(完整版)平面向量单元测试卷含答案

合集下载

《平面向量》测试题及答案

《平面向量》测试题及答案

《平面向量》测试题一、选择题1.若三点P (1,1),A(2,-4),B (x,-9)共线,则( )A.x=-1ﻩ ﻩB.x=3ﻩ ﻩC.x=29ﻩﻩ D.x=512.与向量a=(-5,4)平行的向量是( )A.(-5k,4k)ﻩB.(-k 5,-k 4)ﻩ C.(-10,2)ﻩ D .(5k,4k)3.若点P 分AB 所成的比为43,则A分BP 所成的比是( ) A.73ﻩ ﻩB. 37C.- 37 ﻩﻩD.-734.已知向量a 、b ,a·b=-40,|a|=10,|b|=8,则向量a 与b的夹角为( )A.60°ﻩﻩﻩB.-60°ﻩﻩﻩC .120° D.-120°5.若|a-b|=32041 ,|a|=4,|b|=5,则向量a ·b=( )A.103 ﻩB.-103 ﻩ C .102 ﻩ D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c+a)∥b ,c ⊥(a +b ),则c =( )A .错误! B.错误! C .错误! D .错误!7.已知向量a =(3,4),b=(2,-1),如果向量(a+x)·b 与b 垂直,则x 的值为( )A.323ﻩﻩﻩB.233ﻩ C.2 D.-528.设点P 分有向线段21P P 的比是λ,且点P在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0)ﻩ C.(-∞,0)ﻩ D.(-∞,-21)9.设四边形ABCD 中,有=21,且||=||,则这个四边形是( )A.平行四边形ﻩ B.矩形 C.等腰梯形 D .菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C′的解析式为( )A .y =x+10 B.y=x-6 C.y=x+6 D.y=x -1011.将函数y =x 2+4x+5的图像按向量a 经过一次平移后,得到y =x 2的图像,则a 等于( )A .(2,-1)ﻩﻩﻩB.(-2,1)ﻩﻩ C.(-2,-1)ﻩ D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D的坐标是()A.(2a,b)ﻩﻩﻩB.(a-b,a+b)ﻩﻩC .(a+b,b -a) D .(a-b,b-a )二、填空题13.设向量a=(2,-1),向量b 与a 共线且b与a同向,b的模为25,则b= 。

完整版)平面向量单元测试卷及答案

完整版)平面向量单元测试卷及答案

完整版)平面向量单元测试卷及答案平面向量单元测试卷一、选择题:(本题共10小题,每小题4分,共40分)1.下列命题中的假命题是()A、AB与BA的长度相等;B、零向量与任何向量都共线;C、只有零向量的模等于零;D、共线的单位向量都相等。

2.若a是任一非零向量,b是单位向量;①|a|。

|b|;②a∥b;③|a|。

|b|;④|b|= ±1;⑤a=|a|b,其中正确的有()A、①④⑤B、③C、①②③⑤D、②③⑤3.设a,b,c是任意三个平面向量,命题甲:a+b+c=0;命题乙:把a,b,c首尾相接能围成一个三角形。

则命题甲是命题乙的()A、充分不必要条件B、必要不充分条件C、充要条件D、非充分也非必要条件4.下列四式中不能化简为AD的是(A、(AB+CD)+BCB、(AM+MB)+(BC+CD)C、(AC+AB)+(AD-CB)D、OC-OA+CD5.设a=(-2,4),b=(1,-2),则(A、a与b共线且方向相反B、a与b共线且方向相同C、a与b不平行D、a与b是相反向量6.如图1,△ABC中,D、E、F分别是边BC、CA和AB 的中点,G是△ABC中的重心,则下列各等式中不成立的是()A、BG=2BE/3B、DG=AG/2C、CG=-2FGD、DA+FC=BC7.设a=(-2,1-cosθ),b=(1+cosθ,-4),且a∥b,则锐角θ=( )A、π/4B、π/6C、π/3D、5π/6 或7π/68.若C分AB所成比为-3,则A分CB所成的比是(A、-3/2B、3/2C、-2/3D、-29.XXX<0,则a与b的夹角θ的范围是()A、[π/2,π)B、[0,π/2)C、(π/2,π)D、(0,π/2]10.设a与b都是非零向量,若a在b方向的投影为3,b 在a方向的投影为4,则a的模与b的模之比值为()A、3/4B、4/3C、3/7D、4/7cos(-)a·b=cos(-)=1/2sin(-)=±√3/2又∵∈(,),=,且sin(-)>0sin(-)=√3/2π/3sin cos-cos sin=1/2sin(+)=√3/22π/3sin=√3/217.(1)|a+b|=|e1+e2|=√2a+b|2=2a|2+|b|2+2a·b=2a·b=-1/2又kab·(a-3b)=0ka·a-3kb·b=0k=9/52)ka·b+3kb·b=0k=-3/5四、19.(1)设所求向量为c,则c·a=0,c·b=0 c·(a+b)=0又∵a+b=(1,1,1),∴c·(1,1,1)=0c与(1,1,1)垂直又∵c·(a-b)=0c·(1,-1,0)=0c与(1,-1,0)垂直c∥(0,0,1)c=k(0,0,1)又∵c·a=0k=-1/3所求向量为(0,0,1/3)2)设所求向量为c,则c∥a×b又∵a×b=(1,1,1)c∥(1,1,1)c=k(1,1,1)又∵c·a=0k=-1/3所求向量为(-1/3,-1/3,-1/3)165∴cos(α-β)=cosαcosβ+sinαsinβcosαcosβ+sinαsinβcos(α-β)∵α∈(-π/2,π/2)sin(α-β)=-sinα=-(-cos(α-β)sinβ/cosβ)=cos(α-β)sinβ/cosβ5/4*sinβ+3/5*cosβ17.解:1) |a+b|²=|-2e₁+4e₂|²=4e₁²+16e₂²-8e₁e₂又e₁⊥e₂,e₁·e₂=0,e₁²+e₂²=1a+b|²=20a+b|=√20=2√5又|e₁|=|e₂|=1a|=|b|=√22) (ka+b)·(a-3b)=k|a|²-2k(a·b)+b·a-3|b|²又|a|=|b|=√2ka+b)·(a-3b)=2k-6+2=2k-4又(a+b)·(a-3b)=-4k=1918.解:1)a·b=cosx·cosx-sinx·sinx=cos2xa+→b|=√(4cos²x+4)=2√(cos²x+1)2)f(x)=a·b-2λ|a+b|=cos2x-4λcosx2cos²x-1-4λcosx2(cosx-λ)²-2λ²-1当λ<0时,f(x)无最小值当0≤λ≤1时,f(x)在cosx=λ时取得最小值-2λ²-1当λ>1时,f(x)在cosx=1时取得最小值1-4λ要使f(x)取得最小值-3,需解方程-2λ²-1=-3,解得λ=√2/2。

《平面向量》单元检测题-高中数学单元检测题附答案(最新整理)

《平面向量》单元检测题-高中数学单元检测题附答案(最新整理)

即(2te1+7e2)·(e1+te2)<0.整理得:2te21+(2t2+7)e1·e2+7te2<0.(*)
∵|e1|=2,|e2|=1,〈e1,e2〉=60°.∴e1·e2=2×1×cos 60°=1 1
∴(*)式化简得:2t2+15t+7<0.解得:-7<t<- . 2
当向量 2te1+7e2 与 e1+te2 夹角为 180°时,设 2te1+7e2=λ(e1+te2) (λ<0).
5
3 由 5c=-3a-4b 两边平方得 a·b=0,∴a·(b+c)=a·b+a·c=- .故选 B.
5
【第 12 题解析】若 a=(m,n)与 b=(p,q)共线,则 mq-np=0,依运算“⊙”知 a⊙b=0,故 A 正确.由
于 a⊙b=mq-np,又 b⊙a=np-mq,因此 a⊙b=-b⊙a,故 B 不正确.对于 C,由于 λa=(λm,λn),
k+t2 y=-ka+tb,且 x⊥y,试求 的最小值.
t



20.(本小题满分 12 分)设OA=(2,5),OB=(3,1),OC=(6,3).在线段 OC 上是否存在点 M,使 MA⊥MB?
若存在,求出点 M 的坐标;若不存在,请说明理由.
21.(本小题满分 12 分)设两个向量 e1、e2 满足|e1|=2,|e2|=1,e1、e2 的夹角为 60°,若向量 2te1+7e2 与 e1+te2 的夹角为钝角,求实数 t 的取值范围.
14.a,b 的夹角为 120°,|a|=1,|b|=3,则|5a-b|=________.
1 15.已知向量 a=(6,2),b=(-4, ),直线 l 过点 A(3,-1),且与向量 a+2b 垂直,则直线 l 的方程为

平面向量单元测试(含答案)

平面向量单元测试(含答案)

《平面向量》单元测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1所示,D 是△ABC 的边AB 上的中点, 则向量=CD ( )A .BA BC 21+- B .BA BC 21--C .BA BC 21-D .BA BC 21+2.与向量a ==⎪⎭⎫ ⎝⎛b ,21,27⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是( )A .⎪⎭⎫- ⎝⎛53,54B .⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 C .⎪⎭⎫- ⎝⎛31,322 D .⎪⎭⎫-⎝⎛31,322或⎪⎭⎫⎝⎛-31,322 3.设a r 与b r 是两个不共线向量,且向量a b λ+r r 与()2b a --r r共线,则λ=( )A .0B .-1C .-2D .0.54.已知向量()1,3=a ,b 是不平行于x 轴的单位向量,且3=⋅b a ,则b =( )A .⎪⎪⎭⎫ ⎝⎛21,23 B .⎪⎪⎭⎫ ⎝⎛23,21 C .⎪⎪⎭⎫ ⎝⎛433,41 D .(1,0)5.如图,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量 的数量积中最大的是( )A .3121P P P P ⋅B .4121P P P P ⋅C .5121P P P P ⋅D .6121P P P P ⋅ 6.在OAB ∆中,OA a =u u u r ,OB b =u u u r ,OD 是AB 边上的高,若AD AB λ=u u u r u u u r,则实数λ等 于 ( )A .2()a b a a b⋅-- B .2()a a b a b⋅--C .()a b a a b⋅--D .()a a b a b⋅--7.设1(1,)2OM =u u u u r ,(0,1)ON =u u u r ,则满足条件01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r 的动点P 的 变化范围(图中阴影部分含边界)是( )A .B .C .D . 8.将函数f (x )=tan(2x +3π)+1按向量a 平移得到奇函数g(x ),要使|a |最小,则a =( )A .(,16π-)B .(,16π-)C .(,112π)D .(,112π--)9.已知向量a r 、b r 、c r 且0a b c ++=r r r r ,||3a =r ,||4b =r ,||5c =r .设a r 与b r 的夹角为1θ,b r与c r 的夹角为2θ,a r 与c r的夹角为3θ,则它们的大小关系是( )A .123θθθ<<B .132θθθ<<C .231θθθ<<D .321θθθ<<10.已知向量),(n m a =,)sin ,(cos θθ=b ,其中R n m ∈θ,,.若||4||b a =,则当2λ<⋅b a 恒成立时实数λ的取值范围是( )A .2>λ或2-<λB .2>λ或2-<λC .22<<-λD .22<<-λ11.已知1OA =u u u r,OB =u u u r ,0OA OB ⋅=u u u r u u u r ,点C 在AOB ∠内,且30oAOC ∠=,设OC mOA nOB =+u u u r u u u r u u u r (,)m n R ∈,则mn等于( )A .13B .3 C.3D12.对于直角坐标平面内的任意两点11(,)A x y ,22(,)B x y ,定义它们之间的一种“距离”:2121.AB x x y y =-+-给出下列三个命题:①若点C 在线段AB 上,则;AC CB AB += ②在ABC ∆中,若90,o C ∠=则222;AC CB AB +=③在ABC ∆中,.AC CB AB +> 其中真命题的个数为( )A .0B .1C .2D .3二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.在中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r,M 为BC 的中点,则MN =u u u u r _______.(用a b r r 、表示)14.已知()()2,1,1,1,A B O --为坐标原点,动点M 满足OM mOA nOB =+u u u u r u u u r u u u r,其中,m n R ∈且2222m n -=,则M 的轨迹方程为 .15.在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值为 .16.已知向量)3,5(),3,6(),4,3(m m ---=-=-=,若点A 、B 、C 能构成三角形,则实数m 满足的条件是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量)sin 1,sin 1(x x -=,)2cos ,2(x =.(1)若]2,0(π∈x ,试判断与能否平行?(2)若]3,0(π∈x ,求函数x f ⋅=)(的最小值.18.(本小题满分12分)(2006年湖北卷)设函数()()c b a x f +⋅=,其中向量()()x x b x x a cos 3,sin ,cos ,sin -=-=,()R x x x c ∈-=,sin ,cos .(1)求函数()x f 的最大值和最小正周期;(2)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .19.(本小题满分12分)(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(1)若a⊥b,求θ;(2)求|a+b|的最大值.20.(本小题满分12分)在ABC △中,2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r. (1)求22AB AC +u u u r u u u r 的值;(2)当ABC △的面积最大时,求A ∠的大小.21.(本小题满分12分)(2006陕西卷)如图,三定点A (2,1),B (0,-1),C (-2,1); 三动点D ,E ,M 满足]1,0[,,,∈===t t t t (1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.22.(本小题满分14分)已知点P 是圆221x y +=上的一个动点,过点P 作PQ x ⊥轴于点Q ,设OM OP OQ =+u u u u r u u u r u u u r .(1)求点M 的轨迹方程;(2)求向量OP uuu r 和OM u u u u r夹角的最大值,并求此时P 点的坐标参考答案1.21+-=+=,故选A . 2.B 设所求向量e r=(cos θ,sin θ),则由于该向量与,a b r r 的夹角都相等,故e b e a e b e a ⋅=⋅⇔=⋅||||||||7117cos sin cos sin 2222θθθθ⇔+=-⇔3cos θ=-4sin θ,为减少计算量,可将选项代入验证,可知B 选项成立,故选B .3.D 依题意知向量a b λ+r r 与-2共线,设a b λ+r rk =(-2),则有)()21(=++-k k λ,所以⎩⎨⎧=+=-0021λk k ,解得5.0=k ,选D . 4.解选B .设(),()b x y x y =≠,则依题意有1,y =+=1,22x y ⎧=⎪⎪⎨⎪=⎪⎩ 5.解析:利用向量数量积121(1,2,3,4,5,6)i PP PP i =u u u u r u u u rg 的几何意义:数量积121i PP PP u u u u r u u u rg 等于12P P u u u u r的长度12PP u u u u r 与1i PP u u u r 在12P P u u u u r 的方向上的投影1121cos ,i iPP PP PP <>u u u r u u u u r u u u r的乘积.显然由图可知13P P u u u u r 在12P P u u u u r 方向上的投影最大.所以应选(A).6.B (),,AD AB OD OA OB OA λλ=∴-=-u u u r u u u r u u u r u u u r Q 即得()()11,OD OA OB a b λλλλ=-+=-+u u u r u u u r u u u r又OD Q 是AB 边上的高,0OD AB ∴⋅=u u u r u u u r即()()()0,10OD OB OA a b b a λλ⋅-=∴-+⋅-=⎡⎤⎣⎦u u u r u u u r u u u r ,整理可得()2(),b a a a b λ-=⋅-即得()2a ab a bλ⋅-=-,故选B . 7.A 设P 点坐标为),(y x ,则),(y x =.由01OP OM ≤⋅≤u u u r u u u u r ,01OP ON ≤⋅≤u u u r u u u r得⎩⎨⎧≤≤≤+≤10220y y x ,在平面直角坐标系中画出该二元一次不等式组表示的平面区域即可,选A .8.A 要经过平移得到奇函数g(x),应将函数f(x)=tan(2x+3π)+1的图象向下平移1个单位,再向右平移)(62Z k k ∈+-ππ个单位.即应按照向量))(1,62(Z k k a ∈-+-=ππ进行平移.要使|a|最小,应取a=(,16π-),故选A .9.B 由0a b c ++=r r r r得)(+-=,两边平方得1222cos ||||2||||||θ++=,将||3a =r ,||4b =r ,||5c =r 代入得0cos 1=θ,所以0190=θ;同理,由0a b c ++=r r r r得)(b c a +-=,可得54cos 2-=θ,53cos 3-=θ,所以132θθθ<<.10. B 由已知得1||=b ,所以4||22=+=n m a ,因此)sin(sin cos 22ϕθθθ++=+=⋅n m n m b a 4)sin(4≤+=ϕθ,由于2λ<⋅恒成立,所以42>λ,解得2>λ或2-<λ.11.答案B ∵ 1OA =u u u r,OB =u u u r,0OA OB ⋅=u u u r u u u r∴△ABC 为直角三角形,其中1142AC AB ==∴11()44OC OA AC OA AB OA OB OA =+=+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ∴31,44m n == 即3m n= 故本题的答案为B . 12.答案B 取特殊值、数形结合A BC在ABC ∆中, 90oC ∠=,不妨取A (0,1), C (0,0),B (0,1),则 ∵2121AB x x y y =-+- ∴ 1AC = 、1BC =、|10||01|2AB =-+-= 此时222AC CB +=、24AB = 、222AC CB AB +≠;AC CB AB +=即命题②、③是错误的.设如图所示共线三点11(,)A x y ,22(,)B x y ,33(,)C x y ,则1313||||||||||||AC x x y y AC CC ''-+-=+==||||||||AB B C C C C C ''''''''+++ =||||||||AB B B BC C C ''''''+++1212||||||||||||AB x x y y AB BB ''=-+-=+ 2323||||||||||||BC x x y y BC C C ''''=-+-=+∴ AC CB AB += 即命题①是正确的. 综上所述,真命题的个数1个,故本题的答案为B .13.解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12AM a b =+u u u u r r r,所以3111()()4244MN a b a b a b =+-+=-+u u u u r r r r r r r .14.2222=-y x 设),(y x M ,则),(y x =,又)1,1(),1,2(-=-=,所以由OM mOA nOB =+u u u u r u u u r u u u r 得),(),2(),(n n m m y x -+-=,于是⎩⎨⎧+-=-=nm y n m x 2,由2222m n -=消去m, n 得M 的轨迹方程为:2222=-y x . 15.2- 如图,设x AO =,则x OM -=2,所以)(+⋅OM OA OM OA ⋅⋅-=⋅=222)1(242)2(222--=-=--x x x x x ,故当1=x 时,OM mOA nOB =+u u u u r u u u r u u u r取最小值-2.AC 'CBB 'C ''16.21≠m 因为)3,5(),3,6(),4,3(m m ---=-=-=,所以),1(),1,3(m m ---==.由于点A 、B 、C 能构成三角形,所以与不共线,而当AB 与BC 共线时,有m m -=--113,解得21=m ,故当点A 、B 、C 能构成三角形时实数m 满足的条件是21≠m .17.解析:(1)若与平行,则有2sin 12cos sin 1⋅-=⋅x x x ,因为]2,0(π∈x ,0sin ≠x ,所以得22cos -=x ,这与1|2cos |≤x 相矛盾,故a 与b 不能平行.(2)由于x f ⋅=)(xx x x x x x x x sin 1sin 2sin sin 21sin 2cos 2sin 2cos sin 22+=+=-=-+=,又因为]3,0(π∈x ,所以]23,0(sin ∈x , 于是22sin 1sin 22sin 1sin 2=⋅≥+x x x x ,当xx sin 1sin 2=,即22sin =x 时取等号.故函数)(x f 的最小值等于22.18.解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π). 所以,f(x)的最大值为2+2,最小正周期是22π=π. (Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z , 于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求. 19.解析:解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.20.解:(Ⅰ)由已知得:222,2 4.AB AC AB AB AC AC ⎧⋅=⎪⎨-⋅+=⎪⎩u u u r u u u r u u u r u u u r u u u r u u u r 因此,228AB AC +=u u u r u u u r . (Ⅱ)2cos AB AC A AB AC AB AC⋅==⋅⋅u u u r u u u ru u u r u u u r u u u r u u ur , 1sin 2ABC S AB AC A =⋅u u ur u u u r △12AB =⋅u u ur u u=≤=.(当且仅当2AB AC ==u u u r u u u r 时,取等号),当ABC △1cos 2AB AC A AB AC⋅==⋅u u u r u u u ru u u r u u u r,所以3π=∠A . 解:(I )由条件知: 0a b =≠r r 且2222(2)444a b a b a b b +=++=r r r r r r r g42-=⋅, 设a b r r 和夹角为θ,则41||||cos -==b a θ, ∴1cos 4arc θπ=-,故a b r r 和的夹角为1cos 4arc π-,(Ⅱ)令)a a b -r r r和(的夹角为βQ a b a -===r r r, ∴41021cos 222=+===β∴ )a a b -r r r和(的夹角为21.解析:如图,(Ⅰ)设D(x 0,y 0),E(x E ,y E ),M(x ,y).由AD →=tAB →, BE → = t BC →,知(x D -2,y D -1)=t(-2,-2). ∴⎩⎨⎧x D =-2t+2y D =-2t+1 同理 ⎩⎨⎧x E =-2ty E =2t -1.∴k DE = y E -y D x E -x D = 2t -1-(-2t+1)-2t -(-2t+2)= 1-2t. ∴t ∈[0,1] , ∴k DE ∈[-1,1].(Ⅱ) 如图, OD →=OA →+AD → = OA →+ tAB →= OA →+ t(OB →-OA →) = (1-t) OA →+tOB →,OE →=OB →+BE → = OB →+tBC → = OB →+t(OC →-OB →) =(1-t) OB →+tOC →,OM → = OD →+DM →= OD →+ tDE →= OD →+t(OE →-OD →)=(1-t) OD →+ tOE →= (1-t 2) OA → + 2(1-t)tOB →+t 2OC →.设M 点的坐标为(x ,y),由OA →=(2,1), OB →=(0,-1), OC →=(-2,1)得 ⎩⎨⎧x=(1-t 2)·2+2(1-t)t ·0+t 2·(-2)=2(1-2t)y=(1-t)2·1+2(1-t)t ·(-1)+t 2·1=(1-2t)2 消去t 得x 2=4y, ∵t ∈[0,1], x ∈[-2,2]. 故所求轨迹方程为: x 2=4y, x ∈[-2,2]22.解析:(1)设(,)P x y o o ,(,)M x y ,则(,)OP x y =o o u u u r ,(,0)OQ x =o u u u r,(2,)OM OP OQ x y =+=o o u u u u r u u u r u u u r222212,1,124x x x x x x y y y y y y⎧==⎧⎪∴⇒+=∴+=⎨⎨=⎩⎪=⎩o o o o o o Q .(2)设向量OP uuu r 与OM u u u u r的夹角为α,则22cos ||||OP OMOP OM α⋅===⋅u u u r u u u u r u u u r u u u u r 令231t x =+o,则cos α==≥当且仅当2t =时,即P点坐标为(时,等号成立.第21题解法图OP u u u r 与OM u u u u r夹角的最大值是.。

平面向量及其应用单元测试题+答案 百度文库

平面向量及其应用单元测试题+答案 百度文库

一、多选题1.题目文件丢失!2.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( ) A .若a b →→=,则a b →→= B .若a c b c →→→→⋅=⋅,则a b →→= C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是44.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =5.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=-6.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为2 7.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S = 8.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 9.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .10.ABC 中,4a =,5b =,面积S =c =( )A BC D .11.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+12.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=13.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-14.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=15.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =二、平面向量及其应用选择题16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=A BC .2D .317.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( )A .23π B .43π C .6πD .3π18.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lg sin a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( )A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形19.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形20.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对21.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13- D .34-22.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:523.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4B .3C .-4D .524.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且303aGA bGB cGC ++=.则BAC ∠等于( ) A .90°B .60°C .45°D .30°25.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2326.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .332C .33D .327.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 28.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 29.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1B .2C .3D .430.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b =②ABC ∆③ABC ∆的周长为4+④ABC ∆外接圆半径3R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个31.已知菱形ABCD 边长为2,∠B =3π,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .12B .-12C .13D .-1332.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A B C D .33.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8334.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .435.在ABC ∆中,601ABC A b S ∆∠=︒=,,则2sin 2sin sin a b cA B C-+-+的值等于( )A B C D .【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同 解析:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD 【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.3.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =, 由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得2324sin 3c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.4.BCD 【分析】本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确;再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,所以B 是的中点,P 是的解析:BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用()∥判断;对于D,利用C 的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量(解析:CD【分析】对于A,利用平面向量的数量积运算判断;对于B,利用平面向量的投影定义判断;对于C,利用(a b-)∥c判断;对于D,利用C的结论,2m+n=4,结合基本不等式判断.【详解】对于A,向量a=(2,1),b=(1,﹣1),则2110a b⋅=-=>,则,a b的夹角为锐角,错误;对于B,向量a=(2,1),b=(1,﹣1),则向量a在b方向上的投影为22a bb⋅=,错误;对于C,向量a=(2,1),b=(1,﹣1),则a b-=(1,2),若(a b-)∥c,则(﹣n)=2(m ﹣2),变形可得2m+n=4,正确;对于D,由C的结论,2m+n=4,而m,n均为正数,则有mn12= (2m•n)12≤(22m n+)2=2,即mn的最大值为2,正确;故选:CD.【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.7.AB【分析】由正弦定理及三角形性质判断A,由余弦定理判断B,由正弦函数性质判断C,由三角形面积公式,余弦定理及正弦定理判断D.【详解】中,,由得,A正确;锐角三角形中,,∴,B正确;中,解析:AB【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D .【详解】 ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确; ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB .【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.8.ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对:因为,又,故可得,故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择.【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=.故a 在b 上的投影向量为12a b b b b ⎛⎫⋅ ⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -, 则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形.故D 选项正确;综上所述,正确的有:ABD .故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.9.AC【分析】利用余弦定理:即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:,即,解得.故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC【分析】利用余弦定理:2222cos b a c ac B =+-即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:2222cos b a c acB =+-,即216310a a -+=,解得8a =故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.10.AB【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解.【详解】中,因为,,面积,所以,所以,解得或,当时,由余弦定理得:,解得,当时,由余弦定理得:,解得所以或解析:AB【分析】在ABC 中,根据4a =,5b =,由1sin 2ABC S ab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABC S =所以1sin 2ABC S ab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题. 11.ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确;对于B 选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确; 对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.12.ABD【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确,,所以D 正确.故选:ABD解析:ABD【分析】首先理解a a表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】a a 表示与向量a 同方向的单位向量,所以1a a =正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,a a a =不正确, cos 0a a a a a a a a a a⋅==⨯=,所以D 正确. 故选:ABD【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a 表示与向量a 同方向的单位向量. 13.BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为,,且,所以,即C 结论正确;因为,解析:BCD【分析】 由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.14.AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为,正确;,由向量加法知正确;,不满足加法运算法则,错误;,所以错误.故选:A B.【点睛】本题主要考查了向量加法的解析:AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为0AB BA AB AB ,正确;AB BC AC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B .【点睛】本题主要考查了向量加法的运算,属于容易题.15.ABD【详解】解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确.对解析:ABD【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确.故选:ABD .【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.二、平面向量及其应用选择题16.D【详解】 由余弦定理得, 解得(舍去),故选D. 【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!17.A【分析】 根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B cC ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B C a b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C ==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin a R A ===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A.【点睛】 本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题.18.C【分析】化简条件可得sin 2a B c ==,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】lg lg lg sin a c B -==-,sin 2a B c ∴==.0,2B π⎛⎫∈ ⎪⎝⎭, 4B π∴=. 由正弦定理,得sin sina A c C ==,3sin cos sin 422C A C C C π⎫⎛⎫∴==-=+⎪ ⎪⎪⎝⎭⎭, 化简得cos 0C =.()0,C π∈,2C π∴=, 则4A B C ππ=--=, ∴ABC 是等腰直角三角形.故选:C.【点睛】本题主要考查了正弦定理,三角恒等变换,属于中档题.19.D【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形. 故选:D. 【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 20.B【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.【详解】 2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=. 设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力.21.B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+,56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】 本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.22.A 【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论. 详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.23.C【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影.【详解】 对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CA CA θ⋅⋅-⋅=⋅===-⋅, 故选C .【点睛】本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题.24.D【分析】由点G 是ABC 的重心可得0GA GB GC ++=,即GA GB GC =--,代入303aGA bGB cGC ++=中可得3()03b a GB c a GC ⎛⎫-+-= ⎪ ⎪⎝⎭,由,GB GC 不共线可得00b a a -=⎧-=⎩,即可求得,,a b c 的关系,进而利用余弦定理求解即可 【详解】因为点G 是ABC 的重心,所以0GA GB GC ++=, 所以GA GB GC =--,代入30aGA bGB cGC ++=可得3()03b a GB c a GC ⎛⎫-+-= ⎪ ⎪⎝⎭, 因为,GB GC 不共线,所以03b ac a -=⎧-=⎩,即b a c =⎧⎪⎨=⎪⎩,所以222cos 22b c a BAC bc +-∠==,故30BAC ︒∠=, 故选:D 【点睛】本题考查向量的线性运算,考查利用余弦定理求角 25.A 【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+, 因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点,所以1122AE AB BC AB AD =+=+. 因为AP AE λ=,所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩, 解得34λ=. 故选:A 【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 26.B 【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果. 【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,② 所以由①②可知,62ab ab -=-,即6ab =, 则ABC的面积为11sin 62222S ab C ==⨯⨯=. 故选:B 【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型. 27.D 【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n nn AB n n ==--+,再根据AM mAB =可得231n m n =-,整理可得213m n+=,最后选出正确答案即可. 【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n nn AB n n ==--+,因为AM mAB =,所以231nm n =-,整理可得213m n+=.故选:D . 【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题. 28.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 29.D 【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案. 【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC =-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF =-(DC +CA )+BE +CF =-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D. 【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量. 30.C 【分析】由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论. 【详解】 4c =,3C π∠=,可得4832sin sin 3c R C π===,可得ABC ∆外接圆半径43R =④正确;()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==,则cos 0A =,即2A π=或sin 2sin B A =,即2b a =;若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得a =,b =4+;面积为12bc =; 则②③成立;若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得a =,b =则三角形的周长为4a b c ++=+11sin sin 223S ab C π===则②③成立①不成立;综上可得②③④一定成立,故选C . 【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 31.A 【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论. 【详解】法一:由题意可得BA ·BC =2×2cos3π=2, BD ·CP =(BA +BC )·(BP -BC ) =(BA +BC )·[(AP -AB )-BC ] =(BA +BC )·[(λ-1)·AB -BC ] =(1-λ) BA 2-BA ·BC +(1-λ)·BA ·BC -BC 2 =(1-λ)·4-2+2(1-λ)-4 =-6λ=-3, ∴λ=12,故选A. 法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,),D (-13.令P (x,0),由BD ·CP =(-33)·(x -13=-3x +3-3=-3x =-3得x =1. ∵AP =λAB ,∴λ=12.故选A. 【点睛】1.已知向量a ,b 的坐标,利用数量积的坐标形式求解. 设a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. 2.通过建立平面直角坐标系,利用数量积的坐标形式计算. 32.A 【分析】根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】13sin 3424ABC S bc A c c ∆==== 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C== 故213239sin 2sin sin sin 33a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 33.C 【分析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值.【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=,同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 34.C 【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值,由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=, 即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=, 当2m =2(2)171788m --+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题. 35.A 【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中,利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =,又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =,由正弦定理得2sin 2sin sin sin 32a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.。

平面向量单元测试题与答案

平面向量单元测试题与答案

平面向量单元测试姓名: 班级: 学号一、选择题: 本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,3,2,==⊥b a b a且b a 23+与b a -λ垂直,则实数λ的值为---------A . ;23-B . ;23C . ;23±D . ;1 2.已知A 、B 、C 三点共线,O 是这条直线外一点,设,a OA =,b OB =,c OC =且存在实数m ,使30ma b c -+=成立,则点A 分BC 的比为 ------A . 31-B . 21-C . 31D . 213.已知向量(2,2),(4,1)OA OB ==,在x 轴上有一点P ,使AP BP 有最小值,则点P 的坐标为 (3,0)A - B .2,0 C . 3,0 D .4,0 4.已知向量(6,4),(0,2),,a b OC a b λ===+若点C 在函数sin 12y x π=的图象上,则实数λ的值为 A52 B 32 C 52- D 32- 5.在△ABC 中,若a 、b 、c 分别是角A 、B 、C 的对边,且cos 2B +cosB +cosA -C =1,则 A 、a 、b 、c 等比 B 、a 、b 、c 等差 C 、a 、c 、b 等比 D 、a 、c 、b 等差 6.已知函数y =-3cos 2x +错误!+4按向量错误!平移后所得图象表示的函数y =fx 是奇函数,则向量错误!可以是 A 、-错误!,-4 B 、-错误!,-4 C 、错误!,4 D 、-错误!,47.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ccb A 22cos 2+=,则ABC 的形状为 A .正三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 8.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若a +c =2b ,则cot 错误!= A 、-2 B 、-3 C 、2 D 、39.O 是ABC ∆所在平面内一点,且满足()()20OB OC OB OC OA -⋅+-=,则ABC ∆的形状是 A 正三角形 B 等腰三角形 C 直角三角形 D 斜三角形 10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则A a ⊥eB a ⊥a -eC e ⊥a -eD a +e ⊥a -e11.在OAB ∆中,a OA =,b OB =,M 为OB 的中点,N 为AB 的中点,P点,则=APA .b a 3132-B .b a 3132+-C .b a 3231-D .b a 3231+-12.在同一个平面上有ABC ∆及一点O满足关系式:222222OA BC OB CA OC AB +=+=+,则O为ABC ∆的13、已知),3(λ=a,)3,4(-=b ,若a 与b 的夹角为锐角,则λ的取值范围为________ 14.在ABC ∆中,c b a ,,分别是角C B A ,,所对的得边长,若B aC B A c b a sin 3)sin sin )(sin (=-+++,则=C .A15.在△ABC 中,tanB=1,tanC=2,b=100,则a =______.16.在△ABC 中,BC 边上的中线长为m a ,用三边a 、b 、c 表示m a ,其公式是__________. 17.若 a 、b 、c 为△ABC 的三边,其面积S △ABC =123,bc =48,b -c =2,则a=_________. 三.解答题共32分18.10分已知△ABC 的面积S 满足3≤S ≤3, 且BC AB BC AB 与,6=⋅的夹角为θ.Ⅰ求θ的取值范围;Ⅱ求函数θθθθθ22cos 3cos sin 2sin )(++=f 的最值及相应的θ的值.19.10分 某市现有自市中心O 通往正东方向和北偏西30°方向的两条主要公路,为了解决该市交通拥挤问题,市政府决定修建一条环城公路,分别在正东方向和北偏西30°方向的两条主要公路上选取A 、B 两点,使环城公路在A 、B 间为直线段,要求AB 路段与市中心O 的距离为10km ,且使A 、B 间距离|AB |最小,请你确定A 、B 两点的最佳位置.20.12分已知向量错误!=cos 错误!x ,sin 错误!x ,错误!=cos 错误!,-sin 错误!,其中x ∈0,错误!1求错误!·错误!及|错误!+错误!|;2若fx =错误!·错误!-2λ|错误!+错误!|的最小值为-错误!,求λ的值选择题答案见题目.参考答案13、4λ<且94λ≠-14.60ο15.605 16.222)(221a c b -+17.a =213或237.18.解:Ⅰ,6cos ||||=⋅=⋅θBC AB BC AB ① ,sin ||||21θBC AB S ⋅=② ②÷①得:,tan 3,tan 216θθ==S S 由3≤S ≤3,得,3tan 33≤≤θ-----2分 A B 30°,1tan 33≤≤θ ∴ ]4,6[ππθ∈.--------------------------------------5分 Ⅱθθθθθ22cos 3cos sin 2sin )(++=f =2θθ2cos 2sin ++=)42sin(22πθ++.]43,127[42πππθ∈+.--------------------------------8分当6,12742πθππθ==+时,2325)(max +=θf ; 当4,4342πθππθ==+时,3)(min =θf .------------------------------------------10分19.作OC ⊥AB 于C ,并设∠AOC =α,于是|AB |=|AC |+|BC |=10tan α+10tan 120°-α =10错误!=错误! =错误! =错误!当cos 2α-120°=1,即2α-120°=0°,也即α=60°时, |AB |最小,可求得,此时|OA |=|OB |=20km 满足条件. 20、1错误!·错误!=cos 错误!xcos 错误!-sin 错误!xsin 错误!=cos 2x ,|错误!+错误!|=错误!=2cosx2fx =错误!·错误!-2λ|错误!+错误!|=cos 2x -4λcosx =2cos2x -1-4λcosx =2cosx -λ2-2λ2-1注意到x ∈0,错误!,故cosx ∈0,1,若λ<0,当cosx =0时fx 取最小值-1.不合条件,舍去.若0≤λ≤1,当cosx =λ时,fx 取最小值-2λ2-1,令-2λ2-1=-错误!且0≤λ≤1,解得λ=错误!, 若λ>1,当cosx =1时,fx 取最小值1-4λ, 令1-4λ=-错误!且λ>1,无解综上:λ=错误!为所求.A OB 30° Cα。

(完整版)平面向量单元测试卷含答案

(完整版)平面向量单元测试卷含答案

平面向量单元达标试卷一、选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.化简BC AC AB --等于( ) A .0B .2BCC .BC 2-D .AC 22.已知四边形ABCD 是菱形,有下列四个等式:①BC AB =②||||BC AB =③||||BC AD CD AB +=-④||||BC AB BC AB -=+,其中正确等式的个数是( )A .4B .3C .2D .13.如图,D 是△ABC 的边AB 的中点,则向量CD =( )A .BA BC 21+- B .BA BC 21-- C .BA BC 21-D .BA BC 21+4.已知向量a 、b ,且b a 2+=MN ,b a 65+-=NQ ,b a 27-=QR ,则一定共线的三点是( )A .M 、N 、QB .M 、N 、RC .N 、Q 、RD .M 、Q 、R5.下列各题中,向量a 与b 共线的是( )A .a =e 1+e 2,b =e 1-e 2B .2121e e a +=,2121e e b += C .a =e 1,b =-e 2D .2110131e e a -=,215132e e b +-=二、填空题6.一飞机从甲地按南偏东15°的方向飞行了2000千米到达乙地,再从乙地按北偏西75°的方向飞行2000千米到达丙地,则丙地相对于甲地的位置是________.7.化简=⎥⎦⎤⎢⎣⎡--+-)76(4131)34(32b a b b a ________. 8.已知数轴上三点A 、B 、C ,其中A 、B 的坐标分别为-3、6,且|CB |=2,则|AB |=________,数轴上点C 的坐标为________.9.已知2a +b =3c ,3a -b =2c ,则a 与b 的关系是________.三、解答题10.已知向量a、b,求作a+b,a-b.(1)(2)(3)(4)11.如图所示,D、E是△ABC中AB、AC边的中点,M、N分别是DE、BC的中点,已知BC=a ,BD=b.试用a、b表示DE、CE和MN.12.已知梯形ABCD中,AB∥DC,设E和F分别为对角线AC和BD的中点,求证EF 平行于梯形的底边.单元达标1.C 2.C 3.A 4.B 5.D6.丙地在甲地南偏西45°方向上,且距甲地2000千米. 7.b a 181135- 8.9,4或8 9.a =b10.图略11.由三角形中位线定理,知a 2121==BC DE ,b a +-=++=DE BD CB CE b a a +-=+2121.b a a -+-=++=++=21412121BC DB ED BN DB MD MN 即b a -=41MN .12.证:a =AB ,b =BC ,c =CD ,d =DA ,则a +b +c +d =0,∵DC AB // 故可设c =m a (m 为实数且m ≠-1),又BF AB EA EF ++=,但2121==CA EA )(21)(d c +=+DA CD ,)(21)(2121c b +=+==CD BC BD BF 故++=)(21d c EF a +21(b +c )=21(a +b +c +d )+21(a +c )=21(a +c )=21(m +1)a ,所以AB EF //,又因为EF 与AB 没有公共点,所以EF ∥AB .。

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量单元达标试卷
一、选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.化简BC AC AB --等于( ) A .0
B .2BC
C .BC 2-
D .AC 2
2.已知四边形ABCD 是菱形,有下列四个等式:①BC AB =②||||BC AB =③
||||BC AD CD AB +=-④||||BC AB BC AB -=+,其中正确等式的个数是( )
A .4
B .3
C .2
D .1
3.如图,D 是△ABC 的边AB 的中点,则向量CD =( )
A .BA BC 2
1
+- B .BA BC 2
1-- C .BA BC 21
-
D .BA BC 2
1
+
4.已知向量a 、b ,且b a 2+=MN ,b a 65+-=NQ ,b a 27-=QR ,则一定共线的三点是( )
A .M 、N 、Q
B .M 、N 、R
C .N 、Q 、R
D .M 、Q 、R
5.下列各题中,向量a 与b 共线的是( )
A .a =e 1+e 2,b =e 1-e 2
B .2121e e a +=
,2121e e b += C .a =e 1,b =-e 2
D .2110131e e a -=,215
1
32e e b +-=
二、填空题
6.一飞机从甲地按南偏东15°的方向飞行了2000千米到达乙地,再从乙地按北偏西75°的方向飞行2000千米到达丙地,则丙地相对于甲地的位置是________.
7.化简
=⎥⎦
⎤⎢⎣⎡--+-)76(4131)34(32b a b b a ________. 8.已知数轴上三点A 、B 、C ,其中A 、B 的坐标分别为-3、6,且|CB |=2,则|
AB |=________,数轴上点C 的坐标为________.
9.已知2a +b =3c ,3a -b =2c ,则a 与b 的关系是________.
三、解答题
10.已知向量a、b,求作a+b,a-b.
(1)(2)
(3)(4)
11.如图所示,D、E是△ABC中AB、AC边的中点,M、N分别是DE、BC的中点,已知BC=a ,BD=b.试用a、b表示DE、CE和MN.
12.已知梯形ABCD中,AB∥DC,设E和F分别为对角线AC和BD的中点,求证EF 平行于梯形的底边.
单元达标
1.C 2.C 3.A 4.B 5.D
6.丙地在甲地南偏西45°方向上,且距甲地2000千米. 7.b a 18
11
35- 8.9,4或8 9.a =b
10.图略
11.由三角形中位线定理,知a 2
1
21==
BC DE ,b a +-=++=DE BD CB CE b a a +-=+2121.b a a -+-=++=++=2
1
412121BC DB ED BN DB MD MN 即b a -=4
1
MN .
12.证:a =AB ,b =BC ,c =CD ,d =DA ,则a +b +c +d =0,∵DC AB // 故可设c =m a (m 为实数且m ≠-1),又BF AB EA EF ++=,但2
121==
CA EA )(21)(d c +=+DA CD ,)(21
)(2121c b +=+==CD BC BD BF 故
++=)(21d c EF a +21(b +c )=21(a +b +c +d )+21(a +c )=21(a +c )=2
1
(m +1)a ,所
以AB EF //,又因为EF 与AB 没有公共点,所以EF ∥AB .。

相关文档
最新文档