多元统计分析论文
多元统计聚类分析论文_多元统计分析论文

多元统计聚类分析论文_多元统计分析论文多元统计分析论文篇1多元统计分析课程教学探讨摘要:多元统计分析是统计学的一个重要分支,它在自然科学、社会科学、教育卫生以及经济金融等领域具有广泛的应用。
利用多元统计分析方法分析和处理实际数据、解决实际问题是统计学专业学生必备的基本能力,因此,如何进行多元统计分析课程的教学具有相当重要的意义。
本文从教学实践出发,对多元统计分析课程的教学进行了探索和实践,提出了一些教学方法。
关键词:以人为本;案例教学;软件编程;考试改革;创新教学多元统计分析是统计学中内容极其丰富、应用极其广泛的一个重要分支。
随着计算机和统计学的发展,它在自然科学、社会科学、教育卫生以及经济金融等领域中的应用越来越广泛,它已成为进行多元数据分析与处理的非常重要的工具之一。
随着社会的发展,我们常需要处理较为复杂的多维数据以及高维或超高维数据,特别地,对于统计学专业的学生,利用多元统计分析方法分析和处理日常生活中的多维数据是他们应该具备的基本能力。
因此,如何让学生很好地掌握一些基本的多元分析方法并能在实践中加以应用是我们统计学专业的教师应该思考的重要问题。
通过多年的实践教学,我们对多元统计分析课程的教学进行了探索和实践,主要在以下几个方面进行了探索和尝试。
一、转变教育观念,树立“以人为本”的教学理念教育的对象是大学生,教育的目的是以学生的终身发展为基础的。
在教学过程中,我们教师首先应转变教育观念,处处体现以学生为本的人文关怀与教育。
关注学生的思想、学生的需要以及在当今时代下学生所面临的挑战与机遇,争取成为学生的良师益友,建立良好的师生关系;通过案例教学、启发式教学等等多种教学方法,鼓励和促使学生积极参与课堂教学,变被动学习为主动学习,使学生成为课堂的主体;正视学生之间的个体差异,不歧视差生也不偏爱优等生,实施因材施教,使每个学生都得到不同程度的提高与进步。
二、注重案例教学,培养“学以致用”的学习意识三、结合软件教学,提高学生编程和数据处理能力多元分析方法分析和处理的数据是多维数据,通常维数较多,而且观测数据也较多,计算量都比较大,通常需要计算机才能实现。
多元统计分析 课程论文.doc

HUNAN UNIVERSITY 课程论文论文题目:有关我国居民消费因素的分析指导老师:学生名字:学生学号:专业班级:经济统计学院名称: xxx学院目录概述 (1)一、引言 (2)二、数据概述系 (2)三、分析方法 (3)四、数据分析 (3)(一)相关分析 (3)(二)因子分析 (10)(三)聚类分析 (15)五、分析与建议 (18)六、心得体会 (19)参考文献 (20)有关我国居民消费因素的分析概述生活离不开消费,随着社会发展,生活水平提高,消费也在逐渐变化,并且随着经济发展,各个地区的发展水平的差异,消费也产生了不同的变化,此篇论文主要目的是利用多元统计的方法,借助spss软件,对我国31个地区的居民消费情况进行分析。
了解我国31个地区的居民消费情况与统计指标食品烟酒、衣着、居住等8个指标之间的一些联系。
并且通过因子得分,计算并排列出消费因素的综合得分,最后通过聚类分析,对我国31个地区的居民消费情况做一个大致分类,进而对各个地区分类后的情况做一个分析和总结并结合文献以及资料提出一些意见和看法。
一.引言消费在宏观经济学中,指某时期一人或一国用于消费品的总支出。
与经济活动有着密不可分的关系,消费作为社会再生产的最终阶段,是生产者生产产品的目的和导向。
如果没有了消费,生产的存在也会变得毫无意义,消费促进了生产,给生产带来了源动力。
消费者的消费需求,也推动了生产的发展。
并且消费促进了货币流通,提供了就业岗位,降低失业率,拉动了经济增长,最终有助于提高人民的生活水平。
消费是国民经济保持增长的动力,只有拉动消费需求的增长,才能促进投资,促进产业结构的调整、宏观经济的增长,满足人民的物质生活的需求,实现生活水平的提高。
故消费和生活水平有着密切的关系,从而,通过对我国居民消费水平的分析,不但可以直观了解到我国总的消费趋向,各地区不同的消费主导因素,还能客观反映我国总的生活水平也就是经济发展的大致情况。
统计年鉴中的八项指标:食品烟酒、衣着、居住、生活用及服务、交通通信、教育文化娱乐、医疗保健、其他用品及服务。
多元统计分析论文

多元统计分析论文关于各地区固定资产投资价格指数的分析摘要:本文主要通过主成分分析、聚类分析和判别分析对全国30多个省的固定资产投资指数、建筑安装工程指数、设备工器具购置指数、其他费用指数进行分析。
关键词:主成分分析、欧氏距离、系统聚类分析、判别分析Summary:This article mainly through the principal components analysis, the cluster analysis and the distinction analysis to the national more than 30 province investment in the fixed assets indices, construction and installation the project index, the equipment labor appliance purchase index, other expense index carries on the analysis.Keywords:Principal Components Analysis、Euclidean distance、Discriminant analysis一、导言:注意微量信息引起的巨变,蝴蝶效应就是微量信息在一定条件下发生作用的过程。
在我们的经济活动中,每天的信息是大量的,这就要求我们从中发现那些对经济能产生最大影响的信息,有些是微量信息,有些是次级别的信息,本文的各地区固定资产投资价格指数就是一个非常值得深入发觉的信息。
该指数可以准确地反映固定资产投资中涉及的各类投资品和取费项目价格变动趋势和变动幅度,消除按现价计算的固定资产投资指标中的价格变动因素,真实地反映固定资产投资的规模、速度、结构和效益,为国家科学地制定、检查固定资产投资计划并提高宏观调控水平,为完善国民经济核算体系提供科学的、可靠的依据。
多元统计分析课程论文

主消费因子 F1 得分前五名地区依次是上海、广东、浙江、北京、福建,其中 上海的得分为3.44500,广东的得分为2.3833,远远高于其他地区,说明上海、 广东主要消费支出远远高于其他地区, 与实际情况比较接近。 主消费因子 F1 最后 五名地区依次是新疆、河南、青海、甘肃、黑龙江,这些地区经济发展相对落后, 人均消费支出低,其主要消费支出也低,但与实际情况还存在差距,贵州城镇居 民消费应比黑龙江消费要低,黑龙江不应划为最低人均消费地区。 次消费因子 F2 得分前五名地区依次是北京、内蒙古、吉林、天津、黑龙江; 次消费因子 F2 最后五名地区依次是福建、贵州、广西、西藏、海南,衣着和医 疗器械人均消费,在实际消费过程中,人们不容易观察到,这个结论还缺乏一定 依据;综合得分 F 前五名地区依次是上海、北京、广东、浙江、天津;这五个地 区经济都发达,人均收入和消费支出都高,将这些地区分为一类比较切合实际。 综合得分 F 最后五名地区依次是新疆、云南、甘肃、贵州、青海, 这些地区 人口稀少,经济发达相当落后,人民收入和消费水平均处于全国最低水平,与人 们观察到的实际情况比较接近, 将这些地区分为一类, 其他地区则分为另外一类, 这样一来就可以将31个省、市、自治区就分为三类,第一类为因子综合得分前五 名地区,第三类为因子综合得分最后五名地区,其余地区则划分为第二类。这种 分类结果比较切合实际情况。 分类结果如下表: 类别 地区 第一类 上海、北京、广东、浙江、天津 第二类 其余地区(福建、山东、湖南等) 第三类 新疆、云南、甘肃、贵州、青海
以各因子的方差贡献率占两个因子总方差贡献率的比重作为权重进行加权汇总, 算出各地区的综合得分 F ,即 F (56.182 F1 27.662 F2 ) / 83.845 ,结果如下表:
多元统计分析毕业论文

2041模型及方程20411cev模型20412hjb方程2142指数效用函数对应的最优策略23421最优策略及其值函数23燕山大学本科生毕业论文iv422数值计算及其经济分析2543幂效用函数对应的最优策略28431最优策略及其值函数28432数值计算及其经济分析3044对数效用函数对应的最优策略34441最优策略及其值函数35442数值计算及其经济分析3645本章小结38结论39参考文献ii致谢错误
Abstract
Ill order to obtain more benefits and in response to insurance supervision,better risk-averse, the pursuit of greater profits, insurance companies not only on its reinsurance arrangement the hosting business, there will be suiplus to invest,. In reality, insurers1losses fiom undeiwriting compensation and investment aspects, such as earthquakes, air accidents caused by huge payments, investment losses from the financial crisis. In this case, the analysis of optimal reinsurance and investment strategy, has veiy important significance for the insurance・
多元统计分析期末论文

吉林财经大学2012-2013学年第一学期多元统计分析期末论文学院:工商管理专业:人力资源管理年级:1012学号:0802101218姓名:齐婧妍我国地区经济发展浅析摘要:本文主要运用聚类分析法,主成分分析法,因子分析法三种多元统计分析方法对2011年我国31个省、市、自治区的地区经济发展状况以及影响地区经济发展的主要因素(指标)相结合进行剖析。
根据不同分类方法得出不同的分析结果,从而从不同角度分析我国各地区经济发展存在的主要差异以及导致这些差异出现的原因,并最终就三种统计分析方法的结果对我国目前地区经济发展状况进行客观的综合概述。
关键字:地区发展水平聚类分析法主成分分析法因子分析法一、引言在日常生活过程中,我们常常遇到一些计算量大,分析工作复杂度高的数据分析工作,为了能够更加简便地进行数据分析,在此给大家介绍几种多元统计分析的方法。
本文主要运用了聚类分析法,主成分分析法和因子分析法对2011年我国31个省市自治区地区经济发展水平以及影响地区经济发展的几项重要指标进行了统计分析。
二、聚类分析聚类分析是研究“物以类聚”的一种方法。
聚类分析是应用最广泛的一种分类技术,它把性质相近的个体归为一类,使得同一类中的个体具有高度的同质性,不同类之间的个体具有高度的异质性。
聚类分析的职能是建立一种分类方法,它是将一批样品或变量,按照它们在性质上的相似程度进行分类。
通常我们用距离来度量样品之间的相似程度,用相似系数来度量变量之间的相似程度。
1.参与聚类的样本总量表通过观察上表,我们可以看出,在整个聚类过程中,描述我国所有省、市、自治区经济发展状况的31个样品都参与了聚类分析过程,没有遗失或未参与的样品。
这充分说明此次聚类分析已经对全部31个样品的各项指标进行了相似聚类,不需要再利用判别分析再进行二度聚类。
2.样品聚为3类时的样品归类表3.所有样品的聚类树形图(1)结合以上样品归类情况表和聚类树形图,分别给出了将2011年我国31个省、市、自治区经济发展状况作为样品聚类分为三类时的各样品所属类别。
多元统计分析课程论文

HUNAN UNIVERSITY 课程论文论文题目:有关我国居民消费因素的分析指导老师:学生名字:学生学号:专业班级:经济统计学院名称:xxx学院目录12...2.. .3. .. (3).. 310.15.18....19....20....有关我国居民消费因素的分析概述生活离不开消费,随着社会发展,生活水平提高,消费也在逐渐变化,并且随着经济发展,各个地区的发展水平的差异,消费也产生了不同的变化,此篇论文主要目的是利用多元统计的方法,借助spss软件,对我国31 个地区的居民消费情况进行分析。
了解我国31 个地区的居民消费情况与统计指标食品烟酒、衣着、居住等 8 个指标之间的一些联系。
并且通过因子得分,计算并排列出消费因素的综合得分,最后通过聚类分析,对我国31 个地区的居民消费情况做一个大致分类,进而对各个地区分类后的情况做一个分析和总结并结合文献以及资料提出一些意见和看法。
一 .引言消费在宏观经济学中,指某时期一人或一国用于消费品的总支出。
与经济活动有着密不可分的关系,消费作为社会再生产的最终阶段,是生产者生产产品的目的和导向。
如果没有了消费,生产的存在也会变得毫无意义,消费促进了生产,给生产带来了源动力。
消费者的消费需求,也推动了生产的发展。
并且消费促进了货币流通,提供了就业岗位,降低失业率,拉动了经济增长,最终有助于提高人民的生活水平。
消费是国民经济保持增长的动力,只有拉动消费需求的增长,才能促进投资,促进产业结构的调整、宏观经济的增长,满足人民的物质生活的需求,实现生活水平的提高。
故消费和生活水平有着密切的关系,从而,通过对我国居民消费水平的分析,不但可以直观了解到我国总的消费趋向,各地区不同的消费主导因素,还能客观反映我国总的生活水平也就是经济发展的大致情况。
统计年鉴中的八项指标:食品烟酒、衣着、居住、生活用及服务、交通通信、教育文化娱乐、医疗保健、其他用品及服务。
囊括了居民消费的全部项目,居民日常消费可以清楚地从数据中了解到。
多元统计分析论文范文精选3篇(全文)

多元统计分析论文范文精选3篇多元统计分析法是证券投资中非常重要的分析方法,它的理论内容包含了多个方面的理论方法,每个理论分析方法对证券投资有着不同的分析作用,应该对每个分析方法进行认真研究得出相关的结论,再应用到实际经济生活中。
1聚类分析在证券投资中的应用(1)定义:聚类分析是依据研究对象的特征对其进行分类、减少研究对象的数目,也叫分类分析和数值分析,是一种统计分析技术。
(2)在证券投资中应用聚类分析,是基于证券投资的各种基本特点而决定的。
证券投资中包含着非常多的动态的变化因素,要认真分析证券投资中各种因素的动态变化情况,找出合适的方法对这种动态情况进行把握规范处理,使投资分析更加的准确、精确。
1)弥补影响股票价格波动因素的不确定性证券市场受到非常多方面的影响,具有很大的波动性和不稳定性,这种波动性也造成了证券市场极不稳定的进展状态,这些状态的好坏对证券市场投资者和小股民有着非常重要的影响。
聚类分析的方法是建立在基础分析之上的,立足基础进展长远,并对股票的基本层面的因素进行量化分析,并认真分析掌握结果再应用于证券投资实践中,从股票的基本特征出发,从深层次挖掘股票的内在价值,并将这些价值发挥到最大的效用。
影响证券投资市场波动的因素非常多,通过聚类分析得出的数据更加的全面科学,对于投资者来说这些数据是进行理性投资必不可少的参考依据。
2)聚类分析深层次分析了与证券市场相关的行业和公司的成长性聚类分析是一种非常专业的投资分析方法,它善于利用证券投资过程中出现的各种数据来对证券所涉及的各种行业和公司进行具体的行业分析,这些数据所产生额模型是证券投资者进行证券投资必不可少的依据。
而所谓成长性是一种是一个行业和一个公司进展的变化趋势,聚类分析通过各种数据总结归纳出某个行业的进展历史和未来进展趋势,并不断的进行自我检测和自我更新。
并且,要在实际生活中更好的利用这种分析方法进行分析研究总结,就要有各种准确的数据来和不同成长阶段的不同参数,但是,猎取这种参数比较困难,需要在证券市场实际交易和对行业和公司的不断调查研究中才能得出正确的数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析实践论文
院系:理学院
专业:统计学
年级:2010
姓名:***
学号:***********
我国城镇居民人均消费支出的多元统计分析
樊恩泽
摘要:本文本文综合了主成分因子分析与系统聚类分析,先进行主成分因子分析, 再用进行聚类分析。
采用2011年我国31个省、市、自治区城镇居民人均消费支出数据,首先利用主成分因子分析的方法, 找出影响我国城镇居民人均消费支出的主成分, 计算各样本的主成分得分;其次运用系统聚类分析法,对各地区人均消费水平进行分类,结果表明,系统聚类分析法得到的结果也较好;最后对于扩大国内消费提出相关建议。
关键词:主成分分析聚类分析居民人均消费支出
1、引言
人均消费支出指居民用于满足家庭日常生活消费的全部支出,包括购买实物支出和服务性消费支出。
消费支出按商品和服务的用途可分为食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住、杂项商品和服务等八大类。
人均消费支出是社会消费需求的主体,是拉动经济增长的直接因素,是体现居民生活水平和质量的重要指标。
本文选取2011年我国城镇居民人均消费支出数据,主要利用三种统计方法进行分析:主成分分析法、聚类分析法。
将全国31个省、市、自治区进行分类和排序,并与人们实际观察到的情况进行比较。
1.1主成分分析
主成分分析是将分量相关的原始变量, 借助于一个正交变换转化为不相关的新变量, 并以方差作为信息量的测度, 对新变量进行降维, 取累计贡献率大的若干成分作为主成分。
这些主成分能够反映原始变量的绝大部分信息, 它们通常表示为原始变量的某种线性组合。
1.2聚类分析
聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术。
在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作
2、数据来源及处理
2.1统计思想
主成分因子分析的基本思想是通过对变量相关系数矩阵内部结构的研究,找出能控制所以变量的少数几个随机变量去描述多个变量之间的相关关系,并依据相关性的大小将变量分组,使得同组内的变量之间相关性较高,不同组的变量相关性较低。
每组代表一个基本结构,这个基本结构成为公共因子。
对于所研究的问题试图用最小个数的不可观测的所谓公共因子的线性函数与特殊因子之和来描述原来可观测的每一个变量。
下表是要进行处理的31个省市的城镇居民人均消费支出的相关原始数据,数据来源于《2011中国统计年鉴》。
X1:食品x2:衣着x3:居住x4:家庭用品x5:交通通信x6:文教娱乐x7:医疗保健
表1
2.2主成分分析
表2:因子解释原始变量方差的情况
该表显示了各主成分解释原始变量总方差的情况,主成分几乎包含了各个原始变量至少90.517%的信息,可见效果比较好。
表3:该表为7个成分的相关系数
表4:因子载荷矩阵的成分图
该表给出了标准化原始变量用求得的主成分线性表示的近似表达式,用prin1,prin2来表示各个主成分,则有该表可以得:
标准化的rin2
+
⨯
≈
⨯
x1p
prin1
0.862
0.470
标准化的prin2
⨯
≈
x2⨯
0.322
-
prin1
0.899
标准化的prin2
⨯
x3⨯
≈
-
0.022
prin1
0.921
表5:主成分得分
表6:因子得分系数矩阵
该表由公式517
(F
84
F
F⨯
⨯
.
=所得,显示了各个主成分的因子得分
+
90
.
/)2
622
1
.5
895
和主成分得分。
图1
主消费因子F1得分前五名地区依次是上海、广东、浙江、北京、福建,远远高于其他地区,说明上海、广东主要城镇居民人均消费支出远远高于其他地区,与实际情况比较接近。
主消费因子F1 最后五名地区依次是新疆、河南、青海、甘肃、黑龙江,这些地区经济发展相对落后,人均消费支出低,其主要消费支出也低,但与实际情况还存在差距,贵州城镇居民消费应比黑龙江消费要低,黑龙江不应划为最低人均消费地区。
次消费因子F2 得分前五名地区依次是北京、内蒙古、吉林、天津、黑龙江;次消费因子F2 最后五名地区依次是福建、贵州、广西、西藏、海南,衣着人均消费,在实际消费过程中,人们不容易观察到,这个结论还缺乏一定依据;综合得分F 前五名地区依次是上海、北京、广东、浙江、天津;这五个地区经济都发达,人均收入和消费支出都高,将
这些地区分为一类比较切合实际。
综合得分F 最后五名地区依次是新疆、云南、甘肃、贵州、青海,这些地区人口稀少,经济发达相当落后,人民收入和消费水平均处于全国最低水平,与人们观察到的实际情况比较接近,将这些地区分为一类,其他地区则分为另外一类,这样一来就可以将31个省、市、自治区就分为三类,第一类为因子综合得分前五名地区,第三类为因子综合得分最后五名地区,其余地区则划分为第二类。
这种
分类结果比较切合实际情况。
2.3聚类分析
表7
表8
图2
结果表明:我国各类地区城镇居民人均消费支出分类效果较好,且不同地区的消费结构有着各自的特点。
综合考虑将我国各地区城镇居民人均消费分为四类,较好地反映了人们观察到的实际情况,第一类为上海,2011年人均消费支出最高。
该地区的食品支出、交通和通信支出、教育文化娱乐服务支出远远高出全国平均水平。
第二类为北京、天津、福建、浙江、广东,在这些地区中,北京的娱乐教育文化服务支出在全国31 个省份中名列前茅,北京的科研机构多,高等院校云集,教育发达,娱乐设施先进齐全,这些都是导致北京在该项支出比例高的原因。
第四类为西藏,其余地区为第三类。
第三类中的样本数量较多,情况较为复杂。
其中
山东、江苏等地区经济一直较为发达,而湖北、湖南、安徽等地区虽经济发展处于中等水平,但近年来在医疗保健和教育文化娱乐等方面的支出比例明显增大,说明其居民消费结构逐渐合理化,已与很多经济发达地区趋同,使得跃居第三梯队。
然而,甘肃、贵州、四川、云南等地区城镇居民收入水平较低,这些地区的经济发展仍应引起国家重视,需要加大扶持力度。
3、总结
本文根据2011年我国城镇居民人均消费支出数据,利用系统主成分因子分析法和系统聚类分析法,对各地区31个省、市、自治区城镇居民人均消费进行分类,首先利用主成分因子分析法进行分析,根据综合得分对我国各地区城镇居民人均消费支出进行排序和分类,并进行综合评价,结果表明,分为三类较好地反映实际情况,然后利用系统聚类分析法,分类结果显示,系统聚类分析法得出的结果也较好,但同时也存在一定缺陷,对于聚类分析法,它是一种比较好的排序方法,但需要指出的是,本文没有对我国城镇居民人均消费支出结构进行详细探讨,仅仅是进行分类和排序。
4、优缺点
4.1 优点
1.主成分因子分析方法充分提取了大量的信息;
2.利用系统聚类分析得出我国各类地区城镇居民人均消费支出分类效果较好。
4.2 缺点
1.系统聚类分析法得出的结果较好,但同时也存在一定缺陷;
2.本文没有对我国城镇居民人均消费支出结构进行详细探讨,仅仅是进行分类和排序。
5、建议
根据上面两种统计分析表明:经济发展较好的地区,居民的消费水平较高,消费结构也越合理。
而且,居民收入水平是影响居民消费需求最直接、最根本的因素,并最终决定着居民的消费层次和消费结构。
但是,除收入水平外,还有很多因素影响居民消费结构,如:价格水平、消费习惯、消费环境、消费心理预期等等,因而,政府也要继续出台切实
有效的政策措施,增加居民消费积极性,并引导居民消费结构向更健康、合理的方向演进,以此全面提高我国各地区城镇居民的生活质量。
鉴于此,提出以下几点建议:
1、提高居民收入水平,增强扩大消费的基础。
2、改善收入分配结构,增强中低收入人群的消费能力,提高劳动报酬在国民收入分配中的比重,建立健全工资正常增长机制,提高居民的资本分配参与度,划拨部分国有股充实个人养老金账户,完善和落实促进农民增收减负的政策措施,将所得税征收重点放在高收入人群,减少中低收入人群的税负,增加城镇居民人均可支配收入。
3、刺激消费,积极培育新的消费热点。
4、加快中西部发展,缩小地区相对差异。
参考文献:
[1] 中国统计年鉴2011年.中国统计出版社.
[2] 何晓群编著.《多元统计分析》.中国人民大学出版社2004 年版.
[3] 闫新华,王华.我国城镇居民消费水平的实证研究[J].统计与信息论坛,2003.
[4] 卢纹岱. SPSS for Windows 统计分析[M].北京:电子工业出版社,2000.
[5] 宇传华编. 《SPSS 与统计分析》.电子工业出版社2007 年版.
[6] 罗积玉邢瑛.经济统计分析方法与预测[M].北京:清华大学出版社,1990.
[7] 朱建军.我国城镇居民消费结构主成分分析[J].无锡商业职业技术学院学报,2009(02).
[8] 吴异光.对我国居民消费的统计分析[J].北京工商大学学报(社会科学版),2002(03).
附录
数据来源于《中国统计年鉴2011》
2011年我国各地区城镇居民家庭平均每人全年消费性支出。