初中数学竞赛——-等腰三角形

合集下载

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】

八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。

等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。

(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。

)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。

问题4给学生留下悬念。

)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。

(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。

〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

初中数学竞赛专题:三角形

初中数学竞赛专题:三角形

初中数学竞赛专题:三角形§9. 1全等三角形1. 1. 1★已知等腰直角三角形A8C,8C是斜边.々的角平分线交AC于。

,过C作CE与a)垂直且交8。

延长线于邑求证:BD = 2CE.解析如图,延长CE、B4,设交于b・则NF3E = NAb,A8 = AC,得△AB£>gA4b,CF = 8O.乂BE 1.CF, BE 平分/FBC,故BE 平分CF, E为CF 中点、,所以2CE = FC = BD .9. 1. 2★在△ABC中,已知乙4 = 60。

,£、F、G分别为/W、AC、8C的中点,P、Q为AABC形外两点,使总_14从尸£ = ¥,°尸_14。

,0尸=卓,若6尸=1,求尸0的长.解析如图,连结EG、FG ,则EG//AC , FG//AB,故/PEG = 150。

= NQFG . 又QF = -AC = EG , PE 4AB = FG , 故APEG 9AGFQ , 所以2 2PG = GQ , AEGP + ZFGQ = ZFQG + ZFGQ = 30°, 乂ZEGF = 60°,所以NPG0 = 9O。

,于是PQ = 0PG = y/2 .10.1. 3★在梯形A8C0的底边AD上有一点心若八钻石、ABCEx △(7£)七的周长相等,求竺L AD 解析作平行四边形EC8A,则△AB石口\。

£»,若H与A不重合,则H在£4 (或延长线)上,但由三角形不等式易知,A,在E4上时,AABE的周长〉/XAZE的周长;A,在E4延长线上时,AABE的周长<AA f BE周长,均与题设矛盾,故A与H重合,A£〃8C ,同理ED//BC ,£ = =.= = AD 2AA f E11.1.4★★△ABC 内,44。

= 60。

,/4(78 = 40。

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形知识点归纳与典型题解析一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2. (2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为40°,则其余两个内角的度数分别为( ) A .40°,100° B .70°,70°C .60°,80°D .40°,100°或70°,70°【答案】D【解析】①若等腰三角形的顶角为40°时,另外两个内角=(180°–40°)÷2=70°; ②若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°–40°–40°=100°. 所以另外两个内角的度数分别为:40°、100°或70°、70°.故选D .【名师点睛】考查了等腰三角形的性质和三角形的内角和为180o ,解题关键是分情况进行讨论①已知角为顶角时;②已知角为底角时.典例2 如图,在ABC ∆中,AB =AC ,D 是BC 的中点,下列结论不正确的是( )A.AD BC B.∠B=∠CC.AB=2BD D.AD平分∠BAC【答案】C【解析】因为△ABC中,AB=AC,D是BC中点,根据等腰三角形的三线合一性质可得,A.AD⊥BC,故A选项正确;B.∠B=∠C,故B选项正确;C.无法得到AB=2BD,故C选项错误;D.AD平分∠BAC,故D选项正确.故选C.【名师点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.1.等腰三角形的周长为13cm,其中一边长为4cm,则该等腰三角形的底边为__________cm.考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC 的长为__________.【答案】4【解析】∵DE ⊥BC ,∠B =∠C =60°, ∴∠BDE =30°,∴BD =2BE =2,∵点D 为AB 边的中点,∴AB =2BD =4, ∵∠B =∠C =60°,∴△ABC 为等边三角形, ∴AC =AB =4,故答案为:4.【名师点睛】本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB =2BD 是解题的关键.3.如图,ABC ∆是等边三角形,点D 在AC 上,以BD 为一边作等边BDE ∆,连接CE . (1)说明ABD CBE ∆≅∆的理由; (2)若080BEC ∠=,求DBC ∠的度数.考向四 等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 【答案】B【解析】A,∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B,条件重复且条件不足,故不正确;C,∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D,根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD 的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六 勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a 2+b 2=c 2时,斜边只能是c .若b 为斜边,则关系式是a 2+c 2=b 2;若a 为斜边,则关系式是b 2+c 2=a 2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 cm cm ,则这个直角三角形的周长为__________.【答案】【解析】∵直角边长为cm cm ,∴斜边(cm ),∴周长cm ).故答案为:【名师点睛】本题考查了二次根式与三角形边长,面积的综合运用.熟练掌握勾股定理的计算解出斜边是关键6.如图所示,在ABC ∆中,90B ∠=︒,3AB =,5AC =,D 为BC 边上的中点.(1)求BD 、AD 的长度;(2)将ABC ∆折叠,使A 与D 重合,得折痕EF ;求AE 、BE 的长度.1.直角三角形两直角边长分别为6和8,则此直角三角形斜边上的中线长是 A .3B .4C .7D .52.如图,ABC △是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为A .50°B .55°C .60°D .65°3.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10m ,AD 为支柱(即底边BC 的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于A .10mB .5mC .2.5mD .9.5m4.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为A.2 B.3 C.1.5 D.2.55.如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=A.24°B.25°C.30°D.35°6.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A .8个B .9个C .10个D .11个9.如图,Rt △ABC 中,∠B =90〬,AB =9,BC =6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A .5B .6C .4D .310.将一个有45°角的三角尺的直角顶点C 放在一张宽为3 cm 的纸带边沿上,另一个顶点A 在纸带的另一边沿上,测得三角尺的一边AC 与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A .6B .C .D .11.三角形的三边a ,b ,c (b ﹣c )2=0;则三角形是_____三角形. 12.如图,等腰△ABC 中,AB =AC =13cm ,BC =10cm ,△ABC 的面积=________.13.已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为__________. 14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=__________°.17.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为__________.18.如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D 重合.(1)求证:△ACE为等腰三角形;(2)若AB=6,求AE的长.19.如图,一架2.5 m 长的梯子斜立在竖直的墙上,此时梯足B 距底端O 为0.7 m .(1)求OA 的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.ABC ∆与DCE ∆有公共顶点C (顶点均按逆时针排列),AB AC =,DC DE =,180BAC CDE ∠+∠=︒,//DE BC ,点G 是BE 的中点,连接DG 并延长交直线BC 于点F ,连接,AF AD .(1)如图,当90BAC ∠=︒时, 求证:①BF CD =; ②AFD ∆是等腰直角三角形.(2)当60BAC ∠=︒时,画出相应的图形(画一个即可),并直接指出AFD ∆是何种特殊三角形.21.已知:如图,有人在岸上点C 的地方,用绳子拉船靠岸,开始时,绳长CB =10米,CA ⊥AB ,且CA =6米,拉动绳子将船从点B 沿BA 方向行驶到点D 后,绳长CD (1)试判定△ACD 的形状,并说明理由; (2)求船体移动距离BD 的长度.1.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .12.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.3.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.4.如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.5.腰长为5,高为4的等腰三角形的底边长为__________.6.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.7.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.8.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .10.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.11.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .12.在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.1.【答案】4cm 或5cm【解析】当长是4cm 的边是底边时,腰长是12(13–4)=4.5, 三边长为4cm ,4.5cm ,4.5cm ,等腰三角形成立;当长是4cm 的边是腰时,底边长是:13–4–4=5cm ,等腰三角形成立. 故底边长是:4cm 或5cm .故答案是:4cm 或5cm【名师点睛】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解. 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5.6.【答案】(1)BD =2,AD =2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=,∴AD =(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,设AE x =,则DE x =,3BE x =-,在Rt BDE ∆中,222BE BD DE +=,即()22232x x -+=,解得:136x =, ∴136AE =, ∴135366BE =-=. 【名师点睛】本题主要考查了勾股定理的应用,也考查了折叠的性质.是常见中考题型.1.【答案】D【解析】∵两直角边分别为6和8,∴斜边10=, ∴斜边上的中线=12×10=5,故选D . 【名师点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理的应用,熟记性质是解题的关键. 2.【答案】A 【解析】ABC △是等边三角形,AC AB BC ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒0180CBD BAD BDA ABC ∴∠=-∠-∠-∠0000018020206080=---=,BC BD =,∴11(180)(18080)5022BCD CBD ∠=⨯︒-∠=⨯︒-︒=︒,故选A .【名师点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 3.【答案】B【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°, ∵DE ⊥AB ,DF ⊥AC ,垂足为E ,F ,∴DE =12BD ,DF =12DC , ∴DE +DF =12BD +12DC =12(BD +DC )=12B C .∴DE +DF =12BC =12×10=5m .故选B . 【名师点睛】本题考查等腰三角形和直角三角形的性质,熟练掌握相关知识点是解题关键. 4.【答案】A【解析】如图所示,延长AC 到E ,使CE =BM ,连接DE ,∵BD =DC ,∠BDC =120°,∴∠CBD =∠BCD =30°, ∵∠ABC =∠ACB =60°,∴∠ABD =∠ACD =∠DCE =90°,在△BMD 和△CED 中,90BD CDDBM DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BMD ≌△CED (SAS ),∴∠BDM =∠CDE ,DM =DE , 又∵∠MDN =60°,∴∠BDM +∠NDC =60°, ∴∠EDC +∠NDC =∠NDE =60°=∠NDM , 在△MDN 和△EDN 中,DM DEMDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩,∴△MDN ≌△EDN (SAS ), ∴MN =NE =NC +CE =NC +BM ,所以△AMN 周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2. 故选A.【名师点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.5.【答案】C【解析】∵AB=AC,CD=DE,∴∠C=∠DEC=∠ABC,∴AB∥DE,∵∠A=40°,∴∠C=∠DEC=∠ABC=18040702,∵∠ABD:∠DBC=3:4,∴设∠ABD为3x,∠DBC为4x,∴3x+4x=70°,∴x=10°,∴∠ABD=30°,∵AB∥DE,∴∠BDE=∠ABD=30°,故答案为C.【名师点睛】本题主要考查了等腰三角形的性质:等边对等角和三角形内角和定理求解,难度适中.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD=4.故选C.8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt △ACH 中,∵AH =3,∠AHC =90°,∠ACH =30°,∴AC =2AH =6,在Rt △ABC 中,AB ==D .11.【答案】等边【解析】三角形的三边a ,b ,c 2()0b c -=,20,()0b c =-=,0,0a b b c ∴-=-=,解得:,a b b c ==,即a b c ==,则该三角形是等边三角形.故答案为:等边.【名师点睛】本题是一道比较好的综合题,考查了算术平方根的非负性、平方数的非负性、等边三角形的定义. 12.【答案】60cm 2.【解析】过点A 作AD ⊥BC 交BC 于点D , ∵AB =AC =13cm ,BC =10cm , ∴BD =CD =5cm ,AD ⊥BC ,由勾股定理得:AD (cm ), ∴△ABC 的面积=12×BC ×AD =12×10×12=60(cm 2).【名师点睛】本题考查的是等腰三角形的性质及勾股定理,能根据等腰三角形的“三线合一”正确的添加辅助线是关键. 13.【答案】55°或125°【解析】如图,分两种情况进行讨论:如图1,当高在三角形内部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; 如图2,当高在三角形外部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; ∴∠CAB =180°–55°=125°, 故答案为55°或125°.【名师点睛】本题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键. 14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10. 15.【答案】24︒【解析】∵ADC ∠是三角形ABD 的外角,AED ∠是三角形DEC 的一个外角,CDE x ∠=︒, ∴ADC BAD B ADE EDC ∠=∠+∠=∠+∠,AED EDC C ∠=∠+∠,B BAD ADE x ∠+∠=∠+︒,AEDC x ∠=∠+︒,∵AB AC =,D 、E 分别在BC 、AC 上,AD AE =,CDE x ∠=︒,∴B C ∠=∠,20ADE AED C ∠=∠=∠+︒,∴C BAD C x x ∠+∠=∠︒++︒,∵12EDC ∠=︒,∴24BAD ∠=︒,故答案为:24︒.16.【答案】15【解析】∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°, ∵CG =CD ,∴∠CDG =30°,∠FDE =150°, ∵DF =DE ,∴∠E =15°.故答案为:15.17.【答案】【解析】如图,过点A 1作A 1M ⊥BC 于点M .∵点A 的对应点A 1恰落在∠BCD 的平分线上,∠BCD =90°,∴∠A 1CM =45°,即△AMC 是等腰直角三角形,∴设CM =A 1M =x ,则BM =7-x .又由折叠的性质知AB =A 1B =5,∴在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x )2,∴25-(7-x )2=x 2,解得x 1=3,x 2=4,∵在等腰Rt △A 1CM 中,CA 1A 1M ,∴CA 1.故答案为:18.【答案】(1)见解析;(2)4.【解析】(1)∵把△ABC 沿CE 折叠后,点B 恰好与斜边AC 的中点D 重合, ∴CD =CB ,∠CDE =∠B =90°,AD =CD ,在△ADE 和△CDE 中,90AD CDADE CDE ED ED =⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△CDE (SAS ), ∴EA=EC ,∴△ACE 为等腰三角形; (2)由折叠的性质知:∠BEC =∠DEC , ∵△ADE ≌△CDE ,∴∠AED =∠DEC , ∴∠AED =∠DEC =∠BEC =60°,∴∠BCE =30°,∴12BE CE =, 又∵EA=EC ,∴11223BE AE AB ===,∴AE=4.【名师点睛】本题考查了折叠的性质、全等三角形的判定和性质、等腰三角形的定义和30°角的直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键. 19.【解析】在直角△ABO 中,已知AB =2.5 m ,BO =0.7 m ,则AO , ∵AO =AA ′+OA ′,∴OA ′=2 m ,∵在直角△A ′B ′O 中,AB =A ′B ′,且A ′B ′为斜边, ∴OB ′=1.5 m ,∴BB ′=OB ′-OB =1.5 m -0.7 m=0.8 m . 答:梯足向外移动了0.8 m .20.【答案】(1)①详见解析;②详见解析;(2)详见解析;【解析】(1)证明:①∵//DE BC ,∴GBF GED ∠=∠. 又,BG EG FGB DGE =∠=∠, ∴(ASA)GBF GED ∆∆≌,∴BF ED =. 又CD ED =,∴BF CD =;②当90BAC ∠=︒时,45ABC ACB ∠=∠=︒, ∵180BAC CDE ︒∠+∠=,∴90CDE ︒∠=.∵//DE BC ,∴90,45BCD CDE ACD ︒︒∠=∠=∠=,∴ABF ACD ∠=∠;又,AB AC BF CD ==,∴()ABF ACD SAS ∆∆≌, ∴,AF AD BAF CAD =∠=∠, ∴BAF FAC CAD FAC ∠+∠=∠+∠ 即90BAC FAD ∠=∠=︒,∴AFD ∆是等腰直角三角形.(2)所画图形如图1或图②,此时AFD ∆是等边三角形.图1 图2 与(1)同理,可证ABF ACD ∆∆≌, ∴AF =AD ,60BAC FAD ∠=∠=︒, ∴△AFD 是等边三角形.【名师点睛】本题考查了等边三角形的判定,等腰三角形的判定和性质,以及全等三角形的判定和性质,平行线的性质,解题的关键是正确找到证明三角形全等的条件,利用全等三角形的性质得到边的关系,角的关系.21.【解析】(1)由题意可得:AC =6 m ,DCm ,∠CAD =90°,可得AD(m ), 故△ACD 是等腰直角三角形.(2)∵AC =6 m ,BC =10 m ,∠CAD =90°, ∴AB(m ), 则BD =AB -AD =8-6=2(m ). 答:船体移动距离BD 的长度为2 m .1.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO平分BMC ∠,④正确,正确的个数有3个,故选B . 2.【答案】70°【解析】∵AB =AC ,∴∠B =∠C , ∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 3.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE , ∴BD =CE =9,故答案为:9. 4.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.5.【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或【名师点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论. 6.【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°, 在Rt △ABE 和Rt △CBF 中,AB CBAE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得DM =∴AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒,则AE =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =,∴AB AN AB BE AE +=+==.【名师点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形 的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

初中数学精品试题:等腰三角形

初中数学精品试题:等腰三角形

2.2等腰三角形A 组1.等腰三角形的对称轴是 ( )A .过顶点的直线B .底边上的高C .顶角平分线所在的直线D .腰上的高2.如图,在正方形ABCD 中,AC ,BD 交于点O ,则图中共有几个等腰三角形( )A .5个B .6个C .7个D .8个3.周长为l3,边长为整数的等腰三角形共有( )A .2个B .3个C .4个D .5个4.如果等腰三角形有一边长是6,另一边长是8,那么它的周长是 ;如果等腰三角形的两边长分别是4、8,那么它的周长是 .5.已知:等腰三角形的腰长为8cm ,则底边a 的取值范围是________________.已知a ,b ,c 分别是△ABC 的三边,且满足022=-c b c a ,则这个三角形的形状 是 .有一个等腰三角形,三边长分别为4x-1,5x-3,4-2x ,求这个等腰三角形的周长.8. 在如图的网格中,请找出格点,使每一个格点与A ,B 两点构成等腰三角形.B 组9.用长为10m 的钢筋制作一个等腰三角形的铁架,使铁架的底边长比腰多lm ,则这个等腰三角形的腰长是________m .10.如图,在△ABC 中,AB =AC ,DE 是AB 的中垂线,△BCE 的周长为14,BC =6,则AB 的长为( )A.6B.7C.8D.9l B A 如图所示,在直线l 上找一点P ,使△PAB 为等腰三角形,请问这样的P 点有几个?在图上标出来.等腰三角形一腰上的中线把这个三角形的周长分为20cm 和36cm 两个部分,求这个三角形各边的长.已知等边三角形ABC 和点P ,设点P 到△ABC 三边AB ,AC ,BC 的距离分别是1h ,2h ,3h ,△ABC 的高为h ,请你探索以下问题(1)若点P 在一边BC 上(如图(1)),此时3h =0,问1h ,2h 与h 之间有怎样的关系?请说明理由:(2)若点P 在△ABC 内部(如图(2)),此时1h ,2h ,3h 与h 之间有怎样的关系?请说明理由:(3)若点P 在△ABC 外部(如图(3)),此是1h ,2h ,3h 与h 之间有怎样的关系?__ __ _(直接写出你的猜想,不需要说明理由)。

知识点十三 等腰三角形与直角三角形

知识点十三 等腰三角形与直角三角形

知识点十三等腰三角形与直角三角形在数学的几何世界中,等腰三角形和直角三角形是两个非常重要的角色,它们有着独特的性质和广泛的应用。

首先,咱们来聊聊等腰三角形。

等腰三角形,顾名思义,就是至少有两条边长度相等的三角形。

这两条相等的边被称为腰,剩下的那条边则被称为底边。

等腰三角形的两个底角也是相等的,这是它一个非常重要的性质。

比如说,在一个等腰三角形中,如果已知顶角的度数,那么通过三角形内角和为 180 度这个定理,就能轻松算出两个底角的度数。

反过来,如果知道了底角的度数,也能很快求出顶角的度数。

等腰三角形的对称轴也很有意思。

如果沿着等腰三角形顶角平分线所在的直线对折,两边能够完全重合,所以这条线就是它的对称轴。

而且,等腰三角形“三线合一”的性质在解题中经常能派上大用场。

啥叫“三线合一”呢?就是等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合。

举个例子,已知一个等腰三角形的底边中线,那就意味着它同时也是顶角平分线和底边上的高。

在实际问题中,比如要测量一个不能直接到达的两点之间的距离,就可以利用等腰三角形的性质来巧妙解决。

接下来,再看看直角三角形。

直角三角形有一个角是 90 度,这个角被称为直角,而构成直角的两条边被称为直角边,剩下的那条边则被称为斜边。

直角三角形最重要的定理当属勾股定理了。

也就是直角三角形两条直角边的平方和等于斜边的平方。

比如,一个直角三角形的两条直角边分别是 3 和 4,那么斜边的长度就可以通过勾股定理计算,即斜边的平方等于 3 的平方加上 4 的平方,也就是 9 + 16 = 25,所以斜边就是5。

除了勾股定理,直角三角形还有很多有趣的性质。

比如,在一个直角三角形中,如果一个锐角的度数确定了,那么它的三条边的比例关系也就确定了。

这就是三角函数的基础。

再比如说,直角三角形斜边的中线等于斜边的一半。

这个性质在解决一些与中点相关的问题时特别有用。

等腰三角形和直角三角形之间也有着一些有趣的联系。

中考数学复习专项之等腰三角形(含答案)

中考数学复习专项之等腰三角形(含答案)

等腰三角形一、选择题1、(2022年聊城莘县模拟)如图,等边三角形的边长为3,点为边上一点,且,点为边上一点,若,则的长为( ).A .B .C .D .1答案:B2、(2022年惠州市惠城区模拟)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( ) A.16 B.18 C. 20 D. 16或20 答案:C3、(2022浙江永嘉一模)10.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,下列结论: ①∠CDF =α;②A 1E =CF ;③DF =FC ;④BE =BF . 其中正确的有( ▲ )A .②③④B .①③④C .①②④D .①②③【答案】C4、(2022重庆一中一模)11.如图,在等腰ABC Rt ∆中,︒=∠90C ,6=AC ,D 是AC 上一点.若51tan =∠DBA ,那么AD 的长为 A . 2 B .3 C .2 D . 1 【答案】A5. (2022江西饶鹰中考模拟)如图,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( ) A .1 B.2(第1 题图)FED C 1C BAA 1第2题图A BD′ P CD M NE C′Q F第6题CA PBDC.3D.4 答案:C6、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D7、 (2022年江苏无锡崇安一模)如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC =1,AE =DE =2,在BC 、DE 上分别找一点M 、N , 使△AMN 的周长最小,则△AMN 的最小周长为…( ▲ ) A .2 6 B .27 C .4 2D .5答案:B二、填空题1、(2022年安徽模拟二)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为 .第1题图答案:42.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上) ①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP .3、(2022年安徽省模拟六)如图,等边三角形ABC 中,D 、E 分别在AB 、BC 边上,且AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G .下列结论:①AE =CD ;②∠AFC =1200;③⊿ADF 是正三角形;④12FG AF =.其中正确的结论是 (填所有正确答案的序号). 答案:①②④4、(2022年福州市初中毕业班质量检查)如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是____ . 1.57.(2022年江苏无锡崇安一模)在直角△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若CD =4,则点D 到斜边AB 的距离为 ▲ .第1题第3题图 ABCDEF第4题图答案:47.(2022浙江东阳吴宇模拟题)如图,C 、D 、B 的坐标分别为(1, 0)(9, 0)(10, 0),点P (t ,0)是CD 上一个动点,在x 轴上方作等边△OPE 和△BPF ,连EF ,G 为EF 的中点。

八年级(初二)数学-等腰三角形的知识结构图(思维导图)

八年级(初二)数学-等腰三角形的知识结构图(思维导图)

八年级(初二)数学-等腰三角形的知识结构图(思维导图)文章格式已经无法更改,以下是文章的修改版本:在今天的社会中,信息技术已经成为了人们生活中不可或缺的一部分。

它们给我们带来了无数的便利和改变,但同时也带来了一些问题。

首先,信息技术的快速发展已经对传统的职业造成了很大的冲击。

许多传统行业的工作已经被自动化取代,导致很多人失去了工作。

此外,信息技术还带来了新的职业,这些职业需要人们具备新的技能和知识。

其次,信息技术的普及也带来了一些道德和隐私问题。

人们的个人信息和隐私已经变得更加容易受到侵犯。

此外,网络上存在大量的虚假信息和不良内容,这些对人们的价值观和思想观念产生了负面影响。

最后,信息技术的便利性也带来了一些负面影响。

人们越来越依赖于技术,导致他们失去了一些基本的技能和知识。

此外,过度使用电子设备也会对人们的健康产生负面影响,例如眼睛疲劳和颈椎病等。

总之,信息技术对我们的生活产生了巨大的影响,既带来了便利和改变,也带来了一些问题。

我们需要认真思考这些问题,并采取适当的措施来解决它们。

等腰三角形是初中数学中的一个重要知识点。

下面将介绍等腰三角形的定义、性质和判定方法。

1.定义:等腰三角形是指两边长度相等的三角形。

2.性质:等腰三角形的底角(即两边不等的角)相等,顶角(即两边相等的角)的角平分线也是底边中线。

3.判定:如果一个三角形的两边长度相等,则这个三角形是等腰三角形。

等腰直角三角形是指一个直角三角形中,两条直角边长度相等的三角形。

1.性质:等腰直角三角形的斜边长度是直角边长度的根号2倍,顶角(即直角所在的角)的角平分线也是底边中线。

2.判定:如果一个直角三角形的两条直角边长度相等,则这个三角形是等腰直角三角形。

等边三角形是指三条边长度相等的三角形。

1.定义:等边三角形的三个内角都是60度。

2.性质:等边三角形的三条高、三条中线、三条角平分线、三条垂直平分线都重合。

3.判定:如果一个三角形的三条边长度相等,则这个三角形是等边三角形。

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。

一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。

两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。

2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。

(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。

2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。

三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。

(2)一边的中线等于这条边的一半,这个三角形是直角三角形。

(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14讲等腰三角形
知识总结归纳
一.等腰三角形的性质
(1)等边对等角:等腰三角形的底角相等
(2)等角对等边:有两个角相等的三角形是等腰三角形
二.三线合一
(1)“三线合一”:等腰三角形的顶角平分线、底边上的中线与底边上的高相互重合
(2)“三线合一”逆定理:如果一个三角形的某个角的平分线、对边中线或者对边上的高有两条重合在一起,则该三角形必是等腰三角形.
典型例题
【例1】(1)已知ABC
△中,AB AC,求证:B C.
(2)已知ABC
△中,B C,求证:AB AC.
C
A
B
C
A
B
【例2】证明:等腰三角形的顶角平分线,底边上的中线与底边上的高相互重合.
【例3】证明:如果一个三角形的某个角的平分线、对边中线或者对边上的高有两条重合在一起,则该三角形必是等腰三角形.
【例4】(1)如果一个等腰三角形的两边长分别是5cm和6cm,求此三角形的周长.(2)已知等腰三角形的周长为13,其一边长为3,则其他两边长为多少?。

相关文档
最新文档