上海数学七年级上知识点
沪教版七年级数学知识点总结

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式第九章整式第一节整式的概念9.1.2.3、字母表示数代数式:用括号和运算符号把数或表示数的字母连接而成的式子叫代数式。
单独的数或字母也是代数式。
代数式的书写:1、代数式中出现乘号通常写作“*”或省略不写,但数与数相乘不遵循此原则。
2、数字与字母相乘,数字写在字母前面,而有理数要写在无理数的前面。
3、带分数应写成假分数的形式,除法运算写成分数形式。
4、相同字母相乘通常不把每个因式写出来,而写成幂的形式。
5、代数式不能含有“=、≠、<、>、≥、≤”符号。
代数式的值:用数值代替代数式中的字母,按照代数式的运算关系计算出的结果,叫代数式的值。
注意:1、代数式中省略了乘号,带入数值后应添加×。
2、若带入的值是负数时,应添上括号。
3、注意解题格式规范,应写“当…..时,原式=……..”.4、在实际问题中代数式所取的值应使实际问题有意义。
9.4整式1、由数与字母的乘积组成的代数式称为单项式。
单独一个数或字母也是单项式。
2、系数:单项式中的数字因数叫做这个单项式的系数。
3、单项式的次数:一个单项式中所有字母的指数的和叫做这个单项式的次数。
4、多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
5、多项式的次数:多项式里次数最高的项的次数叫做这个多项式的次数6、整式:单项式和多项式统称为整式。
9.5合并同类项1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
一个多项式合并后含有几项,这个多项式就叫做几项式。
3、合并同类项的法则是:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变。
第二节9.6整式的加减:去括号法则:(1)括号前面是"+"号,去掉"+"号和括号,括号里各项的不变号;(2)括号前面是"-"号,去掉"-"号和括号,括号里的各项都变号。
沪教版(上海)数学七年级第一:9.8幂的乘方教学设计

2.教学策略:运用情境导入法,引导学生从实际问题中发现数学问题,为新课的学习做好铺垫。
4.教学策略:
-针对学生的认知差异,采取分层教学,使每个学生都能在原有基础上得到提高。
-关注学生的情感态度,营造轻松愉快的学习氛围,激发学生的学习兴趣。
-加强对学生的个别辅导,针对学生的薄弱环节进行有针对性的指导。
-鼓励学生积极参与课堂讨论,培养学生的表达能力和逻辑思维能力。
四、教学内容与过程
(一)导入新课
2.教学过程:
a.教师引导学生对幂的乘方的运算规律进行总结,提炼关键点。
b.学生用自己的语言表达幂的乘方的运算规律,加深对知识点的理解。
c.教师强调幂的乘方在生活中的应用,使学生认识到数学知识的实用性。
五、作业布置
为了巩固学生对幂的乘方知识点的掌握,培养其运用幂的乘方解决实际问题的能力,特布置以下作业:
(四)课堂练习
1.教学内容:设计具有代表性的练习题,包括同底数幂的乘方、幂的乘方等运算。
2.教学过程:
a.教师发放练习题,学生独立完成。
b.教师针对学生的解答进行点评,指出典型错误,分析错误原因,并进行讲解。
c.学生互相交流解题心得,分享解题技巧。
(五)总结归纳
1Hale Waihona Puke 教学内容:幂的乘方的运算规律及在实际问题中的应用。
(二)过程与方法
1.通过小组合作、探究学习的方式,引导学生自主发现幂的乘方法则,培养学生主动探究、合作交流的能力。
上海沪科版初中数学七年级上册1.1 第2课时 有理数的分类2

上海沪科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!上海沪科版初中数学和你一起共同进步学业有成!1.1 正数和负数第2课时 有理数的分类教学目标: 1.使学生理解有理数的意义,能对有理数进行正确的分类;2.在学习有理数分类的过程中,培养学生树立分类讨论的数学思想.教学重点:有理数的概念和对有理数进行正确的分类. 教学难点:对有理数进行正确的分类及分类的标准. 教学程序设计: 一. 温故知新问题1:请你举出一对具有相反意义的量,并用正、负数表示它们.数0表示的意义是什么?二.创设情景 导入新课问题2:小学所学的整数,可以怎样称呼?(0和正整数)引入正、负数后,还可以怎样称呼?(整数包括正整数、0、负整数)小学小学所学的分数,可以怎样称呼?(正分数)引入正、负数后,还可以怎样称呼?(分数包括正分数和负分数) 交流:小学还学过小数,那么小数可属于有理数?结论:小学中的小数如果是有限小数或无限循环小数,那么它属于有理数,因为有限小数或无限循环小数都可以化为分数形式.如果是无限不循环小数,那么它不属于有理数,因为无限不循环小数不能化为分数形式. 探索:为什么不是分数?如果说所有的分数都是小数,对吗?所有的小数都是分数,对吗?7π结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;(2)分数一定是小数,小数不一定是分数. ⎪⎩⎪⎨⎧负整数正整数归纳:整数0⎩⎨⎧负负数正分数分数规定:整数和分数统称为有理数. 有理数的分类: 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负数正分数正整数正数有理数0三. 应用迁移 巩固提高例 所有正数组成正数集合,所有负数组成负数集合,把下列各数分别填入表示相应数集中:-7,3.01,300﹪,-0.142587,0.1,0,,-,32,,-15﹪3913335521(1)正整数集合:﹛ …﹜ (2)分数集合:﹛ …﹜ (3)正有理数集合:﹛ …﹜ (4)负有理数集合:﹛ …﹜解析:(1)根据有理数的分类,如果一个数能化简,则化简后进行归类,如300﹪, ;39(2)如果小数能化成分数,则小数作为分数进行归类.变式题1 把下列各数分别填入表示相应数集的圈子中:0,-85, , 112, -8.7, 0.3, , -3, -, . 51411722π变式题2 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -π, -3.88, 0, , 3.14159265, ,.3π-237-∙∙32.0正整数集合:{ …} 负整数集合:{…}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}四. 总结反思 拓展升华教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学方法?应注意什么问题?(本节课学习了有理数的分类,学习了分类讨论的数学思想.强调注意:数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.0是整数,但不是正数,也不是负数.数的集合注意加上省略号. 五.作业 课本第6页第6、7题 补充:1.把下列各数填在相应的集合中:―3,,3.6,,0,+235,―0.75,+3,―2005,,7651213-103正数集合:{ },负数集合:{ } 整数集合:{ },分数集合:{ } 负整数集合:{ },非负数集合:{ } 2.请将下列数值填入相应的圈内:,5,0,1.5,+2,―3。
沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集

- 14 -
第二十六章 二次函数的章节知识点结构思维导图 第二十七章 圆与正多边形的章节知识点结构思维导图
- 15 -
第二十八章 统计初步的章节知识点结构思维导图
- 16 -
-7-
第十四章 三角形的章节知识点结构思维导图 第十五章 平面直角坐标系的章节知识点结构思维导图
-8-
上海市(沪教版)八年级数学全册章节思维导图 共八个章节
第十六章 二次根式的章节知识点结构思维导图
-9-
第十七章 一元二次方程的章节知识点结构思维导图
- 10 -
第十八章 正比例函数和反比例函数的章节知识点结构思维导图 第十九章 几何证明的章节知识点结构思维导图
-3-
第七章 线段与角的画法的章节知识点结构思维导图 第八章 长方体的再认识的章节知识点结构思维导图
-4-
上海市(沪教版)七年级数学全册章节思维导图 共七章
第九章 整式的章节知识点结构思维导图
-5-
第十章 分式的章节知识点结构思维导图 第十一章 图形的运动的章节知识点结构思维导图
-6-
第十二章 实数的章节知识点结构思维导图 第十三章 相交线 平行线的章节知识点结构思维导图
- 11 -
第二十章 一次函数的章节知识点结构思维导图 第二十一章 代数方程的章节知识点结构思维导图
- 12 -
第二十二章 四边形的章节知识点结构思维导图 第二十三章 概率初步的章节知识点结构思维导图
- 13 -
上海市(沪教版)ቤተ መጻሕፍቲ ባይዱ年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
上海市(沪教版)初中数学全册思维导图集 共二十八章
上海数学七年级知识点总结

上海数学七年级知识点总结在中学数学教育中,数学知识点层出不穷,特别是七年级数学,因为这是一个基础知识的阶段,必须对这些知识点有一个清晰和掌握。
下面是对上海七年级数学知识点的总结。
一、整数与分数1. 整数的概念、代表、比较大小及数轴2. 分数的概念、表示法、约分及比较大小3. 整数与分数在实际生活中的运用二、代数表达式1. 代数表达式的概念及基本元素2. 代数式的等价变形3. 代数式的计算4. 规律数据的代数式表示三、一次函数1. 一次函数的概念、函数图象及基本性质2. 一次函数的表达式、斜率、截距及其意义3. 一次函数与实际问题的应用四、平面图形1. 图形的基本概念及判定几何图形2. 四边形的基本性质及分类3. 三角形的基本性质及分类4. 圆的基本性质及相关公式五、数据的分析与统计1. 数据的概念及分类2. 数据的图形表示及相关统计量3. 数据处理与分析4. 概率基本概念及计算这是七年级数学的基本知识点,可以作为导向,帮助学生更好地掌握和应用相关知识。
同时,为了让学生更好地学习数学知识,家长和老师也可以采取以下措施:1. 建立良好的学习习惯:每天固定的时间段进行数学练习,养成良好的学习习惯,提高学习效率。
2. 确定学习目标:根据学生的水平和学习进度,合理设置学习目标,目标越明确,行动越有方向。
3. 实践与巩固:数学知识点的掌握需要实践和巩固,通过做题、模拟考试等方式不断巩固相关知识点。
4. 发挥个性化处理:不同的学生有不同的学习方式,教师应该发挥个性化处理的优势,为学生提供更好的学习环境,提高学习兴趣。
总之,在学习数学知识点时,要打好基础,循序渐进,多实践,多巩固。
只有这样,才能真正掌握数学知识,更好地应用到实际生活中。
沪教版(上海市) 初中数学思维导图 七年级数学全册章节思维导图集

-5Math 实验室
你现在的努力要对得起别人对你的好!
第十九章 几何证明的章节知识点结构思维导图
-6Math 实验室
你现在的努力要对得起别人对你的好!
第二十章 一次函数的章节知识点结构思维导图
第二十一章 代数方程的章节知识点结构思维导图
-7Math 实验室
第十二章 实数的章节知识点结构思维导图
第十三章 相交线 平行线的章节知识点结构思维导图
-3Math 实验室
你现在的努力要对得起别人对你的好!
第十四章 三角形的章节知识点结构思维导图
第十五章 平面直角坐标系的章节知识点结构思维导图
-4Math 实验室
你现在的努力要对得起别人对你的好!
第十六章 二次根式的章节知识点结构思维导图 第十七章 一元二次方程的章节知识点结构思维导图
第二十七章 圆与正多边形的章节知识点结构思维导图
-9Math 实验室
你现在的努力要对得起别人对你的好!
第二十八章 统计初步的章节知识点结构思维导图
- 10 Math 实验室
你现在的努力要对得起别人对你的好!
上海市(沪教版)七年级数学全册章节思维导图 共七章
第九章 整式的章节知识点结构思维导图
-1Math 实验室
你现在的努力要对得起别人对你的好!
第十章 分式的章节知识点结构思维导图
第十一章 图形的运动的章节知识点结构思维导图
-2!
你现在的努力要对得起别人对你的好!
第二十二章 四边形的章节知识点结构思维导图
第二十三章 概率初步的章节知识点结构思维导图
第二十四章 相似三角形的章节知识点结构思维导图
-8Math 实验室
上海市七年级整式知识点
上海市七年级整式知识点整式是初中阶段数学中的重要知识点之一,也是今天要介绍的内容——上海市七年级整式知识点。
在初中数学学习中,整式是一个非常基础且重要的概念,不仅与各种式子的运算有关,也涉及到方程、不等式等数学知识的学习。
下面我们将对上海市七年级整式的基本概念、运算、简化和应用等方面进行详细介绍。
一、整式的基本概念1.赋值与代数式代数式是由数、字母和各种符号(如加减号、乘号、括号等)构成的式子,它是数和代数符号的混合体。
而赋值是为字母和符号赋具体的数值,从而得到一个确定的数。
比如,当a=5时,代数式2a可以得到值10,这里就是对代数式进行了一次赋值运算。
2.整式的定义整式是由数、字母及它们的乘积之和组成,其中乘积中字母的幂次只能是自然数,不能是分数或负数,整式除可进行加减运算外,还可与数字进行乘、除、幂运算。
3.其它相关概念在学习整式时,还需要掌握几个相关概念:①同类项:由相同字母的同种指数幂次的项称为同类项。
②整式的次数:整式中最高的指数幂次。
③异类项:不能进行加减运算的代数式称为异类项。
二、整式的运算1.相加和相减整式进行加减运算时,需要先合并同类项,再进行加减运算。
例如,将5x²+3x-4和2x²-5x+6相加减,可以先找到它们的同类项:(5x²+2x²)+(3x-5x)+(-4+6)=7x²-2x+22.相乘整式进行乘法运算时,通常使用分配律、结合律等方法,本质上就是分别将每一项乘到另一整式中,然后合并同类项。
例如,将2x-5和3x+4相乘,可以分别将2x和-5乘到3x和4上,得到6x²-7x-20。
3.除法整式进行除法运算时,需要使用柿子算法或长除法等方法,本质上就是将整除式的每一项逐一除以除式的各项,并把最终除得的商作为结果。
例如,将6x²-3x-15÷3x-6进行除法运算,需要先将除数乘以2得到6x-12,然后将6x²、-3x、-15分别除以6x-12,最后得到商为x+2。
沪科版数学七年级(上)第二单元《整式的加减》复习教案
沪科版数学七年级(上)第二单元《整式的加减》复习教案学习目标:1、通过尝试学习的形式来对《整式的加减》这一章节进行系统的综合复习,以相应的练习来加强对有关概念和法则的理解;2、通过合作交流来查漏补缺。
教学过程:一、尝试学习学生先自主复习本单元的知识要点,然后独立完成尝试练习。
[知识要点]1、整式的分类: 单项式、整式、多项式2、单项式的系数、次数单项式中的数字因数叫做这个单项式的系数;单项式中所有字母的指数的和叫做这个单项式的次数。
注意:(1)单独一个数或字母也是单项式;(2)单项式的系数不能写成带分数,要写成假分数;是常数,作为系数。
3、多项式的项数和次数多项式里,次数最高的项的次数就是这个多项式的次数。
4、同类项所含字母相同,相同字母的指数也相同,符合这两个条件的项称为同类项。
5、合并同类项的法则:把系数相加,字母和字母的指数不变。
6、去括号法则:括号前面是“+”号,把括号和它前面的“+”去掉,括号里各项都不变符号。
括号前面是“—”号,把括号和它前面的“—”去掉,括号里各项都改变符号。
7、添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号; 所添括号前面是“—”号,括到括号里的各项都改变符号。
8、整式的加减步骤:1、如果有括号,就先去括号;2、如果有同类项,再合并同类项。
注意:用多项式进行列式时,要用括号把它括起来,作为一个整体来使用。
9、求代数式的值:1、如果能化简,就先化简,再代入求值。
2、代入数字求值时,分数、负数的乘方要加括号。
[尝试练习]1、用代数式表示:比a 的5%少5的数是 ;被b 除商为3且余数是1的数是 。
2、代数式2b a -的意义是 。
3、单项式322y x -的系数是 ,次数是 。
4、多项式a b a a 3323--23b b +是 次 项式,按b 的降幂排列为 。
5、下列各组单项式中,不是同类项的是( )(A )5和21- (B )b a 29和2ba - (C )23和2a (D )x ∏2和x 3-6、如果32b a x -与a 54y b 是同类项,则=x ,=y 。
10.1 整式(教学课件)七年级数学上册(沪教版2024)
项.
(4)3x2y与2y2x这两个单项式虽然所含字母相同,均为字母x和y,但是相
同字母的指数不相同,前者中字母x的指数为2,而后者中字母x的指数
为1,所以它们不是同类项.
练一练
6.[ 中考·上海]下列单项式中, a2b3的同类项是( B )
数和字母的乘积叫作单项式。单独一个数或一个字
母也是一个单项式。
练一练
1. [2024 无锡惠山区期中]代数式-2 x ,0,2( m - a ),
+
,
, 中,单项式有(
A. 1 个
B. 2个
C. 3 个
D. 4 个
C )
概念归纳
6a 2
数字因数
6a2的系数是6
1a3
数字因数
a3的系数是1
5
5和 − 都是零次单项式
2
课本例题
例1 请指出下列单项式的系数和次数:
(1)ab;
3 32
(2) s t ;
7
解:(1)单项式ab的系数是1,次数是2。
3 32
3
(2)单项式 s t 的系数是 ,次数是5。
7
7
542
5
(3)单项式的系数是- ,次数是6。
11
11
542
(3)11
练一练
2. 单项式- ab 的系数和次数分别是( C
3
B. π xy 的系数为 π
C. ab2 c 的次数是2
D. -5是一次单项式
)
知识点2 同类项
5. 下列整式与 ab2为同类项的是( B
上海第一中学七年级数学上册第二单元《整式的加减》知识点(含解析)
一、选择题1.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( ) 字母 a b c d e f g h i jk l m 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 字母 n o p q r s t u v w x y z 序号14151617181920212223242526A .loveB .rkwuC .sdriD .rewj2.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3-B .0C .3D .63.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )4.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .855.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b6.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+-C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+7.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个8.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .559.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -110.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y =11.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、612.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上13.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b +14.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是215.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1二、填空题16.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.17.已知等式:222 2233+=⨯,233 3388+=⨯,244441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___. 18.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.19.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.20.计算7a 2b ﹣5ba 2=_____.21.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.22.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.23.多项式223324573x x y x y y --+-按x 的降幂排列是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海数学七年级上知识点注意:斜体为易错点、划线为难点、其余为重点第九章整式知识梳理一、代数式的有关概念(1)代数式的分类单项式代数式整式多项式分式(2)整式:没有除法运算或虽有除法运算而除式里不含字母的有理式叫做整式。
二、同类项、合并同类项所含的字母相同并且字母的指数也分别相同的单项式叫做同类项。
把多项式中的同类项合并成一项,叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变。
三、去括号与添括号(1)去括号法则:括号前是“+”号,去掉括号和它前面的“+”号,括号里各项都不改变符号;括号前是“-”,去掉括号和它前面的“-”号,括号里各项都改变符号。
(2)添括号法则:添括号,括号前面是“+”号,括到括号里的各项都不变符号,括号前面是“-”,括到括号里的各项都改变符号。
四、整式的运算(1)数的运算律对代数式同样适用。
(2)整式的加减:整式的加减法实际上就是合并同类项,遇到括号,一般要先去掉括号,去括号的方法是:+(a+b−c)=a+b−c−(a+b−c)=−a−b+c(3)幂的运算法则同底数幂相乘,底数不变,指数相加,即:a m a n=a m+n(m、n都是整数)幂的乘方,底数不变,指数相乘。
即:(a m)n=a mn(m、n都是整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)n=a n b n (n都是整数)同底数幂相除,底数不变,指数相减。
即a m÷a n=a m−n(a≠0,m、n都为整数)单项式与单项式相乘,把系数、同底数幂分别相乘,作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
即m(a+b+c)=ma+mb+mc多项式与多项式相乘,先用一个多项式的每一项乘以另外一个多项式的每一项,再把所得的积相加。
即(m+n)(a+b)=ma+mb+na+nb(5)乘法公式平方差公式两个数的和与这两个数的差的积等于这两个数的平方差,即:(a+b)(a−b)=a2−b2完全平方公式两数和(或差)的平方,等于它的平方和加上(或者减去)它们积的2倍,即:(a±b)2=a2±2ab+b2五、因式分解把一个多项式化为几个整式的积的形式,这种式子的变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
六、因式分解的基本方法(1)提取公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,即:ma+mb+mc=m(a+b+c)(2)运用公式法:把乘法公式反过来对某些多项式分解因式,即:a2−b2=(a+b)(a−b); a2±2ab+b2=(a±b)2(3)十字相乘法:x2+(p+q)x+pq 型式子的因式分解,即:x2+(p+q)x+pq =(x+p)(x+q)(4)分组分解法:利用分组来分解因式的方法。
①分组后能直接提公因式;②分组后能直接运用公式;七、因式分解的一般步骤(1)多项式的各项有公因式时,先提公因式。
(2)各项没有公因式时,要看看能不能用公式法来分解。
(3)如果用上述方法不能分解因式,再看能不能运用分组分解法。
(4)分解因式,必须进行到每一个多项式都不能再分解为止。
单项式除以单项式,把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,把这个多项式的每一项除以这个单项式,然后把所得的商相加。
第十章 分式 知识梳理(一)知识要点:1. 分式的概念:A 、B 表示两个整式,A ÷B (B ≠0)可以表示为 A B 的形式,如果B 中含有字母,那么我们把式子AB (B ≠0)叫分式,其中A 叫分子,B 叫分母。
关于分式概念的两点说明: i )分式的分子中可以含有字母,也可以不含字母,但分母中必须含有字母,这是分式与整式的根本区别。
ii )分式中的分母不能为零,是分式概念的组成部分,只有分式的分母不为零,分式才有意义,因此,若分式有意义,则分母的值不为零(所谓分母的值不为零,就是分母中字母不能取使分母为零的那些值)反之,分母的值不为零时,分式有意义。
2. 分式的值为零分式的值为零 分子的值等于零分母的值不等于零3. 有理式的概念有理式 整式 多项式单项式分式4. 分式的基本性质(1)分式的分子、分母乘同一个不等于零的整式,分式的值不变。
即 A B =A×M B×M (M ≠0)(2)分式的分子、分母除以同一个不等于零的整式,分式的值不变。
即 A B =A÷M B÷M (M ≠0)注: (1)分式的基本性质表达式中的M 是不为零的整式。
(2)分式的基本性质中“分式的值不变”表示分式的基本性质是恒等变形。
5. 分式的符号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。
6. 约分:把分式中分子和分母的公因式约去,叫约分。
注:约分的理论依据是分式的基本性质。
约分后的结果不一定是分式。
约分的步骤:(1)分式的分子、分母能分解因式的分解因式写成积的形式。
(2)分子、分母都除以它们的公因式。
7. 最简分式:如果一个分式的分子与分母没有公因式,这个分式就叫最简分式。
8. 分式的运算:(1)分式乘法:b a ×d c =bd ac (2)分式除法:ba ÷d c =b a ×cd =bc ad注: i )分式的乘除法运算,归根到底是乘法运算。
ii )分式的乘法运算,可以先约分,再相乘。
iii )分式的分子或分母是多项式的先分解因式,再约分,再相乘。
(3)乘方:(b a )n=b n a n (n 为正整数)(4)通分:在不改变分式的值的情况下,把几个异分母的分式化为同分母分式的变形 叫通分。
注:分式通分的依据是分式的基本性质。
最简公分母:几个分式中各分母的数字因数的最小公倍数与所有字母(因式)的最高次幂的积叫这几个分式的最简公分母。
(5)分式的加减法:同分母:a m ±b m =a±b m 异分母: a m ±b n =an mn ±bm mn =an±bmmn(6)混合运算:做分式的混合运算时,先乘方,再乘除,最后再加减,有括号先算括 号内的。
9. 分式方程:分母里含有未知数的方程叫分式方程。
注:分母中是否含有未知数是分式方程与整式方程的根本区别,分母中含未知数就是分式方程,否则就为整式方程。
10. 列分式方程的一般步骤:(1)方程两边都乘以最简公分母,约去分母,化为整式方程。
(2)列整式方程,求得整式方程的根。
(3)验根:把求得的整式方程的根代入A,使最简公分母等于0的根是增根,否则是原方程的根。
(4)确定原分式方程解的情况,即有解或无解。
11. 增根的概念:在分式方程去分母转化为整式方程的过程中,可能会增加使原分式方程中分式的分母为零的根,这个根叫原方程的增根,因此列分式方程一定要验根。
注:增根不是解题错误造成的。
12. 列方程解应用题步骤:审、设、列、解、验、答。
13、整数的负指数幂及其运算零指数和负整数指数规定为a0=1 ;a−p=1a p(a≠0;p为正整数)第十一章图形的平移与旋转知识梳理1.图形的平移(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.2. 图形的旋转(1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。
理解旋转这一概念应注意以下两点:①旋转和平移一样是图形的一种基本变换;②图形旋转的决定因素是旋转中心和旋转的角度.(2)旋转的基本性质:图形中每一个点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段、对应角都相等,图形的形状、大小都不发生变化.(3)简单图形的旋转作图两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;②给出定点和图形的一个特殊点旋转后的对应点.作图步骤:①作出图形的几个关键点旋转后的对应点;②顺次连接各点得到旋转后的图形.(4)图案设计:图案的设计是由基本图形经过适当的平移、旋转、轴对称等图形的变换而得到的。
其中中心对称是旋转变换的一种特例。
旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(旋转角00 < α<3600 ).中心对称图形:如果把一个图形绕着一个定点旋转1800 后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.3.图形的翻折图形的翻折1、轴对称图形:把一个图形沿某一条直线翻折过来,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线就是它的对称轴。
2、如果把一个图形沿某一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做关于这条直线的对应点。