b-a)/n。

然后我们在每个小区间上选择一个点xi(可以是小区间的左端点、右端点、中点等)作为代表,然后计算这些小区间上的函数值f(xi)。

这样我们就得到了n个高度为f(xi)的矩形,它们的面积就是Δx * f(xi)。

将这n个矩形的面积相加,就得到了近似的定积分的结果。

单个小区间的近似结果可以表示为Δx * f(xi)。

为了得到更精确的结果,我们可以进一步增加小区间的数量,即取n趋向于无穷大的极限。

这样,我们就可以得到复化求积公式的一般形式:∫[a, b] f(x) dx ≈ Δx/2 * [f(x0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(xn)]其中,Δx = (b-a)/n,x0 = a,xn = b,xi 是每个小区间上的代表点。

复化求积公式的精确度与小区间的数量n有关,通常情况下,n越大,近似结果越精确。

但是同时也需要注意,小区间的数量过大会导致计算量过大,需要更多的时间和计算资源。

复化求积公式在实际应用中有很重要的作用,特别是在数值计算和科学工程领域。

通过这个方法,我们可以近似地计算各种复杂的函数的定积分,例如概率密度函数、信号处理中的卷积运算等。

同时,复化求积公式也为数值积分提供了一种计算机实现的思路,可以通过编程语言实现自动计算定积分的功能。

总之,复化求积公式是计算定积分的一种重要方法,通过将区间分成多个小区间,用每个小区间上的函数近似代替原函数,并将这些小区间结果相加,从而获得近似结果。

它在实际应用中具有广泛的适用性和指导意义,为求解各种复杂问题提供了一种有效的数值计算方法。

复化求积公式的算法及其应用

复化求积公式的算法及其应用

复化求积公式的算法及其应用复化求积公式是数值计算方法中重要的一种技术,用于近似计算函数的积分值。

该方法通过将积分区间等分为多个小区间,并在每个小区间上使用求积公式来估计函数在该区间上的积分值。

本文将介绍复化求积公式的算法及其应用。

一、复化求积公式算法1.复化梯形求积公式复化梯形求积公式是复化求积公式中最简单的一种,其基本思想是将积分区间等分为若干个小区间,然后在每个小区间上使用梯形求积公式计算积分值,最后将所有小区间的积分值相加得到最终的积分值。

算法步骤:1)将积分区间[a,b]等分为n个小区间,每个小区间的长度为h=(b-a)/n。

2) 在每个小区间上使用梯形求积公式计算积分值,即Ii=h/2*(f(xi)+f(xi+1)),其中xi=a+i*h,i=0,1,2,...,n-13)将所有小区间的积分值相加得到最终的积分值,即I≈I0+I1+I2+...+In-12. 复化Simpson求积公式复化Simpson求积公式是一种更为精确的复化求积公式,它通过在每个小区间上使用Simpson求积公式来计算积分值,从而提高了计算精度。

算法步骤:1)将积分区间[a,b]等分为n个小区间,每个小区间的长度为h=(b-a)/n。

2) 在每个小区间上使用Simpson求积公式计算积分值,即Ii=h/6*(f(xi)+4f(xi+h/2)+f(xi+h)),其中xi=a+i*h,i=0,1,2,...,n-13)将所有小区间的积分值相加得到最终的积分值,即I≈I0+I1+I2+...+In-1二、复化求积公式应用1.数学分析中的数值积分计算,用于计算函数的定积分值。

2.物理学中的积分计算,用于计算物理量的平均值或总量。

3.统计学中的积分计算,用于计算概率密度函数的面积值。

4.工程学中的积分计算,用于计算工程问题中的各种积分量。

5.金融学中的积分计算,用于计算金融衍生品的价格或价值。

总结:复化求积公式是一种重要的数值计算方法,在数学、物理、统计、工程、金融等领域中有广泛的应用。

复化求积公式

复化求积公式
b
2 定理7 定理 若 f ( x ) ∈ C [a , b ] , 则复化梯形公式的余项为
说明: ) ( 式说明复化梯形公式的余项收敛于零的速度与 说明: 1)(3.3)式说明复化梯形公式的余项收敛于零的速度与 h2收敛于零的速度相同,即余项等 于O(h2)。 收敛于零的速度相同, 。 导数值)确定 (2)余项可由端点的函数值 导数值 确定。 )余项可由端点的函数值(导数值 确定。 3、复化中矩求积公式 (推导类似复化梯形公式) 、 推导类似复化梯形公式) x 1 x 1 x3 上采用中矩形公式, 在 [ x i −1 , x i ]上采用中矩形公式, n− 2 2 2 b − a xi xi −1 + xi , 记h = xn =b x = ∫xi−1 f ( x)dx ≈ h ⋅ f ( 2 ), a=x0 x1 x2 n i = 1,2,L, n 所以


b
a
n −1 x i ) + f (b) 2 i =1 2

= Tn
( 3 .1)
下面考虑余项,先从每个小区间上考虑余项, 下面考虑余项,先从每个小区间上考虑余项,因为每个小区 间上是N- 公式中当 公式中当n=1时的梯形公式。 时的梯形公式。 间上是 -C公式中当 时的梯形公式
n n
所以 − h∑ f ′′(ξ i ) = −∑ O( h2 ) + f ′(a ) − f ′(b) → f ′(a) − f ′(b), (h → 0),
n
i =1 i =1
即 − h∑ f ′′(ξi ) → f ′(a) − f ′(b) (h →0)。
i=1
#
− (b − a)h2 ∫a f ( x)dxb − Tn = 12 f ′′(ξ ), a < ξ < b, ( 3 . 2 ) ∫a f ( x)dx − Tn → 1 ( f ′(a) − f ′(b)), h → 0。 及渐近估计式 ( 3 .3 ) 2 12 h

数值计算方法 复化求积公式 - 复化求积公式

数值计算方法 复化求积公式 - 复化求积公式

nn
(t
0 j0
j )dt
jk

特点: 插值型的、节点等距
特 斯
存在问题: 节点较多时,高次插值的不稳定导致高阶N-

K

解决办法公:式的复不化稳求定积。
复化求积法:区间分成若干子区间,在每个子区间上用低 阶求积公式。
N=1时的牛-柯公式
1
梯 形 公 式 T b a f a f b
牛 顿 -
xk1 xk
f
( x )dx
h[ 2
f
(xk )
f
(
xk
1
)]
h3 12
f ''(k )
k [ xk , xk1]
求和可得
I
b
n1
f (x)dx
xk1 f ( x )dx
a
k0 xk
h 2
n1
[
k0
f
(
xk
)
f ( xk1)]
Rn ( f )
2

Tn
h 2
n1 k0
[
f
(
xk
)
f ( xk1)]
b
lim
n
T
n
a
f ( x)dx,
复 化
事实上
h n1
Tn
2
[
k0
f
(
xk
)
Hale Waihona Puke f ( xk1 )]梯 形 公
1 b a n1
ba n
2 n
f (xk )
k0
n
f ( xk ).
k 1
式 的 收
lim

第二节复化求积公式和龙贝格求积公式

第二节复化求积公式和龙贝格求积公式

Tn )


对于复化辛蒲生公式、柯特斯公式可以类似得到
I

S2n

1 42 1(S2n

Sn )
1 I C2n 43 1 (C2n Cn )
不足
收敛速度慢
应用步长逐次减半得到的复化梯形值、复化 辛蒲生值、复化柯特斯值与精确值的比较
I

T2n

1 4 1(T2n
Tn )
n1

Sn (
f
)

6

f
(a)
4
k0
f
(
x
k

1 2
)

2
k
1
f
( xk )
f
(b)
复化梯形公式(n
=
8),h

1 8
0.946083070367
T8 (
f
)
1
2
8

f
(0)

2

f
1 (
)

8
f
(
1 )

4
3 f( )
8

f
(1) 2
f (5) 8
f
(3) 4
f
(
7 8
)

f
(1)

0.945692
复化辛蒲生公式(n
=
4),h

1 4
S4 (
f
)

1 64

f
(0)
4

f (1) 8
f
(3) 8
f
(5) 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 1 b a1 ' ' ' ' 利 用 h 和 f ( ) f ( ) a , b k n n k 0


得 到 复 化 梯 形 公 式 的 截 断 误 差 是 : b a 2 '' 2 R ( T ) hf ( ) O ( h) n 1 2
复化Simpson公式数值实验结果
n=8, n=16, n=32, n=64, n=128, n=256, n=512, n=1024, n=2048, n=4096, n=8192, sp=1.85195370083255 sp=1.85193808500560 sp=1.85193711642985 sp=1.85193705600861 sp=1.85193705223407 sp=1.85193705199819 sp=1.85193705198345 sp=1.85193705198253 sp=1.85193705198247 sp=1.85193705198246 sp=1.85193705198247
数值试验结果

用复化Simpson公式求解,当区间分成64份 时,计算结果: sp=1.85193705600861 比用复化梯形公式,当区间分成8192份 时的计算结果: tp=1.85193704808136 还要精确。
第 二 节 复化求积公式
一、复化求积公式 复化求积公式的基本思想: 将区间[a , b] 分为若干个小子区间,在每个 小子区间上使用低阶的Newton-Cotes公式。然后
把它们加起来,作为整个区间上的求积公式。
1、复化梯形公式
将 区 间 等 分 , a,bn ba h ,x h , (k 0 ,1 , ,n ), k ak n 在 每 个 小 区 间 k 0 ,1 , ,n1 ) xk, xk1,( 上 用 梯 形 公 式 :
1 0.9 0.8 f(x)=sin(x)/x 0.7 0.6 0.5 0.4 0.3 0.2
x=eps:0.01:pi; y=sin(x)./x; plot(x,y); legend('f(x)=sin(x)/x');
0.1 0
0
0.5
1
1.5
2
2.5
3
3.5
数值试验

复化梯形公式Matlab程序
复化Simpson公式的截断误差为
( b a ) 4( 4 ) 4 R () S h f( ) O () h a , b n 2 8 8 0
Example 1
Approximate the integral sin x dx x 0 Using the Composite Trapezoidal rule and Composite Simpson’s rule
h T (( f x ) f ( x ) ) k 0 , 1 ,, n 1 k k k 1 2
复化梯形公式为
n 1 h T T ( fa () fb () ) h fx (k ) n k 2 k 0 k 1 n 1
截断误差分析:
3 h ' ' 在 区 间 x , x 上 , R f () , k x , x k 1 kk 1 k k k 1 2 3 n 1 n 1 h ' ' 整 体 误 差 为 R R ( ) f( ) n k k 2 k 0 k 0 1
2、复化Simpson公式
在 每 个 小 区 间 ,x 上 用 S i m p s o n 公 式 x k k 1 h S f( x ) 4 f( x 1) f( x ) ) k ( k k 1 k 6 2
复化Simpson公式为
1 1 h 2n 1n S S f( a ) f( b ) ) h f( x 1) h f( x ) n k ( k k 6 3k 3k k 0 0 1 2 n 1 1 2 T , 其 中 H h f( x 1) n H n n k 3 3 k 0 2 n 1
数值试验
在Matlab命令窗口中,进行如下操作:

>> format long >>f =inline( 'sin(x)/x' ) ; >> a = eps; b =pi; n = 8; % eps 是Matlab最小正数 >> sp = simpson(f, a, b, n)
数值试验
function rs= trapezoid(f,a,b,n) h = (b-a)/n; r= (feval(f,a)+feval(f,b))/2 ; for j = 1:n-1 x=a+j*h ; r= r+ feval(f,x); end rs = r* h; 将此程序存于work 目录中

数值试验
数值试验

复化Simpson公式Matlab程序
function rs= simpson(s,a,b,n) h = (b-a)/n; r= feval(s,a)+feval(s,b); for j = 1:2:n-1 x=a+j*h ; r= r+ 4*feval(s,x); end for j = 2:2:n-2 x=a+j*h ; r= r+ 2*feval(s,x); end 将此程序存于work目录中 rs = r*h/3;
复化梯形公式数值实验结果



ቤተ መጻሕፍቲ ባይዱ



n=8, n=16, n=32, n=64, n=128, n=256, n=512, n=1024, n=2048, n=4096, n=8192,
tp=1.84784230644461 tp=1.85091414036536 tp=1.85168137241373 tp=1.85187313510989 tp=1.85192107295303 tp=1.85193305723690 tp=1.85193605329681 tp=1.85193680231110 tp=1.85193698956462 tp=1.85193703637800 tp=1.85193704808136
相关文档
最新文档