MATLAB 迭代法
matlab迭代法解线性方程组

function x=ak(a,b)%a为系数矩阵,b为初始向量(默认为零向量)
%e为精度(默认为1e-6),N为最大迭代次数(默认为100),x为返回解向量
n=length(b);
N=100;
e=1e-6;
x0=zeros(n,1)
%生成一n*1阶零矩阵
x=x0;
x0=x+2*e;
k=0;
d=diag(diag(a));
%生成一个除对角线上元素不为零外其他元素皆为零的矩阵d,且d对角线上的元素为矩阵a 对角线上的元素
l=-tril(a,-1);
%生成一个下三角矩阵
u=-triu(a,1);
%生成一个上三角矩阵
while norm(x0-x,inf)>e & k<N %norm(x0-x,inf)为矩阵(x0-x)的无穷范数
k=k+1;
x0=x;
x=inv(d)*(l+u)*x+inv(d)*b;%雅可比迭代公式k
disp(x')
end
if k==N warning('已达最大迭代次数'); end
function X=BDD(f,x0,TOL)
%X用来存储迭代过程所有的根;
%f是符合不动点迭代要求的迭代方程;%x0设定的迭代初值;
%TOL允许的误差值;
x=feval(f,x0);
n=1;
X(:,n)=x;
while abs(x-x0)>TOL
x0=x;
x=feval(f,x0);
n=n+1;
X(:,n)=x;
end。
迭代法matlab

迭代法matlab一、引言编程是计算机科学中非常重要的一部分,它能够帮助我们解决各种各样的问题。
在计算机科学中,迭代法(Iteration Method)是一种常用的解决数值问题的方法。
本文将详细介绍迭代法在MATLAB中的应用及其原理。
二、迭代法的原理迭代法是一种通过递归或循环计算来逼近方程解的方法。
它通常用于无法通过解析方法求解的问题,例如非线性方程、积分、微分方程等。
迭代法基于以下原理: 1. 初始值的选择:我们需要选择一个合适的初始值作为迭代的起点。
2. 迭代公式的确定:我们需要找到一个迭代公式(或更新规则),通过不断迭代来逼近方程的解。
3. 精度要求的设定:我们需要设定一个精度要求,当迭代结果达到该精度要求时,迭代可以停止。
三、迭代法在MATLAB中的应用MATLAB是一款功能强大的科学计算软件,它提供了丰富的数学函数和工具箱,方便我们进行数值计算。
下面是迭代法在MATLAB中的常见应用场景和示例代码。
3.1 解非线性方程迭代法可用于解非线性方程。
例如,我们要解方程f(x) = 0,我们可以通过不断迭代来逼近方程的解。
以下是一个示例代码:function [x] = iterationMethod(f, x0, epsilon, maxIter)% f: 方程的函数句柄% x0: 初始值% epsilon: 精度要求% maxIter: 最大迭代次数x = x0;iter = 0;while iter < maxIterx_new = f(x); % 迭代公式if abs(x_new - x) < epsilonbreak;endx = x_new;iter = iter + 1;endif iter == maxIterdisp('迭代次数已达到最大值,未能满足精度要求!');elsedisp(['迭代成功,解为:', num2str(x)]);endend3.2 求解积分迭代法还可用于求解积分。
Matlab中的迭代法和数值求解技巧

Matlab中的迭代法和数值求解技巧引言:在科学与工程领域中,数值求解是十分重要的一项技术。
在很多实际问题中,往往难以找到解析解或者解析解的求解过程比较复杂。
这时候,我们就需要使用数值方法来近似求解。
Matlab作为一款功能强大的数值计算软件,在迭代法和数值求解领域有着广泛的应用。
本文将围绕Matlab中的迭代法和数值求解技巧展开讨论。
第一部分:基本迭代法介绍1.1 迭代法的概念迭代法是一种通过不断逼近的方式,求解方程或者函数零点的方法。
其基本思想是从一个初始的近似解开始,根据一定的迭代公式来逐步逼近真实解。
在Matlab中,使用迭代法可以通过编写适当的算法来实现。
1.2 迭代法的种类常见的迭代法包括牛顿法、割线法、迭代法等。
其中,牛顿法是一种通过构造切线来逼近函数零点的方法,而割线法则是通过构造两点之间的割线来逼近函数零点的方法。
迭代法是一种比较通用的方法,可以根据具体问题选择合适的迭代公式。
1.3 在Matlab中实现迭代法在Matlab中,可以使用循环结构来实现迭代法。
首先,需要指定一个初始的近似解,然后通过不断迭代来逼近真实解。
具体的迭代公式可以根据问题的特点来确定。
在迭代过程中,可以设置一个终止条件,当满足终止条件时,结束迭代,并输出近似解。
第二部分:数值求解技巧2.1 数值求解的意义数值求解是一种通过近似方法求解数学问题的技术,广泛应用于科学和工程领域。
与解析解相比,数值求解更加灵活,并且可以处理复杂的问题。
Matlab提供了丰富的数值求解函数,方便用户进行数值计算和分析。
2.2 数值求解函数的分类Matlab中的数值求解函数可以分为线性方程求解、非线性方程求解、最小二乘拟合等等。
线性方程求解函数常用于解决线性代数方程组,非线性方程求解函数则用于求解非线性方程或方程组。
最小二乘拟合函数可以用于拟合曲线或曲面。
2.3 Matlab中数值求解函数的使用使用Matlab中的数值求解函数,首先需要了解函数的输入和输出格式,然后根据具体的问题选择合适的函数。
MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。
其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。
本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。
二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。
在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。
首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。
直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对复杂方程的迭代计算来评估迭代法的性能。
2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。
具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。
然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。
3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。
具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。
如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。
如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。
直到新的区间的长度小于规定的误差阈值为止。
本实验将通过对复杂方程的二分计算来评估二分法的性能。
三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。
matlab迭代法求解方程

matlab迭代法求解方程在MATLAB中,可以使用迭代法来求解方程。
迭代法是一种通过反复迭代逼近方程解的方法。
下面我将从多个角度全面回答你关于MATLAB迭代法求解方程的问题。
首先,迭代法的基本思想是通过不断迭代一个初始猜测值,使得迭代序列逐渐趋近方程的解。
在MATLAB中,可以使用循环结构来实现迭代过程。
一般来说,迭代法需要满足收敛条件,即迭代序列能够收敛到方程的解。
常见的迭代法包括简单迭代法、牛顿迭代法和割线法等。
其次,我将介绍一种常见的迭代法——简单迭代法(也称为不动点迭代法)。
简单迭代法的基本思想是将方程转化为等价的不动点形式,即将方程f(x) = 0转化为x = g(x)的形式。
然后,通过迭代序列x_{n+1} = g(x_n)来逼近方程的解。
在MATLAB中,可以通过编写一个循环结构来实现简单迭代法。
下面是一个使用简单迭代法求解方程的MATLAB代码示例:matlab.function x = simple_iteration(g, x0, tol, max_iter)。
% 简单迭代法求解方程。
% 输入,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。
% 输出,x为方程的解。
x = x0; % 初始猜测值。
iter = 0; % 迭代次数。
while abs(g(x) x) > tol && iter < max_iter.x = g(x); % 迭代计算下一个近似解。
iter = iter + 1; % 迭代次数加1。
end.if iter == max_iter.disp('迭代次数超过最大迭代次数,未找到解');else.disp(['迭代次数为,', num2str(iter)]);disp(['方程的解为,', num2str(x)]);end.end.在上述代码中,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。
MATLAB牛顿迭代法

1。
定义函数function y=f(x)y=f(x);%函数f(x)的表达式endfunction z=h(x)z=h(x);%函数h(x)的表达式end2.主程序x=X;%迭代初值i=0;%迭代次数计算while i〈= 100%迭代次数x0=X-f(X)/h(X);%牛顿迭代格式if abs(x0—X)>0。
01;%收敛判断X=x0;else breakendi=i+1;endfprintf(’\n%s%.4f\t%s%d’,'X=’,X,’i=’,i) %输出结果牛顿迭代法(matlab)来源:徐力的日志背景:牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton—Raphson m ethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f’(x0)(x—x0),求出L与x轴交点的横坐标x1 = x 0—f(x0)/f'(x0),称x1为r的一次近似值。
过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标x2 = x1—f(x1)/f'(x1),称x2为r的二次近似值。
重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f’(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式.现用牛顿迭代法(matlab)求方程x^3-2x-1=0的根(—1)。
主函数:function[x,k]=Newtondd(f,x0,e)%%牛顿迭代法,求f(x)=0在某个范围内的根。
%%f为f(x),x0为迭代初值,e为迭代精度。
k为迭代次数x_a=x0;x_b=x_a—subs(f,x_a)/subs(diff(f),x_a);k=1;while abs(x_a-x_b)〉e,k=k+1;x_a=x_b;x_b=x_a-subs(f,x_a)/subs(diff(f),x_a); endx=x_b;运行:>〉syms x;>> f=(x^3-2*x—1)。
matlab中jacobi迭代法

一、简介Matlab中jacobi迭代法是一种用于求解线性方程组的迭代方法,适用于系数矩阵为对称、正定矩阵的情况。
该迭代方法通过将系数矩阵分解为对角矩阵、上三角矩阵和下三角矩阵的形式,然后通过迭代计算得到方程组的解。
在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
二、 jacobi迭代法原理1. 基本思想jacobi迭代法的基本思想是将系数矩阵分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式,即A=D+L+U,其中D为系数矩阵A 的对角线元素组成的对角矩阵,L为系数矩阵A的下三角部分,U为系数矩阵A的上三角部分。
令x为方程组的解向量,b为方程组的右端向量,则方程组可表示为Ax=b。
根据方程组的性质,可将方程组表示为(D+L+U)x=b,然后利用迭代的方式逐步逼近方程组的解。
2. 迭代公式假设迭代到第k次,方程组可表示为(D+L+U)x=b,将其转化为迭代形式x(k+1)=(D+L)^(-1)(b-Ux(k)),利用迭代公式可以逐步计算出方程组的解。
3. 收敛条件对于jacobi迭代法,收敛条件为系数矩阵A为对角占优矩阵或正定矩阵。
如果满足这一条件,迭代计算会逐步收敛于方程组的解。
三、 Matlab中jacobi迭代法实现在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
具体步骤如下:1. 对系数矩阵进行分解将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式。
2. 初始化迭代变量初始化迭代的初始值x0、迭代次数k、逐次逼近解向量x(k+1)。
3. 迭代计算利用迭代公式x(k+1)=(D+L)^(-1)(b-Ux(k))来逐步计算出方程组的解。
4. 判断收敛条件在迭代计算过程中,需要实时判断迭代计算是否满足收敛条件,如果满足则停止迭代计算,得到方程组的解。
四、实例分析假设有如下方程组:2x1 + x2 + 4x3 = 103x1 + 4x2 - x3 = 10x1 + 2x2 + 3x3 = 0可以利用jacobi迭代法来求解该方程组,在Matlab中可以通过编程实现迭代计算过程。
简单迭代法matlab例题程序

一、引言在数学建模和计算机编程中,简单迭代法是一种常用的求解方程近似解的方法。
其原理是通过不断迭代计算,逼近实际的解。
在Matlab 编程中,简单迭代法也是一种常见的应用。
本文将介绍简单迭代法的原理,并给出在Matlab中实现简单迭代法的例题程序。
二、简单迭代法原理1. 简单迭代法的基本思想是将需要求解的方程转化为迭代形式,即 x = g(x),然后通过不断迭代计算得到方程的近似解。
2. 简单迭代法的收敛条件是 |g'(x)| < 1,即迭代函数的导数的绝对值小于1时,迭代过程才能收敛。
3. 简单迭代法的收敛速度取决于迭代函数的选择,通常可以通过调整迭代函数来提高收敛速度。
三、Matlab中的简单迭代法实现在Matlab中,可以通过编写脚本文件来实现简单迭代法。
下面给出一个简单的例题:求解方程 x^2 - 3x + 2 = 0 的近似解。
4. 以下是Matlab中实现简单迭代法的脚本文件示例:```matlab定义迭代函数g = (x) 3*x - x^2;设置迭代初值和迭代次数x0 = 0.5;N = 100;迭代计算for k = 1:Nx = g(x0);fprintf('第d次迭代,近似解为:.10f\n', k, x);if abs(x - x0) < 1e-8 判断迭代是否收敛break;endx0 = x;end```5. 通过运行上述脚本文件,即可得到方程 x^2 - 3x + 2 = 0 的近似解。
四、实例分析通过上述例题程序的运行结果可以看出,简单迭代法在Matlab中的实现比较简单直观。
但是需要注意的是,迭代函数的选择和迭代初值的设定对最终的近似解都会产生影响,需要经过一定的调试和优化。
五、总结简单迭代法是一种常用的求解方程近似解的方法,在Matlab编程中也有着广泛的应用。
通过本文的介绍和示例程序,相信读者已经对简单迭代法在Matlab中的实现有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(1)检验线性方程组的Jacobi迭代式的收敛性:
function jacobi(A)
D=zeros(3);
for i=1:3
D(i,i)=A(i,i);
end
B=D^(-1)*(D-A);
k=max(abs(eig(B)))
if k<1
'该线性方程组的Jacobi迭代式是收敛的'
A=[2 -1 1;2 2 2;-1 -1 2];
>> Gauss(A)
k =0.5000
ans =
该线性方程组的Gauss-Seidel迭代式是收敛的
根据以上数据可知以 为系数矩阵线性方程组的Gauss-Seidel是收敛的,而Jacobi方法是发散的.
2、(1)参数 取什么值时,矩阵是正定的.
ans =
(结果)
(1)以 为系数矩阵线性方程组的两种迭代式收敛性结果:
A=[1 2 -2;1 1 1;2 2 1];
>> jacobi(A)
k =
5.8106e-006
ans =
该线性方程组的Jacobi迭代式收敛
A=[1 2 -2;1 1 1;2 2 1];
>> Gauss(A)
k = 2
ans =
该线性方程组的Gauss-Seidel迭代式是发散的
L(3,2)=A(3,2);
U(1,2:3)=A(1,2:3);
U(2,3)=A(2,3);
B=-(D+L)^(-1)*U;
k=max(abs(eig(B)))
if k<1
'该线性方程组的Gauss-Seidel迭代式是收敛的'
else k>=1
'该线性方程组的Gauss-Seidel迭代式是发散的'
指导教师评分(包括对实验的预习、操作和结果的综合评分):
指导教师总评:
签名:日期:
实验目的
1、根据迭代收敛性的充分必要条件来判断Jacobi迭代式与Gauss-Seide迭代式的收敛性,迭代收敛性仅与方程组系数矩阵有关,与右端无关;而且不依赖于初值的选取。
2、根据矩阵的判断定理求得矩阵元素a的取值,同时根据矩阵线性方程组的Jacobi迭代式收敛的充分条件(严格对角占优)来求a得取值。
a1 =-1/2
a2 =1
(2) 取什么值时,求以A为系数矩阵线性方程组的Jacobi迭代式收敛的.
syms a
A=[1 a a;a 1 a;a a 1];
%系数矩阵严格对角占优时,以A为系数矩阵线性方程组的Jacobi迭代式收敛,则1>2|a|.
a=solve('1-2*abs(a)','a')
结论
小结(对本次实验的思考和建议)
在使用迭代法进行计算时要注意,迭代法的适用范围,因为不是所有的系数矩阵线性方程组都是收敛的。而且不同的迭代法的收敛性也是不同的,在选取迭代法进行求解时适用范围也要注意。
备注或说明(成功或失败的原因、实验后的心得体会)
要把普我们常用解方程的方法写成计算机能识别的语言开始些不适应,不过多练习练习后感觉就有些感觉了,其实多练习,学习后才能写出好的程序。
2*a+1
1-a
1-a
>> a1=solve('2*a+1=0','a');
>> a2=solve('1-a','a');
>> a1,a2
a1 =-1/2
a2 =1
所以参数a的取值范围为(-1/2,1)
(2)、 取什么值时,求以A为系数矩阵线性方程组的Jacobi迭代式收敛的.
a =
1/2
-1/2
所以a的取值范围为(-1/2,1/2)时,求以A为系数矩阵线性方程组的Jacobi迭代式收敛的.
end
2、(1)参数 取什么值时,矩阵是正定的.(矩阵的特征值全为正)
>> syms a
>> A=[1 a a;a 1 a;a a 1];
>> eig(A)
ans
>> a1=solve('2*a+1=0','a');
>> a2=solve('1-a','a');
>> a1,a2
else k>=1
'该线性方程组的Jacobi迭代式是发散的'
end
(2)检验线性方程组的Gauss-Seide迭代式的收敛性:
function Gauss(A)
D=zeros(3);
L=zeros(3);
U=zeros(3);
for i=1:3
D(i,i)=A(i,i);
end
L(2:3,1)=A(2:3,1);
实验名称
1.矩阵
,
证明:求解以 为系数矩阵线性方程组的Jacobi迭代式收敛的,而Gauss-Seidel方法是发散的;求解以 为系数矩阵线性方程组的Gauss-Seidel是收敛的,而Jacobi方法是发散的.
2.矩阵
(a)参数 取什么值时,矩阵是正定的.
(b) 取什么值时,求以 为系数矩阵线性方程组的Jacobi迭代式收敛的.
根据以上数据可知以 为系数矩阵线性方程组的Jacobi迭代式收敛的,而Gauss-Seidel方法是发散的。
(2)以 为系数矩阵线性方程组的两种迭代式收敛性结果:
A=[2 -1 1;2 2 2;-1 -1 2];
>> jacobi(A)
k =
1.1180
ans =
1
ans =
该线性方程组的Jacobi迭代式不收敛