ABAQUS和WB非线性屈曲方法综述

合集下载

abaqus屈曲解析总结计划报告总结计划实例

abaqus屈曲解析总结计划报告总结计划实例

整个计算过程包括2个解析步,第1步做屈曲解析,第2步做极限强度解析。

第1步:屈曲解析载荷步定义以下:Step1-InitialStep2-Buckle并在Model-EditKeywords的图中地址加入下面的文字,输出屈曲模态*nodefile,global=yesU,Createjob名称为“Buckling”点击continue,完成第1步的计算。

第2步:极限强度解析将“buckle”解析步代替为“riks”解析步在Basic选项卡中,Nlgeom:选择打开在Instrumentation选项卡中,定义以下参数,尔后点击OK定义一个新计算工作,输入名称,点击continue 在Parallelization选项卡,选择2个CPU,以下所示,点击OK。

在此编写Model-editkeywords,删除“第1步”加入的文字“*nodefile, global=yesU,”,并在以下图地址加入下段文字:*imperfection,file=buckling,step=11,点击OK,再保存文件。

最后提交计算。

提取计算结果进入visualizationModule点击CreateXYdata选择ODBfiledoutput,点击continuePosition选择UniqueNodal,CF:pointloads选择CF2,再点击elements/nodes选项卡,选择跨中载荷加载点,最后点击save。

重复上一步操作,Position选择UniqueNodal,U:spatialdisplacement选择U3,再点击elements/nodes选项卡,选择板格中心点,最后点击save。

点击CreateXYdata,选择operateonXYdata,点击continue选择Combine(X,X)命令,横坐标选择保存的displacement曲线,纵坐标选择保存的Pointload曲线,点击最后一行CreateXYData与Saveas。

非线性屈曲分析

非线性屈曲分析

ansys workbench非线性屈曲分析(2013-08-26 21:26:29)转载▼标签:ansys很多旋转受压结构必须进行屈曲分析,常规结构屈曲分析软件有nastran、abaqus和ansys,nastran对线性大型模型分析效率较高;abaqus屈曲分析使用较少;ansys使用比较频繁,其快速建模,与CAD软件的良好借口及有限元模型前处理的便捷性(WB界面)很有吸引力,屈曲分析功能较为完善,可以进行线性、非线性和后屈曲分析。

ansys学习资料中介绍较多的是线性屈曲分析。

线性屈曲分析在工业实际中预测的值偏高,有的甚至超过实际实验测试值的几十倍,线性分析唯一优势是其分析速度较快。

但在实际中其预测值参考价值不大,仅给定结构屈曲失效的上限值。

非线性屈曲分析考虑其他因素,包括结构加工缺陷(几何),材料非线性等,因此较为接近实际情况,但计算耗时较长。

针对最艰难学习情况归纳总结非线性屈曲分析时技术要点及应注意事项。

对于规则旋转壳,承受外压载荷作用,进行非线性屈曲分析时,必须加上几何缺陷,关键步是添加APDL语句/prep7upgeom,0.1,1,1,file,rstcdwrite,db,file,cdb/solu该步引入屈曲模态情况下的几何缺陷,缺陷为屈曲模态变形相对值的0.1倍,该值可以根据实际加工水平等其他条件确定,上述语句保存在txt文档中,在workbench流程APDL模块调用。

分析详细流程为,static structure模块导入几何,施加载荷和边界条件,分析求解,将linear buckling拖入流程中,共享static structure模块数据,进行线性屈曲模块分析,Mechanial APDL模块调用屈曲分析结果,并调入(addinput)上面内含几何缺陷命令语句命令的txt文件,更新,将Mechanical结果导入Finite Element modeler模块,更新,此时在缺陷附近的单元节点位置发生改变。

ABAQUS非线性分析

ABAQUS非线性分析

ABAQUS非线性分析简介ABAQUS是一种广泛使用的有限元分析软件,可以进行包括线性和非线性分析在内的各种工程问题的模拟和求解。

本文将重点介绍ABAQUS中的非线性分析方法和技术。

非线性分析概述在工程实践中,许多问题涉及到材料的非线性行为,如塑性变形、接触问题、接触力等。

非线性分析方法可以更准确地描述和处理这些问题。

ABAQUS中的非线性分析包括几个主要的方面:1.材料非线性:材料的非线性行为通常通过使用适当的本构模型来表示。

ABAQUS提供了多种材料本构模型,如弹塑性、细观弹塑性、强化材料等。

2.几何非线性:在分析中,结构的几何形状和尺寸可能发生较大变化,如大变形、大变位。

ABAQUS可以处理这些几何非线性问题。

3.接触非线性:在接触分析中,结构的不同部分可能接触或相互分离。

ABAQUS提供了多种接触算法和方法,如无限接触、有限接触等。

4.非线性动力学:对于动态分析问题,结构在振动、冲击或爆炸等外界作用下可能出现非线性响应。

ABAQUS支持非线性动力学分析。

非线性分析步骤进行ABAQUS非线性分析通常需要以下步骤:1.建立几何模型:使用ABAQUS的建模工具,如CAE或命令行,创建结构的几何模型,并定义边界条件和加载。

2.材料建模:选择适当的材料模型,并定义材料的弹性和非线性性质。

根据需要,可以设置材料的非线性行为,如屈服、硬化等。

3.加载和约束:定义结构的加载条件和边界约束。

可以应用静态、动态、温度等各种类型的加载。

4.网格划分:将结构网格化为有限元网格,ABAQUS提供了多种网格划分算法和工具。

5.求解和后处理:提交计算任务后,ABAQUS将解析结构的行为,并输出结果。

可以使用ABAQUS提供的后处理工具进行结果的可视化和分析。

非线性分析注意事项在进行ABAQUS非线性分析时,有一些注意事项需要特别关注:1.材料模型选择:选择适当的材料模型对于准确描述物体的非线性行为非常重要。

根据具体问题的特点,选择合适的材料模型。

CAE软件操作小百科(36)

CAE软件操作小百科(36)

CAE软件操作小百科(36)作者:王峰来源:《计算机辅助工程》2017年第02期1如何利用Abaqus进行非线性屈曲分析弧长法是目前结构非线性分析中数值计算最稳定、计算效率最高且最可靠的迭代控制方法之一,可用于跳跃失稳问题的研究,也可以用于分支屈曲的后屈曲研究. 分支屈曲的后屈曲分析不能直接在分支屈曲后面研究,而是要给一个初始缺陷,使力学响应呈连续状态(非线性).Abaqus根据分支屈曲模型取线性组合、根据静力分析结果或直接指定等3种方法定义初始缺陷. 若已知初始缺陷,则一般采用第一种方法.(1)特征屈曲分析(分析步选择Buckle). (2)将这些特征屈曲模态添加到理想的几何体中,作为初始缺陷(见图1,菜单栏中选择Model→Edit Keywords). Abaqus通过节点标签输入初始缺陷(imperfection),但是软件不会去确认2个模型的兼容性,所以要特别注意节点标号的一致性. 一般来说因数w在第1阶模态最大,而且w一般取结构几何参数的倍数,如壳的厚度的0.1倍等. (3)利用弧长法进行非线性分析(分析步选择Static,Riks).2如何在Abaqus中建立弹簧单元在Abaqus中建立弹簧单元一般有2种方法:定义Spring单元和定义Wire Feature.方法一:定义Spring单元. 在Abaqus/CAE中进入Interaction模块,在菜单栏中选择Special→Springs/Dashpots→Manager,进入弹簧阻尼单元管理器,可以选择创建两点弹簧或者接地弹簧,见图2. 点击Continue按钮可以对弹簧刚度、位置和自由度进行设置.方法二:定义Wire Feature. (1)创建Wire Feature. 在Abaqus/CAE中进入Interaction模块,在工具条中选择(Create Wire Feature),在弹出的对话框中点击“+”,选择两点创建Wire Feature. (2)为Wire Feature赋予属性. 在Interaction模块下点击工具条中的Create Connector Section,将Connection Category选为Basic,Translational type选为Cartesian,并点击Continue;在弹出的Create Connector Section对话框中设置弹簧的属性,见图3. (3)在Interaction模块下点击工具条中的Create Connector Assignment赋予属性.需要注意的是,虽然2种方法的作用一致,但是方法二在一些情况下使用更加方便,即方法二可以同时定义3个方向的刚度,而且可以模拟非线性弹簧,此外还可以同时定义线性或非线性阻尼等,这对于分析带有减振装置的复杂结构十分便捷.3Abaqus接触问题分析Abaqus/Standard 的接触对由主面(master surfer)和从面(slave surfer)构成. 在模拟过程中,接触方向总是主面的法线方向,从面上的节点不会穿越主面,但主面上的节点可以穿越从面. 在定义主面和从面时要注意以下问题.(1)主从面的定义.1)选择刚度较大的面作为主面,此处的刚度不仅要考虑材料特性,也要考虑结构刚度. 刚体必须作为主面,从面则必须是柔体上的面(可以是施加了刚体约束的柔体). 2)主面不能由节点构成,并且必须连续. 如果相对滑动形式为有限滑移,则主面在发生接触的部位必须是光滑的(即不能有尖角). 3)如果为有限滑移,则整个分析过程中尽量不要让从面节点落到主面之外,更不要落到主面的背面,否则收敛会出现问题.(2)滑移形式.有限滑移要求主面是光滑的,否则会出现收敛问题. 如果主面在发生接触的部位存在尖角或凹角,应该在此尖角处把主面分为2部分分别定义. 对于由单元构成的主面,Abaqus 会自动进行平滑处理. 对于小滑移的接触对,Abaqus/Standard在分析的开始就确定了从面节点与主面的关系,在整个分析过程中这种接触关系不会再发生变化.(3)接触面间的几何尺寸位置和Adjust参数. 如果不特别设置,Abaqus会直接根据模型尺寸位置判断从面和主面的距离,从而确定二者的接触状态,这就要求建模时模型尺寸必须非常精确. 一般情况下,模型尺寸往往会存在误差,可以应该利用Adjust参数调整从面节点的初始坐标. 如果从面节点与主面的距离小于这个参数,Abaqus将调整这些节点的初始坐标,使其与主面的距离为0(刚好接触).(4)收敛问题.在进行接触分析时,难免会遇到收敛问题(往往是因为模型中有问题),例如存在刚体位移、过约束、接触定义不当等,这时应该查看MSG文件,然后采取相应措施.(摘自同济大学郑百林教授《CAE操作技能与实践》课堂讲义)(待续)。

ANSYS命令流学习笔记17-超弹性材料分析及WB-ABAQUS分析对比

ANSYS命令流学习笔记17-超弹性材料分析及WB-ABAQUS分析对比

! ANSYS 命令流学习笔记17-超弹性材料分析及WB-ABAQUS 分析对比 !学习重点:非线性材料建立在线性材料的基础上,理解好线性才行,在概念上就能理解好非线性材料。

但是非线性的计算又是另外一个概念,先学习材料部分知识吧。

理解应力应变的张量形式、应变能函数、高度非线性下应变能函数形式。

!1、 应变张量张量最初是用来表示弹性介质中各点应力状态的,在三维坐标下,应力和应变的状态可以用9个分量来表示,超弹性材料主要使用应变张量及应变张量不变量这两个概念。

任意一点的应变状态可由矩阵表示:⎪⎪⎪⎭⎫ ⎝⎛z zy zxyz y yx xz xy x εγγγεγγγε存在三个相互垂直的方向。

在这三个方向上没有角度偏转,只有轴向的应变,该正应变称为主应变,此三方向成为主方向。

此时,该点应力状态由矩阵表示:但是应变张量表达中,某一点的应变状态矩阵,和坐标方向的选取有着很大关系。

为了表达坐标无关的某点应变状态,定义应变张量不变量I 1、I 2、I 3 ,分别为应变张量的第一,第二和第三不变量。

由下式表示:取= 1/3*I 1,将应变张量可以分解为应变球张量和应变偏张量,分别对应应变的形状改变部分和体积改变部分。

⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛---=m mm m z zyzx yzmy yxxzxy m x ijεεεεεγγγεεγγγεεε000000⎪⎪⎪⎭⎫ ⎝⎛=321000000εεεεij m ε!2、 应变能函数 一维应变能函数:一维应变能密度函数:W 或U 函数形式能够确定的话,应力与应变之间的关系也就完全确定了,反之应变应力关系确定可以反推应变能密度函数。

可以认为应变能密度函数是材料本构关系的一种表达形式。

!3、 应变能函数形式(1) 延伸率、不变量、体积比在确定应变能函数形式之前,首先要确定应变能函数的变量。

首先定义延伸率λ:其中,E ε一般称为工程应变或名义应变。

(此外,一般说的工程应力,真实应力)。

Abaqus中材料非线性问题的处理

Abaqus中材料非线性问题的处理

Abaqus中材料非线性问题的处理ABAQUS中材料非线性问题用Newton-Raphson法来求解。

首先将载荷分为若干个微小增量,如图1,结构受到一个微小增量ΔP。

ABAQUS用与初始结构位移u0相对应的初始刚度矩阵K0和荷载增量ΔP计算出结构的在这一步增量后的位移修正c a、修正后的位移值u a 和相应的新的刚度矩阵K a。

ABAQUS用新的刚度矩阵计算结构的内力I a,荷载P和I a的差值为迭代的残余力R a,即R a=P-I a。

如果R a在模型内的每个自由度上的值都为零,如图1中的a点,则结构处于平衡状态。

但在非线性问题中,通常R a是不可能为零,ABAQUS为此设置了一个残余力容差。

如果R a小于这个数字,ABAQUS就认为结构的内外力是平衡的。

一般这个缺省值取为平均内力的0.5%。

图1 增量法第一次迭代原理图在R a满足小于残余力容差的条件后,ABAQUS还要检查位移修正系数c a是否远远小于结构的位移增量Δu a=u a-u0。

如果大于位移增量的1%,ABAQUS将自动继续进行迭代。

第二次迭代时,ABAQUS用刚度矩阵K a和第一次迭代的残余力R a计算,得到一个新的位移修正值。

同理,第二次迭代中ABAQUS用新的残余力、新的位移系数,继续验证收敛性,直到收敛为止(如图2)。

因此非线性问题的计算量要比线性问题的计算量大得多,计算的时候需要分配更多的内存和磁盘空间。

ABAQUS会自动调整荷载增量的大小,用户只需合理的设置一个第一次迭代的增量值即可,如果用户不给出第一次迭代的增量值,ABAQUS会在第一次迭代的过程中把设置的所有荷载都加到结构上去,然后不断的试算自动调整第一次迭代的增量大小。

寻找一个增量值的收敛解迭代的次数取决于系统非线性的程度。

ABAQUS中缺省的设置是,如果在一个增量值的作用下,迭代16次以后结果仍不收敛,ABAQUS将放弃这个增量值,把增量取为前一次增量值的25%再进行计算。

Abaqus显式非线性动态分析

Abaqus显式非线性动态分析

2012-11-14 11:43 by:Abaqus教程来源:广州有道有限元Abaqus显式非线性动态分析——ABAQUS/Explicit适用的问题类型显式动态程序对于求解广泛的、各种各样的非线性固体和结构力学问题是一种非常有效的工具。

它常常对隐式求解器是一个补充,如ABAQUS/Standard;从用户的观点来看,显式与隐式方法的区别在于:•显式方法需要很小的时间增量步,它仅依赖于模型的最高固有频率,而与载荷的类型和持续的时间无关。

通常的模拟需要取10,000至1,000,000个增量步,每个增量步的计算成本相对较低。

•隐式方法对时间增量步的大小没有内在的限制;增量的大小通常取决于精度和收敛情况。

典型的隐式模拟所采用的增量步数目要比显式模拟小几个数量级。

然而,由于在每个增量步中必须求解一套全域的方程组,所以对于每一增量步的成本,隐式方法远高于显式方法。

了解两个程序的这些特性,能够帮助你确定哪一种方法是更适合于你的问题。

ABAQUS/Explicit适用的问题类型在讨论显式动态程序如何工作之前,有必要了解ABAQUS/Explicit适合于求解哪些类问题。

贯穿这本手册,我们已经提供了贴切的例题,它们一般是应用ABAQUS/Explicit求解的如下类型问题:高速动力学(high-speed dynamic)事件最初发展显式动力学方法是为了分析那些用隐式方法(如ABAQUS/Standard)分析起来可能极端费时的高速动力学事件。

作为此类模拟的例子,在第10章“材料”中分析了一块钢板在短时爆炸载荷下的响应。

因为迅速施加的巨大载荷,结构的响应变化的非常快。

对于捕获动力响应,精确地跟踪板内的应力波是非常重要的。

由于应力波与系统的最高阶频率相关联,因此为了得到精确解答需要许多小的时间增量。

复杂的接触(contact)问题应用显式动力学方法建立接触条件的公式要比应用隐式方法容易得多。

结论是ABAQUS/Explicit能够比较容易地分析包括许多独立物体相互作用的复杂接触问题。

ABAQUS非线性

ABAQUS非线性
ABAQUS 的非线性模拟综述 摘要:ABAQUS 被广泛地认为是功能最强的非线性有限元软件,可以对复杂的结构力学系 统进行分析,尤其在庞大复杂问题驾驭性较好以及对高度非线性问题的模拟方面有比较好的 解决。本文主要针对力学模拟中的几何、材料、边界三种非线性问题进行讨论,重点是如何 在 ABAQUS 中定义这三种非线性问题,包括在 CAE 模块中定义和关键字定义。 关键字:ABAQUS;几何非线性;材料非线性;边界非线性 Abstract:ABAQUS is widely considered to be the most powerful-linear finite element software,
在 ABAQUS 中定义两个结构间的接触问题,第一步是用*Surface definition 选项定义表 面,接着用*Surface interaction 选项来定义表面间的相互作用,然后用*Contact pair 选项定义 可能接触的表面对。
下面举例说明如何在 ABAQUS 中定义接触,现以图 3 中的螺栓连接为例: 1)首先在 ABAQUS/CAE 的 Interaction 模块下,在 Interaction 菜单下创建一个新的接触 属性(property),选择接触类型:Contact,在弹出的对话框中定义接触的机械参数和热参数; 2)在 TOOL 菜单下,定义 Surface,分别定义名为 surf of part 1 和 surf of part 2 两个面, 分别代表两个零件的接触面; 3)最后在 Interaction 菜单下定义接触对(contact of bolt),主面和从面分别选择步骤 2) 中定义的两个表面,而接触属性选择步骤 1)中定义的属性。 定义完成后,在 INP 文件中表述下:
4.8e+08, 0.18 2 几何非线性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Workbench
(1)首先进行线性屈曲分析,得到屈曲的特征值和屈曲模态。

实现方式如下:
(2)添加Mechanical APDL模块
右键单击Analysis,输入模型缺陷文件:
/prep7
upgeom,0.1,1,1,file,rst
cdwrite,db,file,cdb
/solu
UPGEOM, FACTOR, LSTEP, SBSTEP, Fname, Ext
FACTOR: Multiplier for displacements being added to coordinates. The value 1.0 will add the full value of the displacements to the geometry of the finite element model. Defaults to 1.0.
LSTEP: Load step number of data to be imported. Defaults to the last load step. SBSTEP: sub step number of data to be imported. Defaults to the last substep. Fname: File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name.
The field must be input (no default).
Ext:Filename extension (8 character maximum).The extension must be an RST extension.
(3)添加Finite Element Modeler模块
(4)重新导入新的Static Structual模块以进行非线性屈曲分析,此时需重新建立模型的接触关系、边界条件、荷载。

本模块分析时需打开大变形(large deflection),
非线性屈曲分析没有所谓的屈曲云图,也没有载荷因子,就是变形图。

随着载荷的逐步增加,位移发生突变的地方就是发生屈曲的地方,使位移发生突变的载荷就是临界屈曲载荷!
Command:
Stabilize,constant,energy,0.01
!prevent non-convergence due to instability
ABAQUS
(1)首先进行线性屈曲分析,得到屈曲的特征值和屈曲模态,并输出相应节点的位移集合。

实现方式如下:
通过在model→edit keywords修改inp文件,在*restart,write,frequency=0语句的后面添加
*nodefile,global=yes
u,
输出节点位移文件,为非线性屈曲分析做准备。

(2)在step中用static,riks替代buckle分析步(也可以直接添加一Static,riks分析步)。

通过在model→edit keywords修改inp文件,在*boundary语句之后*step语句之前,加入定义初始缺陷的语句,修改内容如下:
*imperfection,file=job-1,step=1
1,0.01
2,0.01
3,0.001
定义的初始缺陷为一阶模态的1%,二阶模态的1%,三阶模态的1‰。

(3)进入后处理,得出荷载比例因子load proportional factor(LPF)变化曲线,曲线线性变化的最大值点(拐点)作为非线性屈曲的最大荷载。

相关文档
最新文档