现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异
经典控制理论与现代控制理论的异同

浅析经典控制理论与现代控制理论的异同摘要:主要通过研究与分析经典控制理论与现代控制理论的研究对象和数学建模,了解两种控制理论的异同,有助于选择合适的理论分析与设计系统。
关键词:经典控制理论现代控制理论异同引言随着科学技术的发展,控制理论在人们实践中得到广泛的运用和发展。
其中经典控制理论和现代控制理论作为控制论的两个重要的部分,彼此存在区别与联系。
笔者在这里主要通过分析研究两种理论在研究对象和数学建模等方面介绍它们之间的异同。
1 自动控制理论简介1.1自动控制理论的定义与应用n·维纳曾定义:控制论是“关于动物和机器中的控制和通信的科学”。
也就是说,自动控制就是采用控制装置使被控对象自动地按照给定规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按照指定的规律变化。
其中控制对象有电压、电流、位置、速度、流量、浓度、成分等。
自动控制系统可以分为调节系统和伺服系统两类。
调节系统要求被控对象状态保持不变,输入一般不做频繁调节;而伺服系统则要求被控对象的状态能自动、连续、精确地随输入信号变化而变化,即随便系统。
自动控制理论广泛应用在生产,可以提高生产率,改善加工工艺,改善产品质量,节约成本。
控制理论也可用于国防建设,促进国防现代化,提高部队战斗力。
自动控制理论在发展空间技术,探索新能源等方面也至关重要。
1.2 自动控制理论的发展任何一种理论的的形成都离不开实践。
早在古代,劳动人民就凭借生产实践积累的经验和对反馈的直接认识,发明了很多闪烁着控制理论的智慧火花的杰作。
例如,北宋水运仪象台就是一个闭环非线性控制系统;1765年,俄国人普洱佐诺夫发明的蒸汽锅炉水位调节器等。
直到1788年,瓦特(j·watt)通过在他发明的蒸汽机上使用离心调速器解决蒸汽机调速问题后,人们才开始重视控制技术,并开始探索改善调速器准确度的方法;1868年,物理学家麦克斯韦(maxwell)从描述系统的微分方程的解中有无增长指数函数项来判断稳定性;随后,劳斯(routh)和赫尔维茨(hurwitz)分别独自建立了通过代数方程系数判别系统稳定性的劳斯判据和赫尔维茨判据;1932年,物理学家奈奎斯特(nyquist)通过频域的角度判断系统稳定性,奠定了频域法的基础;随后伯德(bode)和尼克尔斯(nichols)进一步发展了频域法,形成了经典控制理论的分析法;美国科学家伊万斯(evans)创立的根轨迹法被广泛应用到系统的分析与设计。
现代控制理论的概念、方法

THANKS FOR WATCHING和优化控制,注重系统的全局性、 最优性和鲁棒性。
现代控制理论的重要性
工业自动化
现代控制理论为工业自动化提供了理论基础和技 术支持,提高了生产效率和产品质量。
航天与航空
在航天和航空领域,现代控制理论的应用对于飞 行器的稳定性和安全性至关重要。
能源与环境
在能源和环境领域,现代控制理论有助于实现能 源的高效利用和环境的可持续发展。
VS
详细描述
线性二次型最优控制基于最优控制理论, 通过最小化系统状态和控制输入的二次型 代价函数来寻找最优的控制策略。这种方 法能够有效地优化系统的性能,提高系统 的稳定性和动态响应能力。
预测控制
总结词
预测控制是一种基于模型预测和滚动优化的 控制方法。
详细描述
预测控制通过建立系统的预测模型,对未来 的系统行为进行预测,并滚动优化控制策略 以减小预测误差。这种方法具有较好的鲁棒 性和适应性,广泛应用于工业过程控制和智 能控制等领域。
现代控制理论的历史与发展
历史
现代控制理论起源于20世纪50年代,随着计算机技术和数学理论的不断发展而 逐步完善。
发展
现代控制理论的发展涉及多个学科领域,如线性系统理论、最优控制、鲁棒控 制、自适应控制等,为复杂系统的控制提供了更广泛和深入的理论基础。
02 现代控制理论的基本概念
系统建模
总结词
系统建模是现代控制理论的基础,它通过数学模型描述系统的动态行为。
详细描述
性能指标是用来评估控制系统性能的关键因素,包括稳定性、准确性、快速性和鲁棒性 等。稳定性表示系统在受到扰动后恢复平衡的能力;准确性表示系统输出与理想输出之 间的误差大小;快速性表示系统达到稳定状态所需的时间;鲁棒性表示系统在存在不确
现代控制理论第一章 ppt课件

1889-1976
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode
美国1905-1982
Bode was an American engineer, researcher, inventor, author and scientist,
of Dutch ancestry.
As a pioneer of modern control theory and electronic
telecommunications he revolutionized both the content and methodology of his chosen fields of research.
1.1 控制理论的发展历程
维纳,Norbert Wienner
1948年,维纳发表《控制论》,宣告了这门新兴学 科的诞生。这是他长期艰苦努力并与生理学家罗森 勃吕特等人多方面合作的伟大科学成果。
1964年1月,他由于“在纯粹数学和应用数学方面并 且勇于深入到工程和生物科学中去的多种令人惊异的 贡献及在这些领域中具有深远意义的开创性工作”荣 获美国总统授予的国家科学勋章。
1.1 控制理论的发展历程
维纳,Norbert Wienner
第一章,牛顿时间和柏格森时间 第二章,群和统计力学 第三章,时间序列、信息与通讯 第四章,反馈与振荡 第五章,计算机与神经系统 第六章,完形与普遍观念 第七章,控制论和精神病理学 第八章,信息、语言和社会 第九章,关于学习和自生殖机 第十章,脑电波与自行组织系统
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode
2 控制理论综述

控制论之父—韦纳
1948年,美国科学家伊万斯(W. R. Evans)创立了根轨迹分
析法,为分析系统性能随系统参数变化的规律提供了有力 工具。 这段时间有多本关于经典控制的经典名著出版,包括 H. Bode的Network Analysis and Feedback Amplifier(1945),钱 学森的《工程控制论》(Engineering Cybernetics) (1954)。
他们的研究成果解决了空间技术中出现的复杂控制问 题,并开拓了控制理论中最优控制理论这一新的领域。
现代控制理论发展的主要标志性内容:
五十年代后期,贝尔曼(Bellman)等人提出了状态分 析法;并于1957年提出了寻求最优控制的动态规划方法。 1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波 理论;1960年在控制系统的研究中成功地应用了状 态空间法,并提出了可控性和可观测性的新概念。 1961年庞特里亚金(俄国人)提出了极大值原理。
• ④极大验后估计——是使条件概率分布密度 达到极大的那个 x 值作为估值。需要知道条件概率分布密度。 • ⑤线性最小方差估计——为了进行最小方差估计和极大验后估计,需 要知道 p(x|z);为了进行极大似然估计,需要知道p(z|x) 。如果知道观 测值和被估值的一、二阶矩,在这种情况下,为了得到有用的结果, 必须对估计量的函数形式加以限制。通常限定所求的估计量是观测值 的线性函数,以估计误差阵达到最小作为最优估计的准则,按照这种 方式求得的最优估计值称为线性最小方差估计。 • ⑥维纳滤波——是线性最小方差估计的一种,适用于对有用信号和干 扰信号都是零均值的平稳随机过程的处理。设计维纳滤波器时必须知 道有用信号和干扰信号的自功率谱和互功率谱。 • ⑦卡尔曼滤波——也是一种线性最小方差估计,其算法是递推的。它 不仅适用于平稳随机过程,同样适用于非平稳随机过程。
现代控制理论课件教材

2. 1895年劳斯(Routh)与赫
尔维茨(Hurwitz)把马克 斯韦尔的思想扩展到高阶微 分方程描述的更复杂的系 统中,各自提出了两个著名
的稳定性判据—劳斯判据
和赫尔维茨判据。基本上 满足了二十世纪初期控制 赫尔维茨(Hurwitz)
工程师的需要。
同济大学汽车学院 2013
1.1 现代控制理论的产生与发展
水 运 仪 象 台
2. 公元1086-1089年 (北宋哲宗元祐初年), 我国发明的水运仪象台, 就是一种闭环自动调节系 统。
同济大学汽车学院 2013
1.1 现代控制理论的产生与发展
二 起步阶段
随着科学技术与工业生 产的发展,到十八世纪, 自动控制技术逐渐应用到 现代工业中。其中最卓越 的代表是瓦特(J.Watt) 发明的蒸汽机离心调速器, 加速了第一次工业革命的 步伐。
•成绩:
• 期终考试: 70% • 作业: 15% • 出席: 15%
同济大学汽车学院 2013
同济大学 汽车学院
College of Automotive, Tongji University
课程内容:
• 绪论 • 控制系统的状态空间描述 • 线性控制系统的运动分析 • 线性控制系统的能控性和能观性 • 控制系统的李雅普诺夫稳定性分析 • 状态反馈和状态观测器 • 最优控制
3.由于第二次世界大战需要 控制系统具有准确跟踪与补 偿能力,1932年奈奎斯特 (H.Nyquist)提出了频域 内研究系统的频率响应法, 为具有高质量的动态品质和 静态 准确度的军用控制系 统提供了所需的分析工具。
奈奎斯特
同济大学汽车学院 2013
1.1 现代控制理论的产生与发展
4.1948年伊万斯(W.R.Ewans)提出了复数域内 研究系统的根轨迹法。 建立在奈奎斯特的频率响应法和伊万斯的根轨 迹法基础上的理论,称为经典(古典)控制理论 (或自动控制理论)。
控制理论综述及其发展方向

控制理论的综述及发展方向1 控制理论的产生控制理论作为一门学科,它的真正应用开始于工业革命时期,即1788年瓦特发明蒸汽机飞球调速器。
该种采用机械式调节原理实现的蒸汽机速度自动控制是自动化应用的第一个里程碑。
二次大战前,控制系统的设计因为缺乏系统的理论指导而多采用试凑法,二次大战期间,由于建造飞机自动驾驶仪、雷达跟踪系统、火炮瞄准系统等军事设备的需要,推动了控制理论的飞跃发展。
1948年美国数学家维纳总结了前人的成果,认为世界存在3大要素:物质、能量、信息,发表了著名的《控制论》,书中论述了控制理论的一般方法,推广了反馈的概念,从而基本上确立了控制理论这门学科[1]。
2 控制理论的分类控制理论的发展分为经典控制理论阶段、现代控制理论阶段及大系统智能控制理论阶段,下面将详细介绍各个控制理论的特点及优缺点[2]。
2.1 经典控制理论自动控制理论中建立在频率响应法和根轨迹法基础上的一个分支。
经典控制理论的研究对象是单输入、单输出的自动控制系统,特别是线性定常系统。
经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。
经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频率域方法。
[3]经典控制理论主要用于解决反馈控制系统中控制器的分析与设计的问题。
如图1所示为反馈控制系统的简化原理框图。
图1 反馈控制系统简化原理框图典型的经典控制理论包括PID控制、Smith控制、解耦控制、串级控制等。
常接触到的系统,如机床和轧钢机中常用的调速系统、发电机的自动调节系统以及冶炼炉的温度自动控制系统等,这些系统均被当作单输入—单输出的线性定常系统来处理。
如果把某个干扰考虑在内,也只是将它们进行线性叠加而已。
解决上述问题时,采用频率法、根轨迹法、奈氏稳定判据、期望对数频率特性综合等方法是比较方便的,所得结果在对精确度、准确度要求不高的情况下是完全可用的。
经典控制理论和现代控制理论的区别和联系

1.经典控制理论与现代控制理论的区别与联系区别:(1)研究对象方面:经典控制系统一般局限于单输入单输出,线性定常系统。
严格的说,理想的线性系统在实际中并不存在。
实际的物理系统,由于组成系统的非线性元件的存在,可以说都就是非线性系统。
但就是,在系统非线性不严重的情况时,某些条件下可以近似成线性。
所以,实际中很多的系统都能用经典控制系统来研究。
所以,经典控制理论在系统的分析研究中发挥着巨大的作用。
现代控制理论相对于经典控制理论,应用的范围更广。
现代控制理论不仅适用于单输入单输出系统,还可以研究多输入多输出系统;不仅可以分析线性系统,还可以分析非线性系统; 不仅可以分析定常系统,还可以分析时变系统。
(2)数学建模方面:微分方程(适用于连续系统)与差分方程(适用于离散系统)就是描述与分析控制系统的基本方法。
然而,求解高阶与复杂的微分与差分方程较为繁琐,甚至难以求出具体的系统表达式。
所以,通过其它的数学模型来描述系统。
经典控制理论就是频域的方法,主要以根轨迹法与频域分析法为主要的分析、设计工具。
因此,经典控制理论就是以传递函数(零初始状态下,输出与输入Laplace变换之比)为数学模型。
传递函数适用于单输入单输出线性定常系统,能方便的处理这一类系统频率法或瞬态响应的分析与设计。
然而对于多信号、非线性与时变系统,传递函数这种数学模型就无能为力了。
传递函数只能反应系统的外部特性,即输入与输出的关系,而不能反应系统内部的动态变化特性。
现代控制理论则主要状态空间为描述系统的模型。
状态空间模型就是用一阶微分方程组来描述系统的方法,能够反应出系统内部的独立变量的变化关系,就是对系统的一种完全描述。
状态空间描述法不仅可以描述单输入单输出线性定常系统,还可以描述多输入多输出的非线性时变系统。
另外状态空间分析法还可以用计算机分析系统。
(3)应用领域方面:由于经典控制理论发展的比较早,相对而言理论比较成熟,并且生产生活中很多过程都可近似瞧为线性定常系统,所以经典控制理论应用的比较广泛。
经典控制理论与现代控制理论的比较研究

经典控制理论与现代控制理论的比较研究控制理论是一种研究如何准确控制和调节系统及其相关过程的科学。
控制理论的研究有着长久的历史,不同的时代和学派发布了各种各样的控制理论,经过漫长的发展和演进,经典控制理论和现代控制理论逐渐形成了两个不同的概念体系。
本文将从定义、方法、应用等方面对这两种理论进行比较研究。
一、定义经典控制理论指的是基于微积分和微分方程的传统控制理论,主要包括经典控制原理、传递函数方法、根轨迹法、频率响应法等。
这些方法均以线性等时不变(LTI)系统为基础,它对控制的实时性有非常明确的要求和限制。
现代控制理论是针对非线性、时变和复杂控制系统的研究,它以状态空间的概念为中心,发展出状态反馈控制、鲁棒控制、自适应控制、滑模控制等方法。
现代控制具有更广泛的控制对象,包含了许多复杂的非线性、时变系统和无模型系统。
二、方法1.经典控制方法传递函数法是经典控制理论主要的表达方式。
控制系统的传递函数描述了系统输入和输出之间的关系,可以通过频率对系统进行分析和设计。
根轨迹法是对系统特征根的分析,通过将系统特征曲线根轨迹描绘在复平面上,来判断系统的动态特性。
频域法是对系统的经典控制理论的最主要的定性和定量分析。
2.现代控制方法状态空间表示法是现代控制方法的基础,在这种方法中,控制系统以其联结的状态矢量和输入矢量为输入,采用状态方程和输出方程的形式描述系统的时域响应。
自适应控制方法是新型控制理论的典型代表,在这种方法中,控制器具有自适应性,可以根据控制对象的运动和负荷的变化实时地调整参数值。
滑模控制方法依赖于对滑动模式的选择、建模和控制等基本元素,引入了非线性切换面和滑动方式的思想从而实现高精度控制。
3.两种方法的比较(1)经典控制方法可以通用于大多数线性、等时不变的系统。
但是,许多实际系统通常具有非线性、时变特性,这使得经典控制方法难以应用。
(2)现代控制方法不仅可以处理非线性、时变系统,而且对不确定性和补偿人类失误问题的解决研究也十分重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论的产生、发展、内容、研究方法和应用经典控制理论与现代控制理论的差异建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。
线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。
按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。
非线性系统理论非线性系统的分析和综合理论尚不完善。
研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。
更一般的非线性系统理论还有待建立。
从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。
最优控制理论最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。
在最优控制理论中,用于综合最优控制系统的主要方法有极大值原理和动态规划。
最优控制理论的研究范围正在不断扩大,诸如大系统的最优控制、分布参数系统的最优控制等。
随机控制理论随机控制理论的目标是解决随机控制系统的分析和综合问题。
维纳滤波理论和卡尔曼-布什滤波理论是随机控制理论的基础之一。
随机控制理论的一个主要组成部分是随机最优控制,这类随机控制问题的求解有赖于动态规划的概念和方法。
适应控制理论适应控制系统是在模仿生物适应能力的思想基础上建立的一类可自动调整本身特性的控制系统。
适应控制系统的研究常可归结为如下的三个基本问题:①识别受控对象的动态特性;②在识别对象的基础上选择决策;③在决策的基础上做出反应或动作。
现代控制理论的发展1.智能控制(Intelligent Control)智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的自动控制。
智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。
智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采用符号信息处理、启发式程序设计、知识表示和自学习、推理与决策等智能化技术,对外界环境和系统过程进行理解、判断、预测和规划,使被控对象按一定要求达到预定的目的。
2.非线性控制(Nonlinear Control)非线性控制是复杂控制理论中一个重要的基本问题,也是一个难点课题,它的发展几乎与线性系统平行[2][3]。
非线性系统的发展,数学工具是一个相当困难的问题,泰勒级数展开对有些情况是不能适用的。
古典理论中的“相平面”法只适用于二阶系统,适用于含有一个非线性元件的高阶系统的“描述函数”法也是一种近似方法。
由于非线性系统的研究缺乏系统的、一般性的理论及方法,于是综合方法得到较大的发展3.自适应控制(Adaptive Control)自适应控制系统通过不断地测量系统的输入、状态、输出或性能参数,逐渐了解和掌握对象,然后根据所得的信息按一定的设计方法,作出决策去更新控制器的结构和参数以适应环境的变化,达到所要求的控制性能指标。
4.鲁棒控制(Robust Control)过程控制中面临的一个重要问题就是模型不确定性,鲁棒控制主要解决模型的不确定性问题,但在处理方法上与自适应控制有所不同。
自适应控制的基本思想是进行模型参数的辩识,进而设计控制器。
控制器参数的调整依赖于模型参数的更新,不能预先把可能出现的不确定性考虑进去。
而鲁棒控制在设计控制器时尽量利用不确定性信息来设计一个控制器,使得不确定参数出现时仍能满足性能指标要求。
鲁棒控制认为系统的不确定性可用模型集来描述,系统的模型并不唯一,可以是模型集里的任一元素,但在所设计的控制器下,都能使模型集里的元素满足要求5.模糊控制(Fuzzy Control)模糊控制借助模糊数学模拟人的思维方法,将工艺操作人员的经验加以总结,运用语言变量和模糊逻辑理论进行推理和决策,对复杂对象进行控制。
模糊控制既不是指被控过程是模糊的,也不意味控制器是不确定的,它是表示知识和概念上的模糊性,它完成的工作是完全确定的。
1974年英国工程师E.H.Mamdam首次把Fuzzy集合理论用于锅炉和蒸气机的控制以来,开辟了Fuzzy控制的新领域,特别是对于大时滞、非线性等难以建立精确数学模型的复杂系统,通过计算机实现模糊控制往往能取得很好的结果。
模糊控制的特点是不需要精确的数学模型,鲁棒性强,控制效果好,容易克服非线性因素的影响,控制方法易于掌握。
最近有人提出神经——模糊Inter3融合控制模型,即把融合结构、融合算法及控制合为一体进行设计。
又有人提出利用同伦BP网络记忆模糊规则,以“联想方式”使用这些经验。
模糊控制有待进一步研究的问题:模糊控制系统的功能、稳定性、最优化问题的评价;非线性复杂系统的模糊建模,模糊规则的建立和模糊推理算法的研究;找出可遵循的一般设计原则[4]。
6.神经网络控制(Neural Network Control)神经网络是由所谓神经元的简单单元按并行结构经过可调的连接权构成的网络。
神经网络的种类很多,控制中常用的有多层前向BP网络,RBF网络,Hopfield网络以及自适应共振理论模型(ART)等。
神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。
神经网络在控制系统中可充当对象的模型,还可充当控制器。
7.实时专家控制(Real Time Expert Control)专家系统是一个具有大量专门知识和经验的程序系统,它应用人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。
专家系统和传统的计算机程序最本质的区别在于:专家系统所要解决的问题一般没有算法解,并且往往要在不完全、不精确或不确定的信息基础上作出结论。
实时专家系统应用模糊逻辑控制和神经网络理论,融进专家系统自适应地管理一个客体或过程的全面行为,自动采集生产过程变量,解释控制系统的当前状况,预测过程的未来行为,诊断可能发生的问题,不断修正和执行控制计划。
实时专家系统具有启发性、透明性、灵活性等特点,目前已经在航天试验指挥、工业炉窑的控制、高炉炉热诊断中得到广泛应用。
目前需要进一步研究的问题是如何用简洁语言来描述人类长期积累的经验知识,提高联想化记忆和自学习能力。
8.定性控制(Qualitative Control)定性控制是指系统的状态变量为定性量时(其值不是某一精确值而只知其处于某一范围内),应用定性推理对系统施加控制变量使系统在某一期望范围[7]。
9.预测控制(Predictive Control)预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制[8]。
目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。
这些方法具有以下特征:最近有人提出一种新的基于主导内模概念的预测控制方法:结构对外来激励的响应主要由其本身的模态所决定,即结构只对激励信息中与其起主导作用的几个主要自振频率相接近的频率成分有较大的响应。
目前利用神经网络对被控对象进行在线辨识,然后用广义预测控制规律进行控制得到较多重视。
预测控制目前存在的问题是预测精度不高;反馈校正方法单调;滚动优化策略少;对任意的一般系统,其稳定性和鲁棒性分析较难进行;参数调整的总体规则虽然比较明确,但对不同类型的系统的具体调整方法仍有待进一步总结。
10.分布式控制系统(Distributed Control System)分布式控制系统又称集散控制系统,是70年代中期发展起来的新型计算机控制系统,它融合了控制技术(Control),计算机技术(Computer),通信技术(Communication),图像显示技术(CRT)的“4C”技术,形成了以微处理器为核心的系统,实现对生产过程的监视、控制和管理。
既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。
分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。