四川省内江市2018年中考数学试题(扫描版)无答案

合集下载

专题8.3 四川省内江市-2018中考数学真题之名师立体解读高端精品(只含真题解析)

专题8.3 四川省内江市-2018中考数学真题之名师立体解读高端精品(只含真题解析)

1.B【解析】|﹣3|=3.故﹣3的绝对值是3.故选:B.2.A【解析】0.000326毫米,用科学记数法表示为3.26×10﹣4毫米.故选:A.3.B【解析】由图形可知,与“前”字相对的字是“真”.故选:B.4.D【解析】A, a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.5.B【解析】根据题意得:,解得:x≥﹣1且x≠1.故选:B.7.C【解析】∵⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,又∵2+3=5,3﹣2=1,1<4<5,∴⊙O1与⊙O2的位置关系是相交.故选:C.8.D【解析】已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,故选:D.9.C【解析】为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选:C.10.C【解析】露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知y不变;铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知y变大;铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.故选:C.12.A【解析】∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,13.ab(a+b)(a﹣b)【解析】a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).14.【解析】】∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:.15.k≥﹣4【解析】∵关于x的一元二次方程x2+4x﹣k=0有实数根,∴△=42﹣4×1×(﹣k)=16+4k≥0,解得:k≥﹣4.16.5π﹣10【解析】∵A、B、C、D、E是反比例函数y=(x>0)图象上五个整数点,∴x=1,y=8;x=2,y=4;x=4,y=2;x=8,y=1;∴一个顶点是A、D的正方形的边长为1,橄榄形的面积为:2;一个顶点是B、C的正方形的边长为2,橄榄形的面积为:=2(π﹣2);∴这四个橄榄形的面积总和是:(π﹣2)+2×2(π﹣2)=5π﹣10.17.解:原式=2﹣+12﹣1×4=+8.19.解:(1)∵被调查的总人数为2÷0.05=40人,∴a=40×0.2=8, b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8、10、0.25;(2)∵全区八年级学生总人数为200×40=8000人,∴预计优秀的人数约为8000×0.15=1200人,预计及格的人数约为8000×(0.2+0.25+0.25+0.15)=6800人,及格的百分比约为×100%=85%,故答案为:1200人、6800人、85%;(3)补全频数分布直方图如下:21.解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三: A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=21700(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.23.12【解析】∵OE⊥l,AD⊥l,BC⊥l,而OA=OB,∴OE为直角梯形ADCB的中位线,∴OE=(AD+BC),∴S四边形ABCD=(AD+BC)•CD=OE•CD=3CD,当CD=AB=4时,CD最大,S四边形ABCD最大,最大值为12.25.﹣【解析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S1=,S2=,∴S 1+S2+S3+…+S n﹣1=(S△AOB﹣n)=×(﹣n×)=﹣.(2)∵∠BCD=∠ABC=90°,∠C=∠C,∴△BCD∽△ACB,∴,∴BC2=CD•AC,由(1)知DE=BE=CE=BC,∴4DE2=CD•AC,由(1)知,OE是△ABC是中位线,∴AC=2OE,∴4DE2=CD•2OE,∴2DE2=CD•OE;27.解:(1)∵sin45°=,cos60°=,tan60°=,∴M{sin45°,cos60°,tan60°}=,∵max{3,5﹣3x,2x﹣6}=3,则,∴x的取值范围为:,故答案为:,;(2)2•M{2,x+2,x+4}=max{2,x+2,x+4},分三种情况:①当x+4≤2时,即x≤﹣2,原等式变为:2(x+4)=2,x=﹣3,②x+2≤2≤x+4时,即﹣2≤x≤0,原等式变为:2×2=x+4,x=0,③当x+2≥2时,即x≥0,原等式变为:2(x+2)=x+4,x=0,综上所述,x的值为﹣3或0;28.解:(1)∵抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3,∴C(0,﹣3),∴x2+2x﹣3=﹣3,∴x=0或x=﹣2,∴D(﹣2,﹣3),∵A(﹣3,0)和点B(1,0),∴直线AD的解析式为y=﹣3x﹣9,直线BD的解析式为y=x﹣1,∵直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,∴G(﹣m﹣3,m),H(m+1,m),∴GH=m+1﹣(﹣m﹣3)=m+4,∴S矩形GEFH=﹣m(m+4)=﹣(m2+3m)=﹣(m+)2+3,∴m=﹣,矩形GEFH的最大面积为3.。

四川省内江市中考数学试题(逐题详解)

四川省内江市中考数学试题(逐题详解)

内江市 2018 年高中阶段教育学校招生考试及初中毕业会考试卷数学试卷逐题详解(全卷 160 分,时间 120 分钟)A 卷(共 100 分)一、选择题(每小题 3分,36 分)1.-6 的相反数为()A.6B.1C.1 D.- 666A【解读】 :由相反数的定义:只有符号不同的两个数互为相反数知选 【考点】 :本题考查相反数的定义及求法。

2.下列计算正确的是()A. a 2a 4 a 6 B. 2a 3b 5abC. a 2 3a 6 D. a 6 a 3a 2【解读】 :由整式运算法则知选C【考点】 :本题考 查整式的运算法则。

3.已知反比例函数yk1, -2),则 K 的值为()的图像经过点(xA.2B.1 C.1D.- 22【解读】 : 2kk2,选 D1【考点】 :本题考查待 定系数法求函数解读式,函数图象与点坐标的关系。

4.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C. 2个D.1个【解读】 :全是轴对称,只有 2、 4 是中心的称,故选 C 【考点】 :本题考查图形的对称性判断。

5.如图 1, a //b , 1 650,2140 0,则 3()A.1000B.1050C.110 0D.11501800 ,【解读】 :如图 1:连接 AC ,则2311 2 03 180 180 65 140 105 ,故选 B【考点】 :本题考查三角形内角和定理,平行线的性质,以及构造图象添加辅助线。

6.一组数据 4, 3, 6, 9, 6, 5 的中位数和众数分别是()A. 5和 5.5B. 5.5和 6C. 5 和 6D.6和6【解读】 :∵ 4, 3,6,9, 6, 5 由小到大排列为 3, 4,5, 6, 6, 9;∴中位数为5.5;又∵出现次数最多的是6,∴众数是 6,故选 B【考点】 :本题考查数据中的中位数、众数定义及其求法。

1x 的图像在()7.函数 yxA. 第一象限B.第一、三象限C.第二象限D.第二、四象限【解读】 :∵函数y1 中 x 0 ,∴ y 0 ,从而图像在第一象限,故选Ax x【考点】 :本题考查函数的定义域、值域求法,以及函数图象位置判断。

内江市2018年初中学业水平考试及高中阶段学校招生考试数学

内江市2018年初中学业水平考试及高中阶段学校招生考试数学

内江市2018年初中学业水平考试及高中阶段学校招生考试模拟试卷(满分:160分考试时间:120分钟)A卷(100分)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3与2的差是()A.﹣5 B.5C.1D.﹣12.如图在等腰梯形ABCD中,AD∥BC,∠C=60°,则∠1= ()第2题A.30°B.45°C.60°D.80°3.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.4.如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()第4题A.圆锥B.三棱锥C.四棱锥D.五棱锥5.内江市东桐路在某段时间内的车流量为30.6万辆,用科学记数法表示为()A.30.6×104辆B.3.06×103辆C.3.06×104辆D.3.06×105辆6.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=﹣2 D.(x﹣2)2=67.把一张正方形纸片按图对折两次后,再挖去一个小圆孔,那么展开后的图形应为()第7题A.B.C.D.8.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm第8题第9题9.如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为()A.64πcm2B.112πcm2C.144πcm2D.152πcm210.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段不能构成三角形的概率是()A.B.C.D.第10题第11题11.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根12.已知△ABC的三边a,b,c满足a2+b+|﹣2|=10a+2,则△ABC为()A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形第II卷非选择题(共64分)二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)13.化简:=.14.一组数据2,6,x,10,8的平均数是6,则这组数据的方差是.15.矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:.(填一条即可)16.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m=,n=.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明,证明过程或演算步骤)17.(7分)计算:﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°.18.(9分)如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.第18题19.(9分)学习完统计知识后,小兵就本班同学的上学方式进行调查统计.如图是他通过收集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)该班共有名学生;(2)将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是度;(4)若全年级共1000名学生,估计全年级步行上学的学生有名;(5)在全班同学中随机选出一名学生来宣读交通安全法规,选出的恰好是骑车上学的学生的概率是.第19题20.(9分)“六•一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:第20题如果每盒饼干和每袋牛奶的标价分别设为x元,y元,请你根据以上信息,回答以下问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.21.(10分)已知反比例函数的图象经过点P(2,2),函数y=ax+b的图象与直线y=﹣x平行,并且经过反比例函数图象上一点Q(1,m).(1)求出点Q的坐标;(2)函数y=ax2+bx+有最大值还是最小值?这个值是多少?B卷(共60分)一、填空题(本大题共4小题,每小题6分,共24分.请把答案填在题中的横线上)22.已知BC是半径为2cm的圆内的一条弦,点A为圆上除点B、C外任意一点,若BC= cm,则∠BAC的度数为.23.若a,b均为整数,当x=﹣1时,代数式x2+ax+b的值为0,则a b的算术平方根为.24.如图,在等腰三角形ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A、B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,则DE+DF=.第24题第25题25.如图,某小区有东西方向的街道3条,南北方向的街道4条,从位置A出发沿街道行进到达位置B,要求路程最短,研究共有多少种不同的走法.小东是这样想的:要使路程最短,就不能走“回头路”,只能分五步来完成,其中三步向右行进,两步向上行进,如果用数字“1”表示向右行进,数字“2”表示向上行进,那么“11221”与“11212”就表示两种符合要求的不同走法,请你思考后回答:符合要求的不同走法共有种.二、解答题(本大题共3小题,共36分,解答应写出必要的文字说明,证明过程或演算步骤)26.(12分)探索研究:(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;(2)如果欲求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得②由②减去①式,得S=.(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,则a n=(用含a1,q,n的代数式表示),如果这个常数q≠1,那么a1+a2+a3+…+a n=(用含a1,q,n的代数式表示).27.(12分)如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.第27题28.(12分)如图,已知平行四边形ABCD的顶点A的坐标是(0,16),AB平行于x轴,B,C,D三点在抛物线y=x2上,DC交y轴于N点,一条直线OE与AB交于E点,与DC交于F点,如果E点的横坐标为a,四边形ADFE的面积为.(1)求出B,D两点的坐标;(2)求a的值;(3)作△ADN的内切圆⊙P,切点分别为M,K,H,求tan∠PFM的值.第28题内江市2018年初中学业水平考试及高中阶段学校招生考试模拟试卷(参考答案)A卷一、1.A解析:依题意:﹣3﹣2=﹣3+(﹣2)=﹣5.故选A.2.C解析:∵ABCD是等腰梯形,∴∠B=∠C=60°,又∵AD∥BC,∴∠1=∠B=60°.故选C.3.D解析:去括号,得2x+2<3x,移项,合并同类项,得﹣x<﹣2即x>2.故选D.4.C解析:根据三视图可以想象出该物体由四条棱组成,底面是正方形,此只有四棱柱的三视图与题目中的图形相符,故选C.5.D解析:306 000=3.06×105辆.故选D.6.A解析:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=﹣2+4,配方,得(x﹣2)2=2.故选A.7.C解析:严格按照图中的顺序向左下翻折,向右下翻折,从中间挖去一个小圆孔,展开得到结论.故选C.8.A解析:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得则99x+y=99×1+7=106,即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选A.9.B解析:∵OA=OC+CA=20cm,S阴影部分=﹣=112πcm2.故选B.10.B解析:本题是一个由两步才能完成的事件,共有25种结果.每种结果出现的机会相同,而能与长是5的数不满足任意两个的和>第三个的有:1,2;1,3;1,4;1,7;1,6;2,2;2,3;2,7;3,2;共9种情况.因而不能构成三角形的概率是.故选B.11.D解析:∵y=ax2+bx+c的图象与x轴有两个交点,顶点坐标的纵坐标是﹣3,∵方程ax2+bx+c+2=0,∴ax2+bx+c=﹣2时,即是y=﹣2求x的值,由图象可知:有两个同号不等实数根.故选D.12.B解析:∵a2+b+|﹣2|=10a+2,∴a2﹣10a+25+b﹣4﹣2+1+|﹣2|=0,即(a﹣5)2+(﹣1)2+|﹣2|=0,根据几个非负数的和为0,则这几个非负数同时为0,得a=5,b=5,c=5.故该三角形是等边三角形,即正三角形.故选B.二、13.1解析:原式=+==1.14.8解析:x=6×5﹣2﹣6﹣10﹣8=4,S2=[(2﹣6)2+(6﹣6)2+(4﹣6)2+(10﹣6)2+(8﹣6)2]=×40=8.15.两组对边分别平行、或两组对边分别相等、或对角线相互平分等解析:∵矩形、菱形、正方形都是特殊的平行四边形,∴它们都具有平行四边形的性质,16.m=3,n=﹣4解析:根据题意,得m﹣1=2,n+1=﹣3.解得m=3,n=﹣4.三、17.解:原式=9﹣16÷(﹣8)+1﹣2×(4分)=9+2+1﹣3=9.18.(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACE=∠BCD=90°,在△ACE和△BCD,∴△ACE≌△BCD(SAS);(2)解:直线AE与BD互相垂直,理由为:∵△ACE≌△BCD,∴∠EAC=∠DBC,又∵∠DBC+∠CDB=90°,∴∠EAC+∠CDB=90°,∴∠AFD=90°,∴AF⊥BD,即直线AE与BD互相垂直.19.解:(1)从扇形图可见乘车的占全班人数50%,从条形图可见乘车的有20人,因此,全班人数为20÷50%=40(人);(2)步行的有40×20%=8(人);(3)骑车的占30%,因此,在扇形统计图中,“骑车”部分扇形所对应的圆心角是360度×30%=108度;(4)全年级步行人数约为1000×20%=200(人);(5)30%.20.解:(1)由题意,得0.9x+y=10﹣0.8,化简,得y=9.2﹣0.9x;(2)根据题意,得不等式组,将y=9.2﹣0.9x代入②式,得,解这个不等式组,得8<x<10,∵x为整数,∴x=9,∴y=9.2﹣0.9×9=1.1,答:每盒饼干的标价为9元,每袋牛奶的标价为1.1元.21.解:(1)∵点P(2,2)在反比例函数的图象上,∴k=4,∴反比例函数的解析式为,又∵点Q(1,m)在反比例函数的图象上,∴m=4,∴Q点的坐标为(1,4);(2)∵函数y=ax+b与y=﹣x的图象平行,将Q点坐标代入y=﹣x+b中,得b=5,∴y=ax2+bx+ =﹣x2+5x﹣=﹣(x﹣)2+1,∴所求函数有最大值,当时,最大值为1.B卷一、22.60°或120°解析:如图.作OD⊥BC,垂足为D.∵点D是BC的中点,BD=BC=,∴sin∠BOD==.∴∠BOD=60°.∠BOC=120°.当点A在优弧上时,由圆周角定理知,∠A=∠BOC=60°;当点A在如图点E位置时,由圆内接四边形的对角互补知,∠E=180°﹣∠A=120°.∴∠BAC的度数为60°或120°.23.解析:把当x=﹣1代入x2+ax+b可得,4﹣+﹣a+b=0.∵a,b均为整数,∴﹣+=0,4﹣a+b=0,即a=2,b=﹣2,∴a b=2﹣2=,则a b的算术平方根为==.24.4.8 解析:连接CD,过C点作底边AB上的高CG,∵AC=BC=5,AB=8,∴BG=4,CG===3,∵S△ABC=S△ACD+S△DCB,∴AB•CG=AC•DE+BC•DF,∵AC=BC,∴8×3=5×(DE+DF)∴DE+DF=4.8.25.10 解析:根据题意,则不同的走法有:11122;11221;11212;12112;12211;12121;22111;21112;21121;21211.因此共有10种不同的走法.二、26.解:(1)每一项与前一项之比是一个常数,这个常数是2,∴a18=218,a n=2n;(2)令s=1+3+32+33+…+320,3S=3+32+33+34+…+321,3S﹣S=321﹣1,S=;(3)∵第二项开始每一项与前一项之比的常数为q,∴a n=a1q n﹣1,∵S n=a1+a2+a3+…+a n=a1+a1q+a1q2+…+a1q n﹣1①,∴qS n=a1q+a1q2+a1q3+…+a1q n②,②﹣①,得S n=.故答案为:2、218、2n;3+32+33+34+…+321、;a1q n﹣1、.27.解:(1)∵△ECF的面积与四边形EABF的面积相等,∴S△ECF:S△ACB=1:2 ,∵AC=4,∴CE=;又∵EF∥AB∴△ECF∽△ACB ,==,(2)设CE 的长为x ,∵△ECF ∽△ACB ,∴=,∴CF=,由△ECF 的周长与四边形EABF 的周长相等,得x+EF+x=(4﹣x )+5+(3﹣x )+EF ,解得,∴CE 的长为;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF=90°,EP=EF ,由AB=5,BC=3,AC=4,得∠C=90°,∴Rt △ACB 斜边AB 上高CD=,设EP=EF=x ,由△ECF ∽△ACB ,得=,即=,解得x=,即EF=,当∠EFP ´=90°,EF=FP ′时,同理可得EF=;②如图2,假设∠EPF=90°,PE=PF 时,点P 到EF 的距离为EF ,设EF=x ,由△ECF ∽△ACB ,得=,即=,解得x=,即EF=,综上所述,在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF=或EF=.28.解:(1)∵点A 的坐标为(0,16),且AB ∥x 轴,∴B 点纵坐标为16,且B 点在抛物线y=x 2上,∴点B 的坐标为(10,16),又∵点D 、C 在抛物线y=x 2上,且CD ∥x 轴,∴D 、C 两点关于y 轴对称,∴DN=CN=5,∴D 点的坐标为(﹣5,4).(2)设E 点的坐标为(a ,16),则直线OE 的解析式为:,∴F 点的坐标为(),由AE=a ,DF=且S 梯形ADFE =,解得a=5. (3)连接PH ,PM ,PK ,∵⊙P 是△AND 的内切圆,H ,M ,K 为切点,∴PH ⊥AD PM ⊥DN PK ⊥AN ,在Rt △AND 中,由DN=5,AN=12,得AD=13,设⊙P 的半径为r ,则S △AND =(5+12+13)r=×5×12,r=2,在正方形PMNK 中,PM=MN=2,∴MF=MN+NF=2+=,在Rt△PMF中,tan∠PFM=.。

【真题】四川省内江市2018年中考数学试卷(2)含答案解析

【真题】四川省内江市2018年中考数学试卷(2)含答案解析

2018年四川省内江市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -3的绝对值为()A. -3B. 3C.D.【答案】B【解析】根据绝对值的性质得:|-3|=3.故选B.2. 小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为()A. 毫米B. 毫米C. 厘米D. 厘米【答案】A【解析】分析:根据绝对值小于1的数可表示成为a×10-n的形式即可求解.详解:0.000326毫米=毫米,故选:A.点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.3. 如图是正方体的表面展开图,则与“前”字相对的字是( )A. 认B. 真C. 复D. 习【答案】B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选:B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.4. 下列计算正确的是( )A.B.C.D.【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A ,a+a=2a≠a 2,故该选项错误;B ,(2a )3=8a 3≠6a 3,故该选项错误C ,(a﹣1)2=a 2﹣2a+1≠a 2﹣1,故该选项错误;D ,a3÷a=a 2,故该选项正确,故选:D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.5. 已知函数,则自变量的取值范围是( )A. B.且C.D.【答案】B【解析】分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.详解:根据题意得:,解得:x≥﹣1且x≠1.故选:B .点睛:此题考查函数自变量的取值范围,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.6. 已知:﹣=,则的值是( )A. B. ﹣ C. 3 D. ﹣3【答案】C【解析】分析:已知等式左边两项通分并利用同分母分式的减法法则计算,变形后即可得到结果.详解:∵﹣=,∴=,则=3,故选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择合适的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.7. 已知的半径为,的半径为,圆心距,则与的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】C【解析】分析:由⊙O1与⊙O2的半径分别是3cm和2cm,圆心距O1O2=4cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.详解:∵⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,又∵2+3=5,3﹣2=1,1<4<5,∴⊙O1与⊙O2的位置关系是相交.故选:C.点睛:此题考查圆与圆的位置关系,设两圆的半径分别是R和r,且R≥r,圆心距为P:外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.8. 已知与相似,且相似比为,则与的面积比A. B. C. D.【答案】D【解析】分析:根据相似三角形面积的比等于相似比的平方解答.详解:已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为1:9,故选:D.点睛:此题考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.9. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )B. 被抽取的400名考生C. 被抽取的400名考生的中考数学成绩D. 内江市2018年中考数学成绩【答案】C【解析】分析:直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而进行分析得出答案.详解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选:C.点睛:此题主要考查了样本的定义,正确把握定义是解题的关键.10. 在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定高度,则下图能反映弹簧秤的读数 (单位)与铁块被提起的高度 (单位)之间的函数关系的大致图象是()A. B. C. D.【答案】C【解析】试题分析:因为小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.考点:函数的图象.11. 如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为()A. B. C. D.【答案】D【解析】分析:先利用互余求出∠FDB,再根据平行线的性质求出∠CBD,根据折叠求出∠FBD,然后利用三角形外角的性质计算∠DFE即可.详解::∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.12. 如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A. B. C. D.【答案】A【解析】分析:先求得直线AB解析式为y=x﹣1,即可得P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点坐标公式,即可得到点A'的坐标.详解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A.点睛:本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 分解因式:___________.【答案】ab(a+b)(a b).【解析】分析:先提公因式ab,再把剩余部分用平方差公式分解即可.详解:a3b﹣ab3,=ab(a2﹣b2),=ab(a+b)(a﹣b).点睛:此题考查了综合提公因式法和公式法因式分解,分解因式掌握一提二用,即先提公因式,再利用平方差或完全平方公式进行分解.14. 有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是__________.【答案】【解析】分析:由五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,直接利用概率公式求解即可求得答案.详解:∵五张卡片①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆中,既是轴对称图形,又是中心对称图形的①⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:.故答案为:.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与情况总数之比.15. 关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.【解析】分析:若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围即可.详解:∵关于x的一元二次方程x2+4x﹣k=0有实数根,∴△=42﹣4×1×(﹣k)=16+4k≥0,解得:k≥﹣4.故答案为:k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.16. 已知,A、B、C、D是反比例函数y=(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是__________(用含π的代数式表示).【答案】5π﹣10【解析】分析:通过观察可知每个橄榄形的阴影面积都是一个圆的面积的四分之一减去一个直角三角形的面积再乘以2,分别计算这5个阴影部分的面积相加即可表示.详解:∵A、B、C、D、E是反比例函数y=(x>0)图象上五个整数点,∴x=1,y=8;x=2,y=4;x=4,y=2;x=8,y=1;∴一个顶点是A、D的正方形的边长为1,橄榄形的面积为:2;一个顶点是B、C的正方形的边长为2,橄榄形的面积为:=2(π﹣2);∴这四个橄榄形的面积总和是:(π﹣2)+2×2(π﹣2)=5π﹣10.故答案为:5π﹣10.点睛:问题主要用过考查橄榄形的面积的计算来考查反比例函数图形的应用,关键是要分析出其图象特点,再结合性质作答.三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推理步骤.)17. 计算:【答案】【解析】分析:原式分别利用算术平方根、绝对值、平方、0次幂以及负整数指数幂分别运算,最后再化简合并即可.详解:原式=2﹣+12﹣1×4=+8.点睛:本题考查了用算术平方根、绝对值、平方、0次幂以及负整数指数幂等知识点,熟练运用这些知识是解此题的关键.18. 如图,已知四边形是平行四边形,点、分别是、上的点,,并且.求证:(1)(2)四边形是菱形【答案】(1)证明峥解析;(2)四边形ABCD是菱形.【解析】分析:(1)首先根据平行四边形的性质得出∠A=∠C,进而利用全等三角形的判定得出即可;(2)根据菱形的判定得出即可.详解:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.在△AED与△CFD中,,∴△AED≌△CFD(ASA);(2)由(1)知,△AED≌△CFD,则AD=CD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.点睛:此题考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.19. 为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率频数120.05240.1030.24100.255660.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的,,;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为,72分及以上为及格,预计及格的人数约为,及格的百分比约为;(3)补充完整频数分布直方图.【答案】(1)8、10、0.25;(2)1200人、6800人、85%;(3)补图见解析.【解析】分析:(1)根据第一组的频数和频率结合频率=,可求出总数,继而可分别得出a、b、c 的值;(2)根据频率=的关系可分别求出各空的答案.(3)根据(1)中a、b的值即可补全图形.详解:(1)∵被调查的总人数为2÷0.05=40人,∴a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8、10、0.25;(2)∵全区八年级学生总人数为200×40=8000人,∴预计优秀的人数约为8000×0.15=1200人,预计及格的人数约为8000×(0.2+0.25+0.25+0.15)=6800人,及格的百分比约为×100%=85%,故答案为:1200人、6800人、85%;(3)补全频数分布直方图如下:点睛:本题考查频数(率)分布直方图,频数(率)分布表,难度不大,解答本题的关键是掌握频率=.20. 如图是某路灯在铅垂面内的示意图,灯柱的高为11米,灯杆与灯柱的夹角,路灯采用锥形灯罩,在地面上的照射区域长为18米,从、两处测得路灯的仰角分别为和,且,.求灯杆的长度.【答案】2米【解析】分析:过点B作BF⊥CE,交CE于点F,过点A作AAG⊥AF,交BF于点G,则FG=AC=11.设BF=3x知EF=4x、DF=,由DE=18求得x=4,据此知BG=BF-GF=1,再求得∠BAG=∠BAC-∠CAG=30°可得AB=2BG=2.详解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥AF,交BF于点G,则FG=AC=11.由题意得∠BDE=α,tan∠β=.设BF=3x,则EF=4x在Rt△BDF中,∵tan∠BDF=,∴DF=,∵DE=18,∴x+4x=18.∴x=4.∴BF=12,∴BG=BF﹣GF=12﹣11=1,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=2,答:灯杆AB的长度为2米.点睛:本题主要考查解直角三角形-仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.21. 某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元.(1)若商场用500000元共购进型号手机10部,型号手机20部.求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?【答案】(1)A、B两种型号的手机每部进价各是2000元、1500元;(2)①有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②购进A种型号的手机27部,购进B种型号的手机13部时获利最大.【解析】分析:(1)A、B两种型号的手机每部进价各是x元、y元,根据每部型号手机的进价比每部型号手机的进价多500元以及商场用500000元共购进型号手机10部,型号手机20部列方程组,求出方程组的解即可得到结果;(2)设A、B两种型号的手机每部进价各是x元、y元,根据话费的钱数不超过7.5万元以及型号手机的数量不少于型号手机数量的2倍,据此列不等式组,求出不等式组的解集的正整数解,即可确定出购机方案.详解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=21700(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.点睛:此题考查了一次函数的应用,一元一次不等式的应用,二元一次方程组的应用,找出满足题意的等量关系与不等关系是解本题的关键.四、填空题(本大题共4小题,每小题6分,共24分.)22. 已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.23. 如图,以为直径的的圆心到直线的距离,的半径,,直线不垂直于直线,过点、分别作直线的垂线,垂足分别为点、,则四边形的面积的最大值为___________.【答案】12【解析】分析:先判断OE为直角梯形ADCB的中位线,则OE=(AD+BC),所以S四边形ABCD=OE•CD=3CD,只有当CD=AB=4时,CD最大,从而得到S四边形ABCD最大值.详解:∵OE⊥l,AD⊥l,BC⊥l,而OA=OB,∴OE为直角梯形ADCB的中位线,∴OE=(AD+BC),∴S四边形ABCD=(AD+BC)•CD=OE•CD=3CD,当CD=AB=4时,CD最大,S四边形ABCD最大,最大值为12.点睛:本题考查了梯形的中位线:梯形的中位线平行于两底,并且等于两底和的一半.24. 已知的三边、、满足,则的外接圆半径___________.【答案】【解析】分析:根据题目中的式子可以求得a、b、c的值,从而可以求得△ABC的外接圆半径的长.详解::∵a+b2+|c−6|+28=4+10b,∴(a−1−4+4)+(b2−10b+25)+|c−6|=0,∴(−2)2+(b−5)2+|c−6|=0,∴−2=0,b−5=0,c−6=0,解得,a=5,b=5,c=6,∴AC=BC=5,AB=6,作CD⊥AB于点D,则AD=3,CD=4,设△ABC的外接圆的半径为r,则OC=r,OD=4−r,OA=r,∴32+(4−r)2=r2,解得,r=,故答案为:点睛:本题考查三角形的外接圆与外心、非负数的性质、勾股定理,解答本题的关键是明确题意,找出所求需要的条件,利用数形结合的思想解答.25. 如图,直线与两坐标轴分别交于、两点,将线段分成等份,分点分别为,,P3,,… ,过每个分点作轴的垂线分别交直线于点,,,… ,用,,,…,分别表示,,…,的面积,则___________.【答案】【解析】分析:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n−1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出S△BT1M=××=,S1=12S矩形OMT1P1,S2=S矩形P1NT2P2,可得S1+S2+S3+…+S n−1=(S△AOB−n•S△NBT1).详解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n−1A,四边形OMT1P1是矩形,四边形P1N T2P2是矩形,∴S△BT1M=×1n×1n=n2,S1=S矩形OMT1P1,S2=S矩形P1NT2P2,∴S1+S2+S3+…+S n−1=(S△AOB−n•S△NBT1)=×(−n×)=.故答案为:.点睛:本题考查一次函数的应用,规律型−点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.五、解答题(本大题共3小题,每小题12分,共36分.)26. 如图,以的直角边为直径作交斜边于点,过圆心作,交于点,连接.(1)判断与的位置关系并说明理由;(2)求证:;(3)若,,求的长.【答案】(1)证明见解析;(2)证明见解析;(3)【解析】分析:(1)先判断出DE=BE=CE,得出∠DBE=∠BDE,进而判断出∠ODE=90°,即可得出结论;(2)先判断出△BCD∽△ACB,得出BC2=CD•AC,再判断出DE=12BC,AC=2OE,即可得出结论;(3)先求出BC,进而求出BD,CD,再借助(2)的结论求出AC,即可得出结论.详解:(1)DE是⊙O的切线,理由:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠BDC=90°,∵OE∥AC,OA=OB,∴BE=CE,∴DE=BE=CE,∴∠DBE=∠BDE,∵OB=OD,∴∠OBD=∠ODB,∴∠ODE=∠OBE=90°,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BCD=∠ABC=90°,∠C=∠C,∴△BCD∽△ACB,∴,∴BC2=CD•AC,由(1)知DE=BE=CE=BC,∴4DE2=CD•AC,由(1)知,OE是△ABC是中位线,∴AC=2OE,∴4DE2=CD•2OE,∴2DE2=CD•OE;(3)∵DE=,∴BC=5,在Rt△BCD中,tanC=,设CD=3x,BD=4x,根据勾股定理得,(3x)2+(4x)2=25,∴x=﹣1(舍)或x=1,∴BD=4,CD=3,由(2)知,BC2=CD•AC,∴AC==,∴AD=AC﹣CD=﹣3=.点睛:此题是圆的综合题,主要考查了切线的性质,等腰三角形的性质,三角形的中位线定理,相似三角形的判定和性质,锐角三角函数,判断出△BCD∽△ACB是解本题的关键.27. 对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:,如果,则的取值范围为;(2)如果,求的值;(3)如果,求的值.【答案】(1),;(2)﹣3或0;(3)x=3或﹣3.【解析】分析:析:(1)根据定义写出sin45°,cos60°,tan60°的值,确定其中位数;根据max{a,b,c}表示这三个数中最大数,对于max{3,5−3x,2x−6}=3,可得不等式组:则,可得结论;(2)根据新定义和已知分情况讨论:①2最大时,x+4≤2时,②2是中间的数时,x+2≤2≤x+4,③2最小时,x+2≥2,分别解出即可;(3)不妨设y1=9,y2=x2,y3=3x−2,画出图象,根据M{9,x2,3x−2}=max{9,x2,3x−2},可知:三个函数的中间的值与最大值相等,即有两个函数相交时对应的x的值符合条件,结合图象可得结论.详解:(1)∵sin45°=,cos60°=,tan60°=,∴M{sin45°,cos60°,tan60°}=,∵max{3,5﹣3x,2x﹣6}=3,则,∴x的取值范围为:,故答案为:,;(2)2•M{2,x+2,x+4}=max{2,x+2,x+4},分三种情况:①当x+4≤2时,即x≤﹣2,原等式变为:2(x+4)=2,x=﹣3,②x+2≤2≤x+4时,即﹣2≤x≤0,原等式变为:2×2=x+4,x=0,③当x+2≥2时,即x≥0,原等式变为:2(x+2)=x+4,x=0,综上所述,x的值为﹣3或0;(3)不妨设y1=9,y2=x2,y3=3x﹣2,画出图象,如图所示:结合图象,不难得出,在图象中的交点A、B点时,满足条件且M{9,x2,3x﹣2}=max{9,x2,3x﹣2}=y A=y B,此时x2=9,解得x=3或﹣3.点睛:本题考查了方程和不等式的应用及新定义问题,理解新定义,并能结合图象,可以很轻松将抽象题或难题破解,由此看出,图象在函数相关问题的作用是何等重要.28. 如图,已知抛物线与轴交于点和点,交轴于点.过点作轴,交抛物线于点.(1)求抛物线的解析式;(2)若直线与线段、分别交于、两点,过点作轴于点,过点作轴于点,求矩形的最大面积;(3)若直线将四边形分成左、右两个部分,面积分别为、,且,求的值.【答案】(1)y=x2+2x﹣3;(2)3;(3).【解析】分析:(1)利用待定系数法即可得出结论;(2)先利用待定系数法求出直线AD,BD的解析式,进而求出G,H的坐标,进而求出GH,即可得出结论;(3)先求出四边形ADNM的面积,再求出直线y=kx+1与线段CD,AB的交点坐标,即可得出结论.详解:(1)∵抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),∴,∴,∴抛物线的解析式为y=x2+2x﹣3;(2)由(1)知,抛物线的解析式为y=x2+2x﹣3,∴C(0,﹣3),∴x2+2x﹣3=﹣3,∴x=0或x=﹣2,∴D(﹣2,﹣3),∵A(﹣3,0)和点B(1,0),∴直线AD的解析式为y=﹣3x﹣9,直线BD的解析式为y=x﹣1,∵直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,∴G(﹣m﹣3,m),H(m+1,m),∴GH=m+1﹣(﹣m﹣3)=m+4,∴S矩形GEFH=﹣m(m+4)=﹣(m2+3m)=﹣(m+)2+3,∴m=﹣,矩形GEFH的最大面积为3.(3)∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,﹣3),D(﹣2,﹣3),∴CD=2,∴S四边形ABCD=×3(4+2)=9,∵S1:S2=4:5,∴S1=4,如图,设直线y=kx+1与线段AB相交于M,与线段CD相交于N,∴M(﹣,0),N(﹣,﹣3),∴AM=﹣+3,DN=﹣+2,∴S1=(﹣+3﹣+2)×3=4,∴k=点睛:此题是二次函数综合题,主要考查了待定系数法,矩形的面积公式,梯形的面积公式,求出相关线段的长是解本题的关键.。

【真题】2018年内江市中考数学试卷含答案解析(20200420020637)

【真题】2018年内江市中考数学试卷含答案解析(20200420020637)

B.0.326×10﹣4 毫米
C.3.26×10﹣4 厘米 D.32.6× 10﹣4 厘米
3.(3 分)如图是正方体的表面展开图,则与 “前”字相对的字是(

A.认 B.真 C.复 D.习
4.(3 分)下列计算正确的是(

A. a+a=a2 B.(2a) 3=6a3 C.(a﹣1)2=a2﹣ 1 D.a3÷a=a2
5.(3 分)已知函数 y=
,则自变量 x 的取值范围是(

A.﹣ 1< x< 1 B. x≥﹣ 1 且 x≠1 C.x≥﹣ 1 D.x≠1 6.(3 分)已知: ﹣ = ,则 的值是( )
A. B.﹣ C. 3 D.﹣ 3
7.(3 分)已知⊙ O1 的半径为 3cm,⊙ O2 的半径为 2cm,圆心距 O1O2=4cm,则⊙ O1 与⊙
2018 年四川省内江市中考数学试卷 ;
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)
1.(3 分)﹣ 3 的绝对值是(

A.﹣ 3 B.3 C. D.
2.(3 分)小时候我们用肥皂水吹泡泡,其泡沫的厚度约 0.000326 毫米,用科学记数法表
示为( )
A.
3.26×

10
4
毫米
O2 的位置关系是(

A.外高 B.外切 C.相交 D.内切
8.(3 分)已知△ ABC与△ A1B1C1 相似,且相似比为 1: 3,则△ ABC 与△ A1B1C1 的面积比
为( )
Байду номын сангаас
A. 1:1 B.1:3 C.1:6 D.1:9
9.(3 分)为了了解内江市 2018 年中考数学学科各分数段成绩分布情况,从中抽取 400 名

2018年内江中考数学试题与答案

2018年内江中考数学试题与答案

2018年中考数学试题<四川内江卷)<本试卷分A卷<100分)、B卷<60分),满分160分,考试时间120分钟)A卷<共100分)一、选择题<本大题共12小题,每小题3分,共36分)1.下列四个实数中,绝对值最小地数是【】A.-5 B.C.1D.42.一个几何体地三视图如图所示,那么这个几何体是【】A.B.C.D.3.某公司开发一个新地项目,总投入约11500000000元,11500000000元用科学记数法表示为【】A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.把不等式组地解集表示在数轴上,下列选项正确地是【】A.B.C.D.5.今年我市有近4万名考生参加中考,为了解这些考生地数学成绩,从中抽取1000名考生地数学成绩进行统计分析,以下说法正确地是【】A.这1000名考生是总体地一个样本B.近4万名考生是总体C.每位考生地数学成绩是个体D.1000名学生是样本容量6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2地度数为【】A.125° B.120° C.140° D.130°7.成渝路内江至成都段全长170千M,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千M.设小汽车和客车地平均速度为x千M/小时和y千M/小时,则下列方程组正确地是【】A.B.C.D.8.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=【】A.2:5 B.2:3 C.3:5 D.3:29.若抛物线与y轴地交点为<0,﹣3),则下列说法不正确地是【】A.抛物线开口向上B.抛物线地对称轴是x=1C.当x=1时,y地最大值为﹣4 D.抛物线与x轴地交点为<-1,0),<3,0)10.同时抛掷A、B两个均匀地小立方体<每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上地数字分别为x、y,并以此确定点P<x,y),那么点P落在抛物线上地概率为【】A.B.C.D.11.如图,反比例函数<x>0)地图象经过矩形OABC对角线地交点M,分别于AB、BC交于点D、E,若四边形ODBE地面积为9,则k地值为【】A.1B.2C.3D.412.如图,半圆O地直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD地长为【】A.cm B.cm C.cm D.4 cm二、填空题<本大题共4小题,每小题5分,共20分)13.若m2-n2=6,且m-n=2,则m+n=▲.14.函数中自变量x地取值范围是▲.15.一组数据3,4,6,8,x地中位数是x,且x是满足不等式组地整数,则这组数据地平均数是▲.16.已知菱形ABCD地两条对角线分别为6和8,M、N分别是边BC、CD地中点,P是对角线BD上一点,则PM+PN地最小值=▲.三、解答题<本大题共5小题,共44分)17.计算:.18.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB 边上一点.求证:BD=AE.19.随着车辆地增加,交通违规地现象越来越严重,交警对某雷达测速区检测到地一组汽车地时速数据进行整理,得到其频数及频率如表<未完成):注:30~40为时速大于等于30千M而小于40千M,其他类同<1)请你把表中地数据填写完整;<2)补全频数分布直方图;<3)如果汽车时速不低于60千M即为违章,则违章车辆共有多少辆?20.如图,某校综合实践活动小组地同学欲测量公园内一棵树DE地高度,他们在这棵树地正前方一座楼亭前地台阶上A点处测得树顶端D地仰角为30°,朝着这棵树地方向走到台阶下地点C处,测得树顶端D地仰角为60°.已知A点地高度AB为3M,台阶AC地坡度为<即AB:BC=),且B、C、E三点在同一条直线上.请根据以上条件求出树DE地高度<侧倾器地高度忽略不计).21.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千M地公路.如果平均每天地修建费y<万元)与修建天数x<天)之间在30≤x≤120,具有一次函数地关系,如下表所示.<1)求y关于x地函数解读式;<2)后来在修建地过程中计划发生改变,政府决定多修2千M,因此在没有增减建设力量地情况下,修完这条路比计划晚了15天,求原计划每天地修建费.B卷<共60分)四、填空题<本大题共4小题,每小题6分,共24分)22.在△ABC中,已知∠C=90°,,则 =▲.23.如图,正六边形硬纸片ABCDEF在桌面上由图1地起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形地边长为2cm,则正六边形地中心O运动地路程为▲cm.24.如图,已知直线l:,过点M<2,0)作x轴地垂线交直线l于点N,过点N 作直线l地垂线交x轴于点M1;过点M1作x轴地垂线交直线l于N1,过点N1作直线l地垂线交x轴于点M2,…;按此作法继续下去,则点M10地坐标为▲.25.在平面直角坐标系xOy中,以原点O为圆心地圆过点A<13,0),直线与⊙O交于B、C两点,则弦BC地长地最小值为▲.五、解答题<本大题共3小题,每小题12分,共36分)26.如图,AB是半圆O地直径,点P在BA地延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.<1)求证:BC平分∠PDB;<2)求证:BC2=AB•BD;<3)若PA=6,PC=6,求BD地长.27.如图,在等边△ABC中,AB=3,D、E分别是AB、AC上地点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠地部分记作图形L.<1)求△ABC地面积;<2)设AD=x,图形L地面积为y,求y关于x地函数解读式;<3)已知图形L地顶点均在⊙O上,当图形L地面积最大时,求⊙O地面积.28.已知二次函数<a>0)地图象与x轴交于A<x1,0)、B<x2,0)<x1<x2)两点,与y轴交于点C,x1,x2是方程地两根.<1)若抛物线地顶点为D,求S△ABC:S△ACD地值;<2)若∠ADC=90°,求二次函数地解读式.2018年中考数学答案<四川内江卷)13. 314.且x≠115. 516. 517. 解:原式=.18. 证明:∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE.∵∠ACD=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD.在△ACE和△BCD中,,∴△ACE≌△BCD<SAS).∴BD=AE.19. 解:<1)填表如下:<2)如图所示:<3)违章车辆数:56+20=76<辆).答:违章车辆有76辆.20.【答案】解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3.设DE=x,在Rt△CDE中,,在Rt△ABC中,∵,AB=3,∴BC=.在Rt△AFD中,DF=DE﹣EF=x﹣3,∴.∵AF=BE=BC+CE,∴.解得x=9.答:树高为9M.21. 解:<1)设y与x之间地函数关系式为,由题意,得,解得:.∴y与x之间地函数关系式为:<30≤x≤120).<2)设原计划要m天完成,则增加2km后用了<m+15)天,由题意,得,解并检验得:m=45.∴答:原计划每天地修建费为41万元.222324. <884736,0)25. 2426.【答案】解:<1)证明:连接OC,∵PD为圆O地切线,∴OC⊥PD.∵BD⊥PD,∴OC∥BD.∴∠OCB=∠CBD.∵OC=OB,∴∠OCB=∠OBC.∴∠CBD=∠OBC,即BC平分∠PBD.<2)证明:连接AC,∵AB为圆O地直径,∴∠ACB=90°.∵∠ACB=∠CDB=90°,∠ABC=∠CBD,∴△ABC∽△CBD.∴,即BC2=AB•BD.<3)∵PC为圆O地切线,PAB为割线,∴PC2=PA•PB,即72=6PB,解得:PB=12.∴AB=PB-PA=12-6=6.∴OC=3,PO=PA+AO=9.∵△OCP∽△BDP,∴,即.∴BD=4.27. 解:<1)如图1,作AH⊥BC于H,则∠AHB=90°.∵△ABC是等边三角形,∴AB=BC=AC=3.∵∠AHB=90°,∴BH=BC=.在Rt△ABH中,由勾股定理,得AH=.∴.<2)如图2,当0<x≤时,.作AG⊥DE于G,∴∠AGD=90°,∠DAG=30°.∴DG=x,AG=.∴.如图3,当<x<3时,作MG⊥DE于G,∵AD=x,∴BD=DM=3-x,∴DG=,MF=MN=2x-3,MG=∴.综上所述,y关于x地函数解读式为.<3)当0<x≤时,∵a=>0,开口向上,在对称轴地右侧y随x地增大而增大,∴x=时,.当<x<3时,,∵a=<0,开口向下,∴x=2时,∵>,∴y最大时,x=2.∴DE=2,BD=DM=1.如图4,作FO⊥DE于O,连接MO,ME,∴DO=OE=1.∴DM=DO.∵∠MDO=60°,∴△MDO是等边三角形.∴∠DMO=∠DOM=60°,MO=DO=1.∴MO=OE,∠MOE=120°.∴∠OME=30°.∴∠DME=90°.∴DE是直径.∴.28. 解:<1)解方程,得x=-5或x=1,∵x1<x2,∴x1=﹣5,x2=1.∴A<﹣5,0),B<1,0).∴抛物线地解读式为:<a>0).∴对称轴为直线x=2,顶点D地坐标为<-2,-9a).令x=0,得y=-5a,∴C点地坐标为<0,﹣5a).依题意画出图形,如图所示,则OA=5,OB=1,AB=6,OC=5a.过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE-OC=4a.∴个人收集整理-仅供参考11 / 11 .而,∴.<2)如图所示,在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,设对称轴x=2与x轴交于点F,则AF=3,在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.∵∠ADC=90°,∴△ACD为直角三角形,由勾股定理得:AD2+CD2=AC2,即,化简得:.∵a>0,∴.∴抛物线地解读式为:,即申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

2018年内江市中考数学试题(有答案)

2018年内江市中考数学试题(有答案)内江市2018年初中学业水平考试暨高中阶段学校招生考试试卷数学本试卷分为卷和卷两部分, 卷1至4页,满分100分;卷5至6页,满分60分。

全卷满分160分,考试时间120分钟。

卷(共100分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. -3的绝对值为() A. -3 B. 3 C. D. 2. 小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为() A.毫米B.毫米 C.厘米 D.厘米 3. 如图是正方体的表面展开图,则与“前”字相对的字是() A.认 B.真 C.复 D.习 4. 下列计算正确的是() A. B. C. D. 5. 已知函数,则自变量的取值范围是() A. B.且 C. D. 6. 已知:,则的值是() A. B. C.3 D.-3 7. 已知的半径为,的半径为,圆心距,则与的位置关系是() A.外离 B.外切 C. 相交 D.内切 8. 已知与相似,且相似比为,则与的面积比 A. B. C. D. 9. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析在这个问题中,样本是指 A. 400 B.被抽取的400名考生 C. 被抽取的400名考生的中考数学成绩D.内江市2018年中考数学成绩 10. 在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定高度,则下图能反映弹簧秤的读数 (单位 )与铁块被提起的高度 (单位 )之间的函数关系的大致图象是() A. B. C. D. 11. 如图,将矩形沿对角线折叠,点落在处,交于点,已知 ,则的度为() A. B. C. D. 12. 如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 分解因式:. 14. 有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是. 15. 关于的一元二次方程有实数根,则的取值范围是. 16. 已知,、、、是反比例函数图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是 (用含的代数式表示).三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推理步骤.) 17. 计算: 18. 如图,已知四边形是平行四边形,点、分别是、上的点,,并且 . 求证:(1)(2)四边形是菱形 19. 为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率频数 1 2 0.05 2 4 0.10 3 0.2 4 10 0.25 56 6 0.15 合计 40 1.00 根据表中提供的信息解答下列问题:(1)频数分布表中的,,;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为,72分及以上为及格,预计及格的人数约为,及格的百分比约为;(3)补充完整频数分布直方图. 20. 如图是某路灯在铅垂面内的示意图,灯柱的高为11米,灯杆与灯柱的夹角,路灯采用锥形灯罩,在地面上的照射区域长为18米,从、两处测得路灯的仰角分别为和,且, .求灯杆的长度. 21. 某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元. (1)若商场用500000元共购进型号手机10部,型号手机20部.求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍. ①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大? B卷(共60分) 四、填空题(本大题共4小题,每小题6分,共24分.) 22. 已知关于的方程的两根为,,则方程的两根之和为 . 23. 如图,以为直径的的圆心到直线的距离,的半径 ,,直线不垂直于直线,过点、分别作直线的垂线,垂足分别为点、,则四边形的面积的最大值为 . 24. 已知的三边、、满足,则的外接圆半径 . 25. 如图,直线与两坐标轴分别交于、两点,将线段分成等份,分点分别为,,P3, ,… ,过每个分点作轴的垂线分别交直线于点,,,… ,用,,,…,分别表示,,…,的面积,则 . 五、解答题(本大题共3小题,每小题12分,共36分.)26.如图,以的直角边为直径作交斜边于点,过圆心作,交于点,连接 . (1)判断与的位置关系并说明理由;(2)求证:;(3)若,,求的长. 27. 对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,, . 解决问题:(1)填空:,如果,则的取值范围为;(2)如果,求的值;(3)如果,求的值. 28. 如图,已知抛物线与轴交于点和点,交轴于点 .过点作轴,交抛物线于点 . (1)求抛物线的解析式;(2)若直线与线段、分别交于、两点,过点作轴于点,过点作轴于点,求矩形的最大面积;(3)若直线将四边形分成左、右两个部分,面积分别为、,且,求的值.。

2018中考数学试题及解析

-WORD格式 -- 范文典范 -- 指导事例 -2018 四川高级中等学校招生考试数学试卷学校:姓名:准考据号:考1.本试卷共 8 页,共三道大题,29 道小题,满分 120 分。

考试时间 120 分钟。

生2.在试卷和答题卡上仔细填写学校名称、姓名和准考据号。

须3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其余试题用知黑色笔迹署名笔作答。

5.考试结束,请将本试卷、答题卡一并交回。

一、选择题(此题共30 分,每题 3 分)第1-10 题均有四个选项,切合题意的选项只有..一个.1.以下图,点 P 到直线l的距离是A. 线段 PA的长度B. A线段PB的长度C. 线段 PC的长度D.线段PD的长度2.若代数式x存心义,则实数 x 的取值范围是x 4A.x =0B.x =4C.x0D.x 43.右图是某几何体的睁开图,该几何体是A. 三棱柱B.圆锥C.四棱柱D.圆柱4.实数 a,b,c,d 在数轴上的点的地点以下图,则正确的结论是A. a4B.ab 0C. a dD.-WORD格式 -- 范文典范 -- 指导事例 -a c05.以下图形中,是轴对称图形不是中心..对称图形的是6. 若正多边形的一个内角是150°,则该正方形的边数是B. 12C. 167. 假如 a2 2a 1 0 ,那么代数式 a 4 a2 的值是a a 2B. -1C. 18.下边统计图反应了我国与“一带一路”沿线部分地域的贸易状况 .依据统计图供给的信息,以下推测不合理的是...A. 与 2015 年对比, 2016 年我国与东欧地域的贸易额有所增添B.2016 — 2016 年,我国与东南亚地域的贸易额逐年增添-WORD格式 -- 范文典范 -- 指导事例 -C. 2016—2016 年,我国与东南亚地域的贸易额的均匀值超出 4 200 亿美元D.2016 年我国与东南亚地域的贸易额比我国与东欧地域的贸易额的 3 倍还多9.小苏和小林在右图的跑道长进行4×50 米折返跑 . 在整个过程中,跑步者距起跑线的距离y( 单位: m)与跑步时间t (单位: s)的对应关系以以下图所示。

2o18年内江数学中考试题及答案

2o18年內江数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2+2=5B. 3x-2=7C. 4x+3=11D. 5y-6=9答案:C2. 一个圆的半径是3cm,那么它的周长是多少?A. 6π cmB. 9π cmC. 12π cmD. 15π cm答案:C3. 以下哪个方程是二次方程?A. x+2=0B. x^2+2x+1=0C. 3x-2=0D. x^3-2x+1=0答案:B4. 函数y=2x+3在x=2时的值是多少?A. 7B. 8C. 9D. 10答案:A5. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 14B. 17C. 20D. 23答案:A6. 以下哪个图形是轴对称图形?A. 等腰梯形B. 圆C. 正五边形D. 以上都是答案:D7. 一个直角三角形的两条直角边分别是3和4,那么它的斜边是多少?A. 5B. 6C. 7D. 8答案:A8. 以下哪个选项是正确的?A. √16=4B. √25=5C. √36=6D. √49=7答案:A9. 一个正方体的棱长是2cm,那么它的体积是多少?A. 4cm³B. 6cm³C. 8cm³D. 10cm³答案:C10. 以下哪个选项是正确的?A. 3的平方是9B. 4的立方是64C. 5的四次方是125D. 6的五次方是216答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 一个数的绝对值是7,那么这个数可以是______或______。

答案:7或-713. 一个等比数列的首项是2,公比是3,那么它的第三项是______。

答案:1814. 一个三角形的内角和是______度。

答案:18015. 一个数的平方根是4,那么这个数是______。

答案:16三、解答题(每题10分,共40分)16. 解方程:2x-3=7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档