数字图像处理上机实验报告

合集下载

数字图像处理实验报告 (图像编码)

数字图像处理实验报告 (图像编码)

实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。

二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。

数字图像处理 实验报告(完整版)

数字图像处理 实验报告(完整版)

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread()函数读取一幅图像,假设其名为lily、tif,存入一个数组中;2。

利用whos命令提取该读入图像flower、tif得基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>〉I=imread('lily、tif’)>〉whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件得压缩,颜色等等其她得详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素得jpg文件,设为lily、jpg;语法:imwrite(原图像,新图像,‘quality’,q),q取0-100。

6.同样利用imwrite()函数将最初读入得tif图象另存为一幅bmp图像,设为flily、bmp。

7。

用imread()读入图像Sunset、jpg与Winter、jpg;8.用imfinfo()获取图像Sunset、jpg与Winter、jpg得大小;9.用figure,imshow()分别将Sunset、jpg与Winter、jpg显示出来,观察两幅图像得质量.其中9得实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily、tif’)>> imfinfo’lily、tif’;>〉imwrite(I,'lily、jpg',’quality',20);〉> imwrite(I,’lily、bmp’);7~9 〉〉I=imread('Sunset、jpg');>>J=imread('Winter、jpg’)>>imfinfo ’Sunset、jpg'>> imfinfo'Winter、jpg’〉〉figure(1),imshow(’Sunset、jpg’)>>figure(2),imshow('Winter、jpg’)三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像得特征。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

数字图像处理上机实验报告

数字图像处理上机实验报告

数字图像处理上机实验报告姓名:李青学号: 104090423学院:物理与电子信息学院班级: 10电子实验课题: 五类图像处理的运算方法任课教师:石俊生(教授)填表日期:2013年11月3日一.实验内容实验1:直方图均衡图像增强;实验2: 空域处理:不同平均模板大小:3⨯3、5⨯5、7⨯7去噪;实验3: 空域处理:不同中值模板大小:3⨯3、5⨯5、7⨯7去噪;实验4: 频域处理:对图像低通、高通、带通处理结果比较;实验5:常用边缘检测算子检测;实验6:逆滤波和维纳滤波对运动模糊复原;实验7:DPCM图像压缩。

二.实验目的学会用Matlab中的下列函数对输入图像进行上述5类运算;感受各种不同的图像处理方法对最终图像效果的影响。

Imhist;histeq;nlfilter;mean2;std2;fspecial;filter2;medfilt2;三.实验结果实验1:直方图均衡图像增强(a)原始图像及直方图均衡化后的图像(b)均衡化前后图像的直方图(c)调整灰度原始图像和调整灰度增强后图像实验2: 空域处理:不同平均模板大小:3⨯3、5⨯5、7⨯7去噪(a)原始图像和3*3模板去噪后图像(b)原始图像和5*5模板去噪后图像(c)原始图像和7*7模板去噪后图像实验3: 空域处理:不同中值模板大小:3⨯3、5⨯5、7⨯7去噪实验4: 频域处理:对图像低通、高通、带通处理结果比较(a)原图像与低通滤波图像(b)原图像与高通滤波图像(c)原图像与带通滤波图像实验5:常用边缘检测算子检测(1)lena(2)camaraman(3)Cell(4)rice(5)tire实验6:逆滤波和维纳滤波对运动模糊复原实验7:DPCM图像压缩四.结论与讨论(1)直方图均衡化是通过对原图像进行某种变换,重新分配图像像素值,把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内均匀分布的形式,从而使原始图像的直方图改变成均匀分布的直方图,达到增强图像整体对比度的效果。

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。

数字图像处理实验报告

数字图像处理实验报告

实 验 内 容
3-2 根据直方图定义,通过结构化编程方式给出 3-1)中灰度图像像素点统计形式的直方图,并与利用 函数调用方式获得的直方图在两个不同窗口中进行比较,两窗口图像名称分别为”编程直方图”、”函 数调用直方图”; 参考函数 imread、size、bar、imhist、image I=imread('panda.jpg'); B=rgb2gray(I); A=uint8(B); [m n]=size(B); s=zeros(m,n); for i=1:m for j=1:n for rank=0:255 if B(i,j)==rank s(rank+1)=s(rank+1)+1; end
在水平和垂直方 列的方式同时显
I=imread('panda.jpg');
subplot(1,3,1);imshow(I)
subplot(1,3,2);imshow(I)
colorbar
subplot(1,3,3);imshow(I)
colorbar('horizontal')
实 验 1)、实验采用的原始图片要求是包含自己头像的照片,图片大小控制在 640×480 之内; 要 2)、实验中的当前工作目录采用 MATLAB 目录下的 work 文件夹。 求
学号
12109940423 指导教师
实验地点
1C06-329
实验成绩
图像灰度统计特性及其相关变换
12 级 1 班 杜云明
实 理解直方图的形成原理,掌握绘制灰度直方图的方法;熟悉图像灰度直方图的变换及直方图均衡化方 验 法;理解图像灰度变换处理在图像增强中的作用;熟悉图像灰度分布统计与图像视觉质量之间的关系; 目 通过工具箱函数调用和结构化编程两种方式实现图像的相关处理,在加深理解基本原理的同时,提高 的 编程实践的技巧和能力。

《数字图像处理》上机实验报告1

《数字图像处理》上机实验报告1

数字图像处理上机实验报告实验名称:图像的几何变换(象素空间关系)学期:2014/2015上学期班级:电子信息工程1102姓名:陈玮学号:3110209424实验时间:2014.09.29实验一:图像的几何变换(象素空间关系)1 目的①了解MATLAB的基本功能,掌握采用MA TLAB进行图像处理的方法;②了解图像象素空间关系;③掌握基本坐标变换,包括平移,缩放,旋转等;④了解形态变换,掌握特殊的形态变换,包括相似变换,刚体变换,等距变换等2 器材装有MATLAB的PC机一台3 原理双线性内差值法:1.数学原理已知的红色数据点与待插值得到的绿色点假如我们想得到未知函数f在点P= (x,y) 的值,假设我们已知函数f在Q11 = (x1,y1)、Q12 = (x1,y2),Q21 = (x2,y1) 以及Q22 = (x2,y2) 四个点的值。

首先在x方向进行线性插值,得到R1和R2,然后在y方向进行线性插值,得到P.这样就得到所要的结果f(x,y).其中红色点Q11,Q12,Q21,Q22为已知的4个像素点.第一步:X方向的线性插值,插入蓝色第二步:做完X方向的插值后再做Y方向的点R1和R2. 插值,由R1与R2计算P点.x方向上Y方向上插入绿色点P.线性插值的结果与插值的顺序无关。

首先进行y方向的插值,然后进行x方向的插值,所得到的结果是一样的。

但双线性插值插值方法这种方法并不是线性的,首先进行y方向的插值,然后进行x 方向的插值,与首先进行x方向的插值,然后进行y方向的插值,所得到的R1与R2是不一样的。

如果选择一个坐标系统使得的四个已知点坐标分别为(0, 0)、(0, 1)、(1, 0) 和(1, 1),那么插值公式就可以化简为f(x,y)=f(0,0)(1-x)(1-y)+f(0,1)(1-x)y+f(1,1)xy+f(1,0)x(1-y)在x与y方向上,z值成单调性特性的应用中,此种方法可以做外插运算,即可以求解Q1~Q4所构成的正方形以外的点的值。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理上机(一)1.灰度切割变换lena.bmp(1)程序:I=imread('lena.jpg');figure; imshow(I);I=double(I)[M,N]=size(I);for i=1:Mfor j=1:Nif I(i,j)<=50I(i,j)=40;elseif I(i,j)<=180I(i,j)=220;elseI(i,j)=40;endendendI=uint8(I);figure;imshow(I);(2)Matleb图像:(变换前) (变换后):2.彩色图像转换成灰度图象(1)程序:RGB=imread('greens.jpg'); %装入真彩图像figure(1);imshow(RGB); %显示彩色图像GRAY=rgb2gray(RGB); %将真彩图像转换为灰度图像figure(2);imshow(GRAY); %显示灰度图像(2)Matleb图像:3. 图像求反(1)程序:I=imread('lena.jpg');Imshow(I)I=double(I)I=256-1-II=uint8(I)figureImshow(I)(2)Matleb图像:(变换前) (变换后)4.线性灰度变换(1)程序:I=imread('pout.tif');imshow(I);I=double(I);[M,N]=size(I); %线性灰度变换for i=1:Mfor j=1:Nif I(i,j)<=30I(i,j)=I(i,j);elseif I(i,j)<=150I(i,j)=(200-30)/(150-30)*(I(i,j)-30)+30;elseI(i,j)=(255-200)/(255-150)*(I(i,j)-150)+200;endendendfigure(2);imshow(uint8(I));(2)Matleb图像:(变换前) (变换后)5.原图像灰度取值范围为[0,512],现将图像的灰度压缩到[0,256],使用对数变换完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理上机实验报告实验一:MATLAB工具箱的使用实验目的:11:了解matlab语言,熟悉并掌握matlab相关的处理语句。

2:了解matlab在图像处理中的优缺点。

3 熟悉matlab的使用技巧,能用matlab熟悉的对数字图像进行各种处理。

1 将一幅灰度图像转换成索引色图像。

I=imread('ngc4024m.tif'>。

X=grayslice(I,16>。

imshow(I>figure,imshow(X,hot(16>>2:对一副图像进行二值化处理。

load treesBW=im2bw(X,map,0.4>。

imshow(X,map>figure,imshow(BW>3:将索引色图像转化成灰度图像。

load treesI=ind2gray(X,map>。

imshow(X,map>figure,imshow(I>4:显示一幅图像。

load clown image(10,10,X> colormap(map>实验二图像变换实验目的:1 熟悉掌握DFT和DCT变换的matlab实现。

2 利用matlab实验DFT和DCT的变换,求出图像的频谱。

1.二维离散傅里叶变换的旋转型。

I=zeros(256,256>。

>> I(28:228,108:148>=1。

>> imshow(I>J=fft2(I>。

>> F=abs(J>。

>> J1=fftshift(F>。

figure>> imshow(J1,[5 50]>I=zeros(256,256>。

>> I(28:228,108:148>=1。

>> J=imrotate(I,315,'bilinear','crop'>。

>>figure>> imshow(J>J1=fft2(J>。

>> F=abs(J1>。

>> J2=fftshift(F>。

figure >> imshow(J2,[5 50]>2.图像的傅里叶频谱。

>> clear。

I=zeros(256,256>。

I(8:248,110:136>=5。

>> imshow(I>J3=fft2(I>。

>> F2=abs(J3>。

>> J4=fftshift(F2>。

figure>> imshow(J4,[5 30]>3.二维余弦正反变换在Matlab中的实现。

RGB=imread('autumn.tif'>。

>> I=rgb2gray(RGB>。

>> figure(1>>> imshow(I>。

figure(2>。

J=dct2(I>。

imshow(log(abs(J>>,[]>。

colormap(jet(64>>。

colorbar。

b5E2RGbCAPfigure(3>。

>> J(abs(J><10>=0。

>> K=idct2(J>/255。

>> imshow(K>。

4.用DCT变换作图像压缩的例子。

>> I=imread('cameraman.tif'>。

I=double(I>/255。

T=dctmtx(8>。

B=blkproc(I,[8 8],'P1*x*P2',T,T'>。

>> mask=[1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0]。

>> B2=blkproc(B,[8 8],'P1.*x',mask>。

>> I2=blkproc(B2,[8 8],'P1*x*P2',T',T>。

>> imshow(I>,figure,imshow(I2>实验三图像灰度修正技术和直方图均衡化实验目的:1掌握图像灰度修正技术的原理和实现方法。

2 掌握图像直方图均衡化处理的方法。

实验四图像平滑实验目的:1掌握常见图像噪声类型。

2理解邻域平均法和中值滤波的原理特点和适用对象。

3掌握边缘检测的基本思想和常见的边缘算子的使用方法。

实验五图像锐化实验目的:1掌握图像锐化的主要原理和使用方法。

2掌握常见的边缘提取算法。

3利用matlab实现图像的边缘检测。

1.显示图像‘cameraman.tif’的直方图。

I=imread('cameraman.tif'>。

>> subplot(1,2,1>,imshow(I>>> subplot(1,2,2>,imhist(I>2.显示图像‘bacteria.tif’的等灰度值图。

I=imread('bacteria.tif'>。

>> subplot(1,2,1>,>> imshow(I>>> subplot(1,2,2>,>> imcontour(I>3.调整图像的对比度。

clear all>> I=imread('pout.tif'>。

>> J=imadjust(I,[0.3 0.7],[]>。

>> subplot(121>,imshow(I>>> subplot(122>,imshow(J>figure,subplot(121>,imhist(I> >> subplot(122>,imhist(J>4.对图像‘tire.tif’做直方图均衡化。

I=imread('tire.tif'>。

>> J=histeq(I>。

>> subplot(1,2,1>,imshow(I>>> subplot(1,2,2>,imshow(J>figure,subplot(1,2,1>,imhist(I,64> >> subplot(1,2,2>,imhist(J,64>5.对图像‘cameraman.tif’分别加入高斯噪声,和乘性噪声。

I=imread('cameraman.tif'>。

J1=imnoise(I,'gaussian',0,0.02>。

>> J2=imnoise(I,'speckle',0.02>。

>> subplot(1,3,1>,imshow(I>。

>> subplot(1,3,2>,imshow(J1>。

>> subplot(1,3,3>,imshow(J2>。

6.对图像分别进行各种滤波。

.读取原始图像。

g0=imread('eight.tif'>。

>> figure(1>>> imshow(g0>。

.加入椒盐噪声。

g1=imnoise(g0,'salt & pepper',0.02>。

>> g1=im2double(g1>。

>> figure(2>>> imshow(g1>。

.进行高斯低通滤波。

h1=fspecial('gaussian',4,0.3>。

>> g2=filter2(h1,g1,'same'>。

>> figure(3>>> imshow(g2>。

.进行soble滤波。

h2=fspecial('sobel'>。

>> g3=filter2(h2,g1,'same'>。

>> figure(4>>> imshow(g3>。

.进行prewitt滤波。

h3=fspecial('prewitt'>。

>> g4=filter2(h3,g1,'same'>。

>> figure(5>>> imshow(g4>。

.进行拉普拉斯滤波。

h4=fspecial('laplacian',0.5>。

>> g5=filter2(h4,g1,'samne'>。

>> figure(6>>> imshow(g5>。

.进行高斯拉普拉斯滤波。

h5=fspecial('log',4,0.3>。

>> g6=filter2(h5,g1,'same'>。

>> figure(7>>> imshow(g6>。

.进行均值滤波。

h6=fspecial('average'>。

>> g7=filter2(h6,g1,'same'>。

>> figure(8>>> imshow(g7>。

.进行模糊滤波。

h7=fspecial('unsharp',0.3>。

>> g8=filter2(h7,g1,'same'>。

>> figure(9>>> imshow(g8>。

.进行高斯高通滤波。

h8=[0 -1 0。

-1 5 -1。

相关文档
最新文档