2020-2021上海民办张江集团学校八年级数学上期末一模试卷(含答案)

合集下载

2020-2021初二数学上期末一模试卷(附答案)(4)

2020-2021初二数学上期末一模试卷(附答案)(4)

2020-2021初二数学上期末一模试卷(附答案)(4)一、选择题1.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+2.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)3.下列计算正确的是( )A .2236a a b b ⎛⎫= ⎪⎝⎭B .1a b a b b a -=--C .112a b a b +=+D .1x y x y --=-+ 4.下列运算正确的是( ) A .a 2+2a =3a 3 B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 25.下列运算中,结果是a 6的是( ) A .a 2•a 3 B .a 12÷a 2 C .(a 3)3 D .(﹣a)66.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A .30°B .40°C .45°D .60° 7.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠18.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .109.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 10.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .211.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC12.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .20二、填空题13.如图,△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件:_____,使△AEH ≌△CEB .14.计算:24a 3b 2÷3ab =____.15.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.16.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.17.分解因式:2a 2﹣8=_____.18.如图,小新从A 点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A 点时,一共走了__米.19.因式分解:328x x -=______.20.如图,ABC V 的三边AB BC CA 、、 的长分别为405060、、,其三条角平分线交于点O ,则::ABO BCO CAO S S S V V V =______.三、解答题21.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.22.如图,已知点B ,F ,E ,C 在同一条直线上,//AB CD ,且AB CD =,A D ∠=∠.求证:BE CF =.23.如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交于两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点作交于点.(1)若,求的度数; (2)若,垂足为,求证:. 24.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.25.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-【参考答案】***试卷处理标记,请不要删除1.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 2.D解析:D【解析】【详解】解:作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点C′,此时△ABC 的周长最小,∵点A 、B 的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A 作AE 垂直x 轴,则AE=4,OE=1则B′E=4,即B′E=AE ,∴∠EB′A=∠B′AE ,∵C′O ∥AE ,∴∠B′C′O=∠B′AE ,∴∠B′C′O=∠EB′A∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC 的周长最小.故选D .3.D解析:D【解析】根据分式的乘方、分式的加减运算法则及分式的性质逐一判断即可得答案.【详解】 A.22222()3(3)9a a a b b b==,故该选项计算错误,不符合题意, B.a b a b a b a b b a a b a b a b +-=+=-----,故该选项计算错误,不符合题意, C.11b a a b a b ab ab ab ++=+=,故该选项计算错误,不符合题意, D.()1x y x y x y x y---+==-++,故该选项计算正确,符合题意, 故选:D.【点睛】本题考查分式的运算,分式的乘方,要把分式的分子、分母分别乘方;同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;熟练掌握分式的运算法则是解题关键.4.C解析:C【解析】【分析】根据整式的混合运算法则与完全平方公式进行判断即可.【详解】解:A.a 2与2a 不是同类项,不能合并,故本选项错误;B.326 (2a )4a -=,故本选项错误;C.()()2a 2a 1a a 2+-=+-,正确; D.222 (a b)a 2ab b +=++,故本选项错误.故选C.【点睛】本题主要考查了整式的混合运算与完全平方公式,属于基础题,熟练掌握其知识点是解此题的关键.5.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C、(a3)3=a9,故此选项错误;D、(-a)6=a6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.6.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C=18018010040.22ADC-︒︒-=︒=︒∠故选B.考点:等腰三角形的性质.7.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.8.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选:C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.9.A解析:A【解析】【详解】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=4-m.∵x为正数,∴4-m>0,解得m<4.∵x≠1,∴4-m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.10.C解析:C【解析】【分析】由等边三角形有三条对称轴可得答案.【详解】如图所示,n的最小值为3.故选C.【点睛】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.11.D解析:D【解析】【分析】根据全等三角形的判定定理逐个判断即可.【详解】A、∵在△ABC和△DCB中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC 中,以点A 和点B 为圆心,大于二分之一AB 的长为半径画弧,两弧相交与点M,N ,则直线MN 为AB 的垂直平分线,则DA=DB,△ADC 的周长由线段AC,AD,DC 组成,△ABC 的周长由线段AB,BC,CA 组成而DA=DB,因此△ABC 的周长为10+7=17. 故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.二、填空题13.AH=CB或EH=EB或AE=CE【解析】【分析】根据垂直关系可以判断△AEH 与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=解析:AH=CB或EH=EB或AE=CE.【解析】【分析】根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.8a2b【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a3b2÷3ab,=(24÷3)a2b,=8a2b.故答案为8a2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法. 15.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.16.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.17.2(a+2)(a ﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a ﹣2)故答案为:2(a+2)(a ﹣2)【点睛】本题考查了因式分解一解析:2(a+2)(a ﹣2)【解析】【分析】先提取公因式2,再利用平方差公式继续分解.【详解】解:2a 2﹣8=2(a 2﹣4),=2(a+2)(a ﹣2).故答案为:2(a+2)(a ﹣2).【点睛】本题考查了因式分解,一般是一提二套,先考虑能否提公式式,再考虑能不能用平方差公式和完全平方公式继续分解,注意要分解彻底.18.600【解析】【分析】【详解】解:根据题意可知:小新从A 点出发沿直线前进50米后向左转30º再沿直线前进50米又向左转30º……照这样下去小新第一次回到出发地A 点时小新走的路线围成一个正多边形且这个解析:600【解析】【分析】【详解】解:根据题意可知:小新从A 点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A 点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.19.【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可【详解】故答案为:【点睛】本题考查了因式分解熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键解析:()()222x x x +-【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可.【详解】()()()322824?222x x x x x x x -=-=+-.故答案为:()()222x x x +-.【点睛】本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键. 20.【解析】【分析】首先过点O 作OD ⊥AB 于点D 作OE ⊥AC 于点E 作OF ⊥BC 于点F 由OAOBOC 是△ABC 的三条角平分线根据角平分线的性质可得OD=OE=OF 又由△ABC 的三边ABBCCA 长分别为40解析:4:5:6【解析】【分析】首先过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,由OA ,OB ,OC 是△ABC 的三条角平分线,根据角平分线的性质,可得OD=OE=OF ,又由△ABC 的三边AB 、BC 、CA 长分别为40、50、60,即可求得S △ABO :S △BCO :S △CAO 的值.【详解】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD=OE=OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(12AB •OD ):(12BC •OF ):(12AC •OE ) =AB :BC :AC=40:50:60=4:5:6. 故答案为:4:5:6.【点睛】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题21.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.22.证明见解析【解析】【分析】根据ASA 可判定ABF DCE ∆≅∆,可得BF CE =,即可得BE CF =.【详解】证明://AB CD Q , B C ∴∠=∠,在ABF ∆和DCE ∆中,B C AB CD A D ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABF DCE ASA ∴∆≅∆BF CE ∴=,BF EF CE EF ∴+=+,即BE CF =.【点睛】本题考查了三角形的全等的判定和性质,掌握三角形的全等的判定是解题的关键.23.(1)35°;(2)见解析.【解析】【分析】(1)首先根据OB ∥FD ,可得∠OFD +∠AOB =18O °,进而得到∠AOB 的度数,再根据作图可知OP 平分∠AOB ,进而算出∠DOB 的度数即可;(2)首先证明∴∠AOD =∠ODF ,再由FM ⊥OD 可得∠OMF =∠DMF ,再加上公共边FM =FM ,可利用AAS 证明△FMO ≌△FMD .【详解】(1)解:∵OB ∥FD ,∴∠OFD +∠AOB =18O °,又∵∠OFD =110°,∴∠AOB =180°−∠OFD =180°−110°=70°,由作法知,OP 是∠AOB 的平分线,∴∠DOB =∠ABO =;(2)证明:∵OP 平分∠AOB ,∴∠AOD =∠DOB ,∵OB ∥FD ,∴∠DOB =∠ODF ,∴∠AOD =∠ODF ,又∵FM ⊥OD ,∴∠OMF =∠DMF ,在△MFO 和△MFD 中∴△MFO ≌△MFD (AAS ).【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.24.(1)画图见解析;点1B 坐标为:(﹣2,﹣1);(2)画图见解析;点2C 的坐标为:(1,1)【解析】【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△111A B C ,即为所求;点1B 坐标为:(﹣2,﹣1);(2)如图所示:△222A B C ,即为所求,点2C 的坐标为:(1,1).考点:作图-轴对称变换;作图-平移变换25.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【解析】【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.。

2020-2021上海民办张江集团学校八年级数学上期末一模试卷(含答案)

2020-2021上海民办张江集团学校八年级数学上期末一模试卷(含答案)

2020-2021上海民办张江集团学校八年级数学上期末一模试卷(含答案)一、选择题1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 2.下列边长相等的正多边形能完成镶嵌的是( ) A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形3.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②①4.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣65.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .86.如图,在△ABC 中,∠ACB=90°,分别以点A 和B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( )A .AD=BDB .BD=CDC .∠A=∠BED D .∠ECD=∠EDC7.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65°9.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④10.如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,CD 是斜边AB 上的高,AD =3 cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm11.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度12.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm二、填空题13.如图所示,请将12A ∠∠∠、、用“>”排列__________________.14.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.15.分解因式:2288a a -+=_______16.已知9y 2+my+1是完全平方式,则常数m 的值是_______.17.因式分解34x x -= .18.若n 边形内角和为900°,则边数n= .19.如图,ABC 的三边AB BC CA 、、 的长分别为405060、、,其三条角平分线交于点O ,则::ABO BCO CAO S S S =______.20.若a ,b 互为相反数,则a 2﹣b 2=_____.三、解答题21.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE=AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.22.分解因式:(1)(a﹣b)2+4ab;(2)﹣mx2+12mx﹣36m.23.先化简,再求值:224(2)24xxx x--÷+-,其中x=5.24.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.25.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.2.D解析:D【解析】【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

沪科版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪科版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪科版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.如图,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线交BC 于D ,交AB 于E ,DB=12cm ,则AC=( )A .4cmB .5mC .6cmD .7cm2.如图,点,A B 在数轴上分别表示数23,1a -+,则一次函数(1)2y a x a =-+-的图像一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列关于变量x ,y 的关系,其中y 不是x 的函数的是( )A .B .C .D .4.如图,已知AD 为△ABC 的高,AD =BC ,以AB 为底边作等腰Rt △ABE ,EF ∥AD ,交AC 于F ,连ED ,EC ,有以下结论:①△ADE ≌△BCE ;②CE ⊥AB ;③BD =2EF ;④S △BDE =S △ACE ,其中正确的是( )A .①②③B .②④C .①③D .①③④ 5.已知点P (x ,y )在第二象限|x+1|=2,|y ﹣2|=3,则点P 的坐标为( ) A .(﹣3,5)B .(1,﹣1)C .(﹣3,﹣1)D .(1,5)6.下列命题中:正确的说法有①两个全等三角形合在一起是一个轴对称图形;②成轴对称的两个图形一定全等;③直线l 经过线段AB 的中点,则l 是线段AB 的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.A .1个B .2个C .3个D .4个7.若直线y kx b =+不经过第一象限,则( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <≤ 8.如图,已知∠AOB =∠BOC =∠COD ,下列结论中错误的是( )A .OB 、OC 分别平分AOC ∠、BOD ∠B .AOD AOB AOC ∠=∠+∠C .12BOC AOD AOB ∠=∠-∠ D .()12COD AOD BOC ∠=∠-∠ 9.如图,∠1=∠2,∠DAB =∠BCD .给出下列结论:①AB ∥DC ;②AD ∥BC ;③∠B =∠D ;④∠D =2∠DAB .其中,正确的结论有( )A .1个B .2个C .3个D .4个10.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( )A .5B .4C .8D .611.下列语句:①全等三角形的周长相等;②面积相等的三角形是全等三角形;③成轴对称的两个图形全等;④角是轴对称图形,角平分线是角的对称轴.其中正确的有( )A .1个B .2个C .3个D .4个12.将点向右平移3个单位长度得到点,则点所在的象限是( ) A .第四象限B .第三象限C .第二象限D .第一象限二、填空题13.如图,已知一次函数y x a =+过点()2,4P ,且与一次函数4y ax =-的图象交于点Q ,则不等式4x a ax +<-的解集是_________.14.如图,点E ,C 在线段BF 上,//AB DE ,BE CF =.若要使ABC ∆≌DEF ∆,可以添加的条件是:__________.15.△ABC 中,∠A=40o ,∠B=60o ,则与∠C 相邻外角的度数是______.16.如图,△ABC 中,∠B =40°,∠C =30°,点D 为边BC 上一点,将△ADC 沿直线AD 折叠后,点C 落到点E 处,若DE ∥AB ,则∠ADC 的度数为______.17.如图,∠BAE =∠AEB ,∠CAD =∠ADC ,∠DAE =25°,则∠BAC =________.18.在△ABC 中,∠B=90°,点D 在BC 的延长线上AC=DC, ∠D=15°AB=18cm,则CD 的长为____cm19.如图,在Rt △ABC 中,∠C=90°,BD 是△ABC 的角平分线,过点D 作DE ⊥AB,垂足为E,则 BE=BC (____)20.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.三、解答题21.如图:△ABD 和△ACE 都是Rt △,其中∠ABD=∠ACE=90°,C 在AB 上,连接DE ,M 是DE 中点,求证:MC=MB .22.如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在边BC ,AC ,AB 上,且BD =CE ,DC =BF ,连结DE ,EF ,DF ,∠1=60°(1)求证:△BDF ≌△CED .(2)判断△ABC 的形状,并说明理由.23.如图,在ABC ∆中,,120,AB AC A AB =∠=的垂直平分线MN 分别交,BC AB 于点,M N .求证:2CM AM =.24.如图,在等边△ABC 中,D 是AB 上一点,E 是BC 延长线上一点,AD=CE ,DE 交AC 于点F .(1)求证:DF=EF ;(2)过点D 作DH ⊥AC 于点H ,求HF AC.25.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?26.已知y 与2x -成正比例,且当3x =时,4y =,则当5x =时,求y 的值. 27.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出).(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?28.已知正比例函数的图象过点(1,﹣2).(1)求此正比例函数的解析式;(2)若一次函数图象是由(1)中的正比例函数的图象平移得到的,且经过点(1,2),求此一次函数的解析式.29.如图,90C D ∠=∠=︒,AD BC =.判断ABE ∆的形状,并证明你的结论.30.如图,点分别在等边的边上,与交于点,,,,,求的长度.参考答案1.C【解析】解:连接AD .∵AB 的垂直平分线交BC 于D ,交AB 于E ,DB =12cm ,∴AD =BD =12cm ,∠B =∠BAD =15°;又∵在△ABC 中,∠C =90°,∠B =15°,∴∠DAC =60°,∴∠ADC =30°,∴AC =12AD =6cm .故选C .点睛:本题考查了线段垂直平分线的性质(线段的垂直平分线上的点到线段的两个端点的距离相等).解答本题的关键是线段垂直平分线的性质求得AD =BD =12cm ,及∠ADC =30°. 2.A【分析】根据数轴得出0<﹣2a +3<1,求出1<a <1.5,进而可判断1﹣a 和a ﹣2的正负性,从而得到答案.【详解】解:根据数轴可知:0<﹣2a +3<1,解得:1<a <1.5,∴1﹣a <0,a ﹣2<0,∴一次函数(1)2y a x a =-+-的图像经过第二、三、四象限,不可能经过第一限. 故选:A .【点睛】本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.3.B【解析】【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A、C、D当x取值时,y有唯一的值对应,故选B.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.D【解析】【分析】①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.【详解】如图延长CE交AD于K,交AB于H.设AD交BE于O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD,∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确,∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°,∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC不垂直AB,故②错误,∵∠AEB=∠HED,∴∠AEK=∠BED,∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK,∵△DCK是等腰直角三角形,DE平分∠CDK,∴EC=EK,∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确,∵EK=EC,∴S△AKE=S△AEC,∵△KAE≅△DBE,∴S△KAE=S△BDE,∴S△BDE=S△AEC,故④正确.故选D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.5.A【分析】根据第二象限的点横坐标是负数,纵坐标是正数判断出x、y的正负情况,然后去掉绝对值号求出x、y的值,从而得解【详解】∵点P(x,y)在第二象限,∴x<0,y>0,由|x+1|=2得,x+1=2或x+1=-2,解得x=1(舍去)或x=-3,由|y-2|=3得,y-2=3或y-2=-3,解得y=5或y=-1(舍去),所以,点P的坐标为(-3,5).故选:A.【点睛】本题考查了点的坐标,要注意根据第二象限内点的特点对x、y的值进行取舍.6.B【解析】【分析】根据题轴对称的性质,对题中条件进行一一分析,排除错误答案.【详解】①两个全等三角形合在一起不一定是一个轴对称图形,错误;②成轴对称的两个图形一定全等,正确;③直线l经过线段AB的中点且垂直线段,则l是线段AB的垂直平分线,错误;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,正确.故选B.【点睛】本题考查了轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.D【分析】由题意,结合一次函数图象特点,直线必过第二、三、四象限或经过原点和第二、四象限,由此讨论求解即可.【详解】=+不经过第一象限知,可分三种情况:解:由直线y kx b当直线经过第二、三、四象限时,∵直线必过第二、四象限,∴k<0,∵直线还经过第三象限,即直线与y轴的交点在y轴的负半轴,∴b<0;当直线经过原点和第二、四象限时,k<0,b=0,综上,k<0,b≤0,故选:D.【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数的图象在直角坐标系中的位置与系数k、b的关系是解答的关键.8.C【解析】【分析】根据角平分线的定义和角的和差逐一进行判断即可.【详解】A、∵∠AOB=∠BOC=∠COD,∴OB、OC分别平分∠AOC、∠BOD,故正确;B、∵∠AOB=∠BOC=∠COD,∴∠AOC=∠BOD,∵∠AOD=∠AOB+∠BOD,∴∠AOD=∠AOB+∠AOC,故正确;C、∵∠BOC═∠AOC-∠AOB,∵∠AOB=∠BOC=∠COD,∴∠AOC=23∠AOD,∴∠BOC=23∠AOD-∠AOB,故错误;D、∵∠AOB=∠COD,∴∠COD=∠AOD-∠BOC-∠AOB,∴2∠COD=∠AOD-∠BOC,∴∠COD=12(∠AOD-∠BOC),故正确,故选C.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义和角的和差是解题的关键.9.C【分析】由已知条件根据内错角相等两直线平行即可得到AD ∥BC ,DC ∥AB ,再根据ASA 证明△DAC ≌△BCA ,即可得到∠B =∠D 并判断∠D 与2∠DAB 的关系.【详解】解:∵∠1=∠2,∠DAB =∠BCD ,∴AD ∥BC ,∠DAB ﹣∠1=∠DCB ﹣∠2,∴∠BAC =∠DCA ,∴DC ∥AB ,在△DAC 和△BCA 中12AC AC DCA BAC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAC ≌△BCA ,∴∠D =∠B ,根据已知不能推出∠D =2∠DAB ,即①②③正确,④错误.故选:C .【点睛】此题考查平行线的判定定理,全等三角形的判定及性质,熟记定理并运用解题是关键. 10.D【解析】A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故A 错误;B.4,∵4是4的倍数,∴不能作为假命题的反例;故B 错误;C.8,∵8是4的倍数,∴不能作为假命题的反例;故C 错误;D.6,∵6是偶数,不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是6,故选D .11.B【解析】①∵全等三角形的所有对应边都相等,∴ 全等三角形的周长相等,故①正确;②∵全等三角形的面积相等,但面积相等的三角形不一定全等,如:面积为6的等边三角形和面积为6的直角三角形就不全等,∴②错误;③按照轴对称的定义:“如果两个图形沿某一直线对折后,这两个图形能够完全重合,我们就说这两个图形关于这条直线成轴对称”可知成轴对称的两个图形一定全等,故③正确; ④∵角是轴对称图形,但其对称轴是角平分线所在的直线,而不是角平分线本身, ∴④错误;综上所述,①、③正确,故选B.点睛:本题的前三个语句都比较容易判断,而第四个语句的判断必须要清楚一点“对称轴是直线,不是线段,也不是射线”,否则很容易误判第四个语句为正确.12.B【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得B 点坐标,进而可得所在象限.【详解】解:点A (-5,-2)向右平移3个单位长度得到点B (-5+3,-2),即(-2,-2),在第三象限,故选:B .【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.13.6x >【分析】先将P(2,4)代入y=x+a 求a ,再将a 的值代入不等式,求解即可.【详解】解:∵一次函数y x a =+过点()2,4P ,∴4=2+a,∴a=2将a=2代入不等式得:x+2<2x-4解得:x>6故答案为:x>6【点睛】本题考查的是一次函数的性质和求不等式的解,熟练掌握性质是解题的关键.14.AB=DE或∠A=∠D或∠ACB=∠F.【分析】首先根据平行线的性质可得∠B=∠DEF,再根据等式的性质可得BC=EF,要判定△ABC≌△DEF,需要添加的条件是相等的角的另一边或者一对角相等.【详解】∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BE+EC=CF+EC,即BC=EF.①若添加AB=DE.在△ABC和△DEF中,∵AB DEB DEFCB EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);②若添加∠A=∠D.在△ABC和△DEF中,∵∠B=∠DEF,∠A=∠D,BC=EF,∴△ABC≌△DEF(AAS);③若添加∠ACB=∠F.在△ABC和△DEF中,∵∠B=∠DEF,BC=EF,∠ACB=∠F,∴△ABC≌△DEF(ASA).故答案为:AB=DE或∠A=∠D或∠ACB=∠F.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.15.100°【解析】【分析】先根据三角形的内角和求出∠C的度数,即可求出与∠C相邻外角的度数【详解】∠C=180°-∠A-∠B=80°,∴∠C相邻外角的度数为180°-80°=100°.【点睛】此题主要考查邻补角的求解,解题的关键是熟知三角形的内角和为180°.16.110°【解析】【分析】根据三角形的内角和得到∠BAC=110°,由折叠的性质得到∠E=∠C=30°,∠EAD=∠CAD,根据平行线的性质得到∠BAE=∠E=30°,根据三角形的内角和即可得到结论.【详解】∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°−∠CAD−∠C=110°,故答案为:110°.【点睛】本题考查了三角形的内角和,折叠的性质,平行线的性质,熟练掌握折叠的性质是解题的关键.17.50°【分析】利用角的和与差以及三角形的外角性质,列得方程组,即可求得∠BAC的度数.【详解】设∠BAC=α,如图:∵∠BAE=∠AEB,∠DAE=25°,∴α+∠1=∠AEB,∠AEB=∠DAE+∠D=25︒+∠D,∴α+∠1=25︒+∠D①,∵∠CAD=∠ADC,∴∠1+25︒=∠D②,①-②得:α=50︒,故答案为:50︒.【点睛】本题考查了三角形的外角性质以及角的和与差,解题的关键是灵活运用所学知识解决问题.18.36【分析】根据直角三角形的性质、三角形内角与外角的关系.根据知识点作出解答.【详解】在△ACD中∵AC=DC,∠D=15°∴∠D=∠DAC=15°∠ACB是△ACD的外角∴∠ACB=∠D+∠DAC=15°+15°=30°在Rt△ABC中∵∠ACB=30°∴AC=2AB=2×18=36即CD=36cm.∴CD的长为36cm.故答案是:36cm.【点睛】考查的是直角三角形的性质、三角形内角与外角的关系,解题关键是把直角三角形的性质和三角形内角与外角的关系结合来进行分析、解答.19.对【分析】根据已知条件得到CD=DE,∠A+∠ABC=∠A+∠ADE=90°,根据全等三角形的性质即可得到结论.【详解】∵∠C=90°,DE⊥AB,BD是△ABC的角平分线,∴CD=DE,∠A+∠ABC=∠A+∠ADE=90°,∴∠ADE=∠ABC,在Rt△CDB与Rt△EDB中,BD BD DE CD=⎧⎨=⎩,∴Rt△CDB≌Rt△EDB,∴BE=BC,故答案为:√.【点睛】此题考查全等三角形的判定与性质,角平分线的性质,解题关键在于掌握判定定理. 20.3【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】()3,2P-到y轴的距离是横坐标的绝对值,即33-=.故答案为:3.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.21.证明见解析【解析】试题分析:延长CM、DB交于G,先证△ECM≌△DMG,得CM=MG,于是在Rt△CBG 中,BM=12CG=CM.试题解析:延长CM、DB交于G,∵△ABD和△ACE都是Rt△,∴CE∥BD,即CE∥DG,∴∠CEM=∠GDM,∠MCE=∠MGD又∵M是DE中点,即DM=EM,∴△ECM≌△DMG,∴CM=MG,∵G在DB的延长线上,∴△CBG是Rt△CBG,∴在Rt△CBG中,BM=12CG=CM.22.(1)见解析;(2)△ABC是等边三角形,理由见解析【分析】(1)用SAS定理证明三角形全等;(2)由△BDF≌△CED得到∠BFD=∠CDE,然后利用三角形外角的性质求得∠B=∠1=60°,从而判定△ABC的形状.【详解】解:(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中BD CEB CBF CD=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CED(SAS);(2)△ABC是等边三角形,理由如下:由(1)得:△BDF ≌△CED ,∴∠BFD =∠CDE ,∵∠CDF =∠B +∠BFD =∠1+∠CDE ,∴∠B =∠1=60°,∵AB =AC ,∴△ABC 是等边三角形;【点睛】本题考查全等三角形的判定和性质,等边三角形的判定,掌握判定定理正确推理论证是本题的解题关键.23.见解析.【分析】根据垂直平分线的性质及含30°的直角三角形的性质即可求解.【详解】∵MN 垂直平行AB ,∴BM AM =,则B MAB ∠=∠.∵120BAC ∠=︒,AB AC =,∴30C B ∠=∠=︒,∴30MAB ∠=︒,∴1203090MAC ∠=︒-︒=︒.在Rt MAC ∆中,∵30C ∠=︒,∴2CM MA =,【点睛】此题主要考查含30°的直角三角形的性质,解题的关键是熟知含30°的直角三角形的性质定理.24.(1)证明见解析;(2)HF 1AC 2=. 【分析】(1)过点D 作DG ∥BC 交AC 于点G ,根据全等三角形的判定和性质解答即可; (2)根据等边三角形的性质和全等三角形的性质解答即可.【详解】证明:(1)过点D作DG∥BC交AC于点G,∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠A=60°,∴∠A=∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴DG=AD,∵AD=CE,∴DG=CE,在△DFG与△EFC中DFG EFCFDG EDG CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DFG≌△EFC(AAS),∴DF=EF;(2)∵△ADG是等边三角形,AD=DG DH⊥AC,∴AH=HG=12AG,又∵△DFG≌△EFC,∴GF=FC=12GC∴HF=HG+GF=12AG+12GC=12AC,∴HF1AC2=【点睛】此题考查全等三角形的判定和性质.等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题.25.(1)1小时;(2)返回速度快,70千米/时.【解析】【分析】(1)根据函数图象通过是信息可知,4.5-3.5=1,由此得出货车在乙地卸货停留的时间;(2)比较货车往返所需的时间,即可得出货车往返速度的大小关系,根据路程除以时间即可求得速度.【详解】解:(1)∵4.5-3.5=1(小时),∴货车在乙地卸货停留了1小时.(2)∵7.5-4.5=3<3.5,∴货车返回速度快.∵210÷3=70(千米/时),∴返回速度是70千米/时.故答案为:(1)1小时;(2)返回速度快,70千米/时.【点睛】本题主要考查了函数图象,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.解决问题的关键是从函数图象中获取关键的信息.26.12.【解析】【分析】利用正比例函数的定义,设y=k (x-2),然后把已知的一组对应值代入求出k 即可得到y 与x 的关系式;再将x=5代入已求解析式,从而可求出y 的值.【详解】设()2y k x =-,把3,4x y ==代入得()432=-k ,解得4k =,∴()42=-y x ,即48=-y x ,当5x =时,20812=-=y .【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.27.(1)400x-2000,350x ;(2)22000;21000;(3)选择方案一【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x (1000-550)-50x -2000=400x -2000;用方案二处理废渣时,每月利润为:x (1000-550)-100x =350x ;故答案为400x -2000,350x ;(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元; 用方案二处理废渣时,每月利润为:350×30=10500元; x =60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000; 用方案二处理废渣时,每月利润为:350×60=21000; (3)令400x -2000=350x ,解得x =40即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一. 28.(1) y =﹣2x ;(2) y =﹣2x+4.【解析】【分析】(1)根据题意设正比例函数解析式为y =ax (a ≠0),将(1,﹣2)代入计算求出a 即可.(2)根据题意设一次函数解析式为y =kx +b (k ≠0),列出一次函数的方程联解求出k 、b 即可.【详解】解:(1)设正比例函数解析式为y =ax (a ≠0),把(1,﹣2)代入得﹣2=a ,解得a =﹣2故所求解析式为y =﹣2x ;(2)设一次函数解析式为y =kx +b (k ≠0)依题意有22k k b =-⎧⎨+=⎩, 解得24k b =-⎧⎨=⎩, 故所求解析式为y =﹣2x +4.【点睛】本题主要考查的是正比例函数解析式以及一次函数解析式的求法,熟练掌握求解方法是本题的解题关键.29.ABE ∆是等腰三角形,详见解析【分析】欲证明ABE ∆是等腰三角形,只要证明Rt ADB Rt BCA(HL)∆≅∆即可;【详解】解:ABE ∆是等腰三角形,理由如下:90C D ∠=∠=︒,在Rt ADB ∆和Rt BCA ∆中,AD BC AB BA =⎧⎨=⎩, Rt ADB Rt BCA(HL)∴∆≅∆,BAE ABE ∴∠=∠,AE BE ∴=,ABE ∴∆是等腰三角形.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.30.4【解析】【分析】根据等边三角形的性质和已知条件,可以证出△BAD≌△ACE,进而得到BD=AE=10,求出BP的长为8,再证明△BPF是含有30°的直角三角形,利用30°角所对的直角边等于斜边的一半,进而求出答案.【详解】解:∵等边△ABC,∴AB=AC,∠C=∠BAD=∠ABC=60°,又∵∠ABD=∠CAE,∴△BAD≌△ACE∴BD=AE=10,∵PD=2,∴BP=10-2=8,∵∠BPF=∠ABP+∠BAP=∠CAE+∠BAP=∠SAC=60°,又∵BF⊥AE,∴∠PBF=90°-60°=30°,在Rt△BPF中,PF=BP=4,答:PF的长为4.【点睛】考查等边三角形的性质、全等三角形的判定和性质、直角三角形的性质等知识,在等边三角形中构造三角形全等是常见的题目.解题的关键是找出图形中角和边的关系,进而求出答案.。

2020-2021上海民办明珠中学初二数学上期末第一次模拟试卷附答案

2020-2021上海民办明珠中学初二数学上期末第一次模拟试卷附答案

2020-2021上海民办明珠中学初二数学上期末第一次模拟试卷附答案一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.42.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a∠的度数是( )A.42B.40C.36D.323.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x人,则所列方程为()A.18018032x x-=+B.18018032x x-=+C.18018032x x-=-D.18018032x x-=-4.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°5.如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A .1个B .2个C .3个D .4个 6.下列计算中,结果正确的是( ) A .236a a a ⋅= B .(2)(3)6a a a ⋅= C .236()a a = D .623a a a ÷= 7.如果2x +ax+1 是一个完全平方公式,那么a 的值是()A .2B .-2C .±2D .±18.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .209.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1810.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .3211.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°12.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10二、填空题13.3(5)2(5)x x x -+-分解因式的结果为__________.14.若一个多边形的内角和是900º,则这个多边形是 边形.15.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.16.若分式242x x -+的值为0,则x =_____. 17.若分式242x x --的值为0,则x 的值是_______. 18.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6cm ,则△DEB 的周长是___;19.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.20.一个正多边形的内角和为540︒,则这个正多边形的每个外角的度数为______.三、解答题21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?22.已知:如图,点B ,E ,C ,F 在同一直线上,AB ∥DE ,且AB =DE ,BE =CF . 求证:ABC DEF △≌△.23.如图,在Rt ABC 中,∠C =90º,BD 是Rt ABC 的一条角一平分线,点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形,(1)求证:点O 在∠BAC 的平分线上;(2)若AC =5,BC =12,求OE 的长24.如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .25.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n 边形木架不变形,至少再钉上(n-3)根木条.故选:C.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.2.A解析:A【解析】【分析】根据正多边形的内角,角的和差,可得答案.【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,∠1=360°-90°-108°-120°=42°, 故选:A .【点睛】本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.3.D解析:D【解析】【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数. 4.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE ,根据等腰三角形的性质得到AF=EF ,求得AD=ED ,得到∠DAF=∠DEF ,根据三角形的外角的性质即可得到结论.【详解】∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°, ∴∠BAF=∠BEF=90°-17.5°,∴AB=BE ,∴AF=EF ,∴AD=ED ,∴∠DAF=∠DEF ,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C .【点睛】 本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.5.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB =5,AC =3,BC =2,GD =5,DE =2,GE =3,DI =3,EI =5,所以G ,I 两点与点D 、点E 构成的三角形与△ABC 全等.故选B .点睛:本题考查了全等三角形的判定,关键是根据SSS 证明全等三角形.6.C解析:C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.7.C解析:C【解析】【分析】【详解】解:根据完全平方公式可得:a=±2×1=±2. 考点:完全平方公式.8.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC 中,以点A 和点B 为圆心,大于二分之一AB 的长为半径画弧,两弧相交与点M,N ,则直线MN 为AB 的垂直平分线,则DA=DB,△ADC 的周长由线段AC,AD,DC 组成,△ABC 的周长由线段AB,BC,CA 组成而DA=DB,因此△ABC 的周长为10+7=17. 故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.9.B解析:B【解析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12, 故选B.10.C解析:C【解析】【分析】把x+1x =6两边平方,利用完全平方公式化简,即可求出所求. 【详解】把x+1x =6两边平方得:(x+1x )2=x 2+21x +2=36, 则x 2+21x=34, 故选:C .【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.11.C解析:C【解析】【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.12.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7, 故选C二、填空题13.(x-5)(3x-2)【解析】【分析】先把代数式进行整理然后提公因式即可得到答案【详解】解:==;故答案为:【点睛】本题考查了提公因式法分解因式解题的关键是熟练掌握分解因式的几种方法解析:(x-5)(3x-2)【解析】【分析】先把代数式进行整理,然后提公因式(5)x -,即可得到答案.【详解】解:3(5)2(5)x x x -+-=3(5)2(5)x x x ---=(5)(32)x x --;故答案为:(5)(32)x x --.【点睛】本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法. 14.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n-⋅︒,列式求解即可.【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,解得7n=.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.16.x=2【解析】分析:根据分式值为0的条件:分子为0分母不等于0可得即可解得详解:因为分式的值为0所以解得:所以故答案为:点睛:本题主要考查分式值为0的条件解决本题的关键是要熟练运用分式值为0的条件列解析:x=2【解析】分析:根据分式值为0的条件:分子为0,分母不等于0,可得24020xx⎧-=⎨+≠⎩,即可解得2 x=.详解:因为分式242xx-+的值为0,所以24020x x ⎧-=⎨+≠⎩, 解得:2,2x x =±≠-,所以2x =.故答案为: 2x =.点睛:本题主要考查分式值为0的条件,解决本题的关键是要熟练运用分式值为0的条件列出方程和不等式进行求解.17.-2【解析】【分析】根据分式值为零的条件可得x2-4=0且x ﹣2≠0求解即可【详解】由题意得:x2-4=0且x ﹣2≠0解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件需同时具备两解析:-2【解析】【分析】根据分式值为零的条件可得x 2-4=0,且x ﹣2≠0,求解即可.【详解】由题意得:x 2-4=0,且x ﹣2≠0,解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.18.6cm 【解析】【分析】先利用角角边证明△ACD 和△AED 全等根据全等三角形对应边相等可得AC=AECD=DE 然后求出BD+DE=AE 进而可得△DEB 的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD 和△AED 全等,根据全等三角形对应边相等可得AC=AE ,CD=DE ,然后求出BD+DE=AE ,进而可得△DEB 的周长.【详解】解:∵DE ⊥AB ,∴∠C=∠AED=90°,∵AD 平分∠CAB ,∴∠CAD=∠EAD ,在△ACD 和△AED 中,C AED CAD EAD AD DA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.19.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.72°【解析】设此多边形为n边形根据题意得:180(n﹣2)=540解得:n=5∴这个正多边形的每一个外角等于:360°÷5=72°故答案为:72°【点睛】本题考查了多边形的内角和与外角和的知识掌握解析:72°【解析】设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:360°÷5 =72°,故答案为:72°.【点睛】本题考查了多边形的内角和与外角和的知识,掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°是解题的关键.三、解答题21.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.22.证明见解析.【解析】试题分析:首先根据AB ∥DE 可得∠B=∠DEF .再由BE=CF 可得BC=EF ,然后再利用SAS 证明△ABC ≌△DEF .试题解析:∵AB ∥DE ,∴∠B=∠DEF .∵BE=CF ,∴BE+EC=FC+EC ,即BC=EF .在△ABC 和△DEF 中,AB DE B DEF BC EF ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DEF (SAS ).23.(1)证明见解析;(2)2.【解析】【分析】(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM =BE ,AM =AF ,利用正方形OECF ,得到四边都相等,从而利用OE 与BE 、AF及AB的关系求出OE的长【详解】解:(1)过点O作OM⊥AB于点M∵正方形OECF∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F ∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E ∴OM=OE=OF∵OM⊥AB于M, OE⊥BC于E∴∠AMO=90°,∠AFO=90°∵OM OF AO AO=⎧⎨=⎩∴Rt△AMO≌Rt△AFO∴∠MA0=∠FAO∴点O在∠BAC的平分线上(2)∵Rt△ABC中,∠C=90°,AC=5,BC=12∴AB=13∴BE=BM,AM=AF又BE=BC-CE,AF=AC-CF,而CE=CF=OE∴BE=12-OE,AF=5-OE∴BM+AM=AB即BE+AF=1312-OE+5-OE=13解得OE=2【点睛】本题考查角平分线的判定,全等三角形的判定及性质,掌握HL定理的判定方法及全等三角形的性质是本题的解题关键.24.详见解析.【解析】【分析】利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.【详解】证明:由BE =CF 可得BC =EF ,又AB =DE ,AC =DF ,故△ABC ≌△DEF (SSS ),则∠B=∠DEF ,∴AB ∥DE .考点:全等三角形的判定与性质.25.13a ,1. 【解析】【分析】 原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=a a+2a-2()()•a+2a a-3()+1a-2=1a-2a-3()()+1a-2=1+a-3a-2a-3()()=a-2a-2a-3()()=1a-3, ∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1.【点睛】此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键.。

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.将一元二次方程3x 2+1=6x 化成一般形式后,一次项系数、常数项分别为( ) A .1,﹣6 B .﹣6,1 C .1,6 D .6,12.下列计算正确的是( )A .20210=B .422-=C .236⨯=D .2(2)2-=- 3.下列各式中与3是同类二次根式的是( )A .8B .12C .23D .244.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并廷长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线②∠ADC =60°③点D 在AB 的垂直平分线上④若AD =2dm ,则点D 到AB 的距离是1dm⑤S △DAC :S △DAB =1:2A .2B .3C .4D .55.如图,在Rt ABC 中,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 为垂足,连接CD ,若1BD =,则AD 的长是( )A .2B .22C .4D .36.下列计算正确的是( )7.下列二次根式中,与2a (a >0)属同类二次根式的是()A .22aB .4aC .38aD .24a 8.已知12x x 、是方程221x x =+的两个根,则1211+x x 的值为( ) A .12- B .2 C .12 D .-29.正比例函数图象y =(1-m )x 的图像经过第一,三象限,则m 的取值范围是( ) A .m =1 B .m >1 C .m <1 D .m ≥110.某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图象,判断下列说法中错误的是( )A .当件数不超过30件时,每件价格为60元B .当件数在30到60之间时,每件价格随件数增加而减少C .当件数不少于60件时,每件价格都是45元D .当件数为50件时.每件价格为55元11.已知双曲线()0k y k x=>经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为()6,4,则AOC △的面积为( )A .3B .6C .9D .1212.等腰三角形的底和腰是方程x 2-6x +8=0的两个根,则这个三角形的周长是( ) A .8B .10C .8或10D .18二、填空题13.“两免一补”政策让某地区2011年投入经费2500万元,预计2013年投入3600万元.设这两年投入经费年平均增长百分率为x ,可列方程_____.14.计算:(- 2.5)2=______.15.若(m -2)22m x --mx +1=0是一元二次方程,则m 的值为______.16.已知x 1,x 2是方程x 2+2x ﹣7=0的两个根,则x 12+3x 1+x 2=_____.17.如图,△ABC 中,AB =AC ,AD⊥BC,若AB =5,BC =6,则△ABC 的面积为________.18.若关于x 的一元二次方程2(1)320k x x -+-=有两个不相等的实数根,则k 的取值范围是__________.19.用配方法解一元二次方程x 2-4x -5=0时,此方程可变形2)x m n +=(的形式为:___________.20.如图,BE 、CF 是△ABC 的角平分线,∠ABC=50°,∠ACB=70°,EB 、CF 相交于 D ,则∠CDE 的度数是______________21.在三角形ABC 中,15,20,25AC BC AB ===,点O 是三条角平分线的交点,则AOB ,BOC ,AOC 的面积比是___________22.如图在中,,,,是边上的两点,且满足,若,,,的长是__________.23.若方程2x 8x m 0--=有一个根为-1,则m=______________.三、解答题24.国庆节期间,某文具店平均每天可卖出300张贺卡,卖出1张贺卡的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100张贺卡.为了使每天获取的利润更多,该店决定把零售单价下降元.(1)零售单价下降元后,该店平均每天可卖出______张贺卡,每张贺卡的利润为____元;(用含的式子表示)(2)在不考虑其他因素的条件下,该店希望每天卖贺卡获得的利润是420元,并且能卖出更多的贺卡赢得市场,应定为多少?25.阅读理解在△ABC中,AB、BC、AC三边的长分别为2、2、2,求这个三角形的面积.解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=12×2×1=1.解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.方法迁移:请解答下面的问题:在△ABC中,AB、AC、BC三边的长分别为5、10、13,求这个三角形的面积.26.已知反比例函数y =4x(1)若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值;(2)如图,反比例函数y =4x(1≤x ≤4)的图象记为曲线C l ,将C l 向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.27.解方程:x (x ﹣3)=4.28.如图,在△ABC 中,∠B =30°,边AB 的垂直平分线分别交AB 和BC 于点D ,E ,且AE 平分∠BAC .(1)求∠C 的度数;(2)若CE =1,求AB 的长.29.(本题满分8分)如图,一次函数y ax b =+(0)a ≠图像与反比例函数k y x = (0)k ≠图像交于A 、B 两点,点A 的坐标为(4,3),点B 的坐标为(-2,m );(1)求一次函数与反比例函数的解析式;(2)求AOB 的面积;(3)点C 是x 轴上的一个动点,当AC+BC 最小时,求点C 的坐标.30.如图,正比例函数y=kx (x≥0)与反比例函数 m y x=(x >0)的图象交于点A (2,3)。

2020-2021上海上海中学八年级数学上期末一模试题带答案

2020-2021上海上海中学八年级数学上期末一模试题带答案

2020-2021上海上海中学八年级数学上期末一模试题带答案一、选择题1.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( )A .6B .11C .12D .18 2.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 3.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( )A .2个B .3个C .4个D .5个4.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

A .9B .7C .5D .3 5.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1 6.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形7.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .68.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 9.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .1110.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .11.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A .5B .6C .7D .10 12.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.14.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____. 15.若一个多边形的边数为 8,则这个多边形的外角和为__________.16.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.17.若分式21x x -+的值为0,则x=____. 18.如图,五边形ABCDE 的每一个内角都相等,则外角CBF =∠__________.19.若m 为实数,分式()22x x x m ++不是最简分式,则m =______.20.因式分解:3a 2﹣27b 2=_____.三、解答题21.(1)分解下列因式,将结果直接写在横线上:x 2+4x+4= ,16x 2+24x+9= ,9x 2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx+c(a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子表示a 、b 、c 之间的关系;②解决问题:若多项式x 2﹣2(m ﹣3)x+(10﹣6m)是一个完全平方式,求m 的值. 22.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?23.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.24.化简分式:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.25.“丰收1号”小麦的试验田是边长为a 米(a>1)的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(1a -)米的正方形,两块试验田里的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.2.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.3.C解析:C【解析】【分析】先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.【详解】如图,当OA=OP时,可得P1、P2满足条件,当OA=AP时,可得P3满足条件,当AP=OP时,可得P4满足条件,故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键. 4.A解析:A【解析】【分析】根据题意画出图形,分别以OA、OB、AB为边、根据直角三角形全等的判定定理作出符合条件的三角形即可.【详解】如图:分别以OA、OB、AB为边作与Rt△ABO全等的三角形各有3个,则则所有符合条件的三角形个数为9,故选:A.【点睛】本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解. 5.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.6.D解析:D【解析】【分析】【详解】解:A、正确,利用SAS来判定全等;B、正确,利用AAS来判定全等;C、正确,利用HL来判定全等;D、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选D.【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS、SAS、AAS、HL等.7.B解析:B【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.8.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF≌△ADE,即可判断①②;利用SSS即可证明△BDE≅△ADF,故可判断③;利用等量代换证得+=,从而可以判断④.BE CF AB【详解】∵△ABC为等腰直角三角形,且点在D为BC的中点,∴CD=AD=DB,AD⊥BC,∠DCF=∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.9.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.10.B解析:B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.11.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C12.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0, ∴分式方程的增根是x=4.关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、填空题13.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠ 解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.14.m <6且m≠2【解析】【分析】利用解分式方程的一般步骤解出方程根据题意列出不等式解不等式即可【详解】方程两边同乘(x-2)得x+m-2m=3x-6解得x=由题意得>0解得m <6∵≠2∴m≠2∴m<6解析:m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.15.360°【解析】【分析】根据任意多边形的外角和为360°回答即可【详解】解:由任意多边形的外角和为360°可知这个多边形的外角和为360°故答案为:360°【点睛】本题主要考查的是多边形的外角和掌握解析:360°.【解析】【分析】根据任意多边形的外角和为360°回答即可.【详解】解:由任意多边形的外角和为360°可知,这个多边形的外角和为360°.故答案为:360°.【点睛】本题主要考查的是多边形的外角和,掌握多边形的外角和定理是解题的关键.16.100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A -∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+解析:100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.17.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值解析:2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0,易得x=2.【详解】∵分式21xx-+的值为0,∴x−2=0且x≠0,∴x=2.故答案为2.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件. 18.【解析】【分析】多边形的外角和等于360度依此列出算式计算即可求解【详解】360°÷5=72°故外角∠CBF等于72°故答案为:【点睛】此题考查了多边形内角与外角关键是熟悉多边形的外角和等于360度解析:72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.19.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:0或-4【解析】【分析】由分式()22x xx m++不是最简分式可得x或x+2是x2+m的一个因式,分含x和x+2两种情况,根据多项式乘以多项式的运算法则求出m的值即可.【详解】∵分式()22x xx m++不是最简分式,∴x或x+2是x2+m的一个因式,当x是x2+m的一个因式x时,设另一个因式为x+a,则有x(x+a)=x2+ax=x2+m,∴m=0,当x或x+2是x2+m的一个因式时,设另一个因式为x+a,则有(x+2)(x+a)=x2+(a+2)x+2a=x2+m,∴202am a+=⎧⎨=⎩,解得:24 am=-⎧⎨=-⎩,故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x或x+2是x2+m的一个因式是解题关键.20.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法解析:3(a+3b)(a﹣3b).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a2-27b2,=3(a2-9b2),=3(a+3b)(a-3b).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题21.(1)(x+2)2,(4x+3)2,(3x﹣2)2;(2)①b2=4ac,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b2=4ac,即可得出答案;②利用①的规律解题.【详解】(1)x2+4x+4=(x+2)2,16x2+24x+9=(4x+3)2,9x2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b2=4ac,故答案为b2=4ac;②∵多项式x2-2(m-3)x+(10-6m)是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m),m2-6m+9=10-6mm2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b2=4ac是解此题的关键.22.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.23.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.24.x+2;当x=1时,原式=3.【解析】【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可.【详解】 解:2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ 22(2)33[](2)24x x x x x x --=-÷--- 233224x x x x x -⎛⎫=-÷ ⎪---⎝⎭ 3(2)(2)23x x x x x -+-=⨯-- =x+2,∵x 2-4≠0,x-3≠0,∴x≠2且x≠-2且x≠3,∴可取x=1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.25.(1) “丰收2号”小麦的试验田小麦的单位面积产量高;(2)单位面积产量高是低的11a a +-倍. 【解析】【分析】 (1)先用a 表示出两块试验田的面积,比较出其大小,再根据其产量相同可知面积较小的单位面积产量高即可得出结论;(2)根据(1)中两块试验田的面积及其产量,求出其比值即可.【详解】(1)∵“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a−1)米的正方形, ∴“丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,∵a 2−1−(a−1)2=a 2−1−a 2+2a−1=2(a−1),由题意可知,a >1,∴2(a−1)>0,即a 2−1>(a−1)2,∴“丰收2号”小麦的试验田小麦的单位面积产量高;(2)∵丰收1号”小麦的试验田的面积=a 2−1;“丰收2号”小麦的试验田的面积=(a−1)2,两块试验田的小麦都收获了500千克, ∴“丰收2号”小麦的试验田小麦的单位面积产量高,∴()()222500500500(1)(1)150011a a a a a +-÷=⋅---=11a a +-. 答:单位面积产量高是低的11a a +-倍. 【点睛】本题考查了分式的混合运算,把分式的分子分母正确分解因式是解题的关键.。

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)

沪教版2020-2021学年度第一学期八年级数学期末模拟测试卷(附答案)一、单选题1.下列说法正确的有()①三角形的三边中线的交点到三角形三个顶点距离相等;②到角两边距离相等的点在这个角的角平分线上;③有两边对应相等的两个直角三角形一定全等;④x=0.5是不等式2x+1>0的一个解;⑤所有定理都有逆定理⑥平移和旋转都不改变图形的形状和大小A.2个B.3个C.4个D.5个2.下列函数中,对于任意实数,,当>时,满足<的是()A.y=-3x+2 B.y=2x+1 C.y=2x2+1 D.3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.△ABC的周长为19,△ACE的周长为13,则AB的长为()A.3 B.6 C.12 D.164.如图,在矩形MNPQ中,动点R从点N出发,沿着N-P-Q-M方向移动至M停止,设R移动路程为x,∆MNR面积为y,那么y与x的关系如图②,下列说法不正确的是()A.当x=2时,y=5 B.矩形MNPQ周长是18C.当x=6时,y=10 D.当y=8时,x=105.如图,AB为半圆的直径,点P为AB上一动点.动点P从点A 出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S 与时间t之间的函数图象大致为()6.若反比例函数()k y k 0x=<的图象经过点(2-,1y ),(1-,2y ),(2,3y ),则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .213y y y >>D .321y y y >> 7.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④ 8.直角三角形一条直角边长为8cm ,它所对的角为30°,则斜边上的高为( ) A .2cm B .4cm C .23cm D .43cm 9.在平面直角坐标系中,点A 的坐标为(﹣3,0),点B 的坐标为(0,4),以点A 为圆心,AB 的长为半径画弧交x 轴正半轴于点C ,则C 点坐标为( )A .(2,0)B .(3,0)C .(4,0)D .(5,0)10.如图,ABC 中,4AB =,7AC =,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线平行于BC ,交AB 、AC 于E 、F ,则AEF 的周长为( )A .9B .11C .15D .1811.下列计算正确的是( )A .77=42B .2=2C 325D 15÷5×315÷15 112.下列命题是假命题的是( )A .不在同一直线上的三点确定一个圆B .正六边形的内角和是720°C .矩形的对角线互相垂直且平分D .角平分线上的点到角两边的距离相等二、填空题13.已知一次函数y kx b =+的自变量x 满足13x -≤≤时,函数值y 满足71y -≤≤,则该一次函数解析式为_____________________.14.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角度平分线;③做一条线段的垂直平分线;④过直线外一点作已知直线的垂线.则对应选项中做法错误的是_____.15.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。

2020-2021上海市八年级数学上期末试卷(及答案)

2020-2021上海市八年级数学上期末试卷(及答案)

2020-2021上海市八年级数学上期末试卷(及答案)一、选择题1.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 2.下列各因式分解的结果正确的是( ) A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-3.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 4.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 5.下列各式中不能用平方差公式计算的是( )A .() 2x y)x 2y -+(B .()2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 6.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11 7.下列计算中,结果正确的是( ) A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 8.已知等腰三角形的一个角是100°,则它的顶角是( )A .40°B .60°C .80°D .100° 9.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1810.下列计算正确的是( )A .2a a a +=B .33(2)6a a =C .22(1)1a a -=-D .32a a a ÷=11.已知a 是任何实数,若M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M <ND .M ,N 的大小由a 的取值范围12.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形二、填空题13.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N 分别是AD和AB上的动点,则BM+MN的最小值是__________.14.若关于x的分式方程x2322m mx x++=--的解为正实数,则实数m的取值范围是____.15.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.16.分解因式:2x2-8x+8=__________.17.如图,五边形ABCDE的每一个内角都相等,则外角CBF=∠__________.18.如图,AC=DC,BC=EC,请你添加一个适当的条件:______________,使得△ABC≌△DEC.19.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.20.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A 型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同.A 型机器每小时加工零件的个数_____.三、解答题21.为支援灾区,某校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B 型学习用品多少件?22.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.23.先化简,再求值:2321222x x x x x -+⎛⎫+-÷ ⎪++⎝⎭,其中2x =. 24.如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,BEF ∠的平分线交CD 于点G ,若72EFG ∠=,求EGF ∠的度数.25.(1)计算:2(m+1)2﹣(2m+1)(2m ﹣1);(2)先化简,再求值.[(x+2y )2﹣(x+y )(3x ﹣y )﹣5y 2]÷2x ,其中x =﹣2,y =12.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321-=-=a(a+1)(a-1),故A错误;a a a a2(1)++=++,故B错误;b ab b b b a2212(1)-+=-,故C正确;x x x22x y+不能分解因式,故D错误,故选:C.【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.3.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A、a2•a3=a5,故此选项错误;B、122÷= a10,故此选项错误;a aC、(a3)3=a9,故此选项错误;D、(-a)6=a6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-, 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值5.A解析:A【解析】【分析】根据公式(a+b )(a-b )=a 2-b 2的左边的形式,判断能否使用.【详解】解:A 、由于两个括号中含x 、y 项的系数不相等,故不能使用平方差公式,故此选项正确;B 、两个括号中,含y 项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C 、两个括号中,含x 项的符号相反,y 项的符号相同,故能使用平方差公式,故此选项错误;D 、两个括号中,y 相同,含2x 的项的符号相反,故能使用平方差公式,故此选项错误; 故选:A .【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.6.C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,在△ABC 和△CED 中,,∴△ACB ≌△CDE (AAS ),∴AB=CE ,BC=DE ;在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =1+9=10,∴b 的面积为10,故选C .考点:全等三角形的判定与性质;勾股定理;正方形的性质.7.C解析:C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.8.D解析:D【解析】试题解析::(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形. 故它的顶角是100°.故选D .9.B解析:B【解析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12,10.D解析:D【解析】【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【详解】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.11.A解析:A【解析】【分析】将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答【详解】∵M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣32)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选A.【点睛】此题考查整式的混合运算,解题关键是在于把M,N代入到M-N中计算化简得到完全平方式为非负数,从而得到结论.12.B解析:B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.二、填空题13.【解析】【分析】从已知条件结合图形认真思考通过构造全等三角形利用三角形的三边的关系确定线段和的最小值【详解】如图在AC上截取AE=AN连接BE∵∠BAC的平分线交BC于点D∴∠EAM=∠NAM∵AM解析:22【解析】【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=2即BE取最小值为22∴BM+MN的最小值是22【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN 进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.14.m <6且m≠2【解析】【分析】利用解分式方程的一般步骤解出方程根据题意列出不等式解不等式即可【详解】方程两边同乘(x-2)得x+m-2m=3x-6解得x=由题意得>0解得m <6∵≠2∴m≠2∴m<6解析:m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.15.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.17.【解析】【分析】多边形的外角和等于360度依此列出算式计算即可求解【详解】360°÷5=72°故外角∠CBF 等于72°故答案为:【点睛】此题考查了多边形内角与外角关键是熟悉多边形的外角和等于360度解析:72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF 等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.18.CE=BC 本题答案不唯一【解析】再加利用SSS 证明≌故答案为解析:C E =BC .本题答案不唯一.【解析】AC DC =,BC EC =,再加AB DE =,利用SSS,证明ABC ≌DEC .故答案为AB DE =.19.125°【解析】【分析】根据角平分线性质推出O 为△ABC 三角平分线的交点根据三角形内角和定理求出∠ABC+∠ACB 根据角平分线定义求出∠OBC+∠OCB 即可求出答案【详解】:∵点O 到ABBCAC 的距解析:125°【解析】【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴12OBC ABC∠=∠,12OCB ACB∠=∠,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB∠+∠=⨯︒=︒,∴∠BOC=180°-(∠OBC+∠OCB)=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.20.80【解析】【分析】设A型机器每小时加工x个零件则B型机器每小时加工(x-20)个零件根据工作时间=工作总量÷工作效率结合A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同即可得解析:80【解析】【分析】设A型机器每小时加工x个零件,则B型机器每小时加工(x-20)个零件,根据工作时间=工作总量÷工作效率结合A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设A型机器每小时加工x个零件,则B型机器每小时加工(x-20)个零件,根据题意得:40030020x x=-,解得:x=80,经检验,x=80是原分式方程的根,且符合题意.答:A型机器每小时加工80个零件.故答案为80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.三、解答题21.(1)A 型学习用品20元,B 型学习用品30元;(2)800.【解析】(1)设A 种学习用品的单价是x 元,根据题意,得,解得x =20.经检验,x =20是原方程的解.所以x +10=30.答:A 、B 两种学习用品的单价分别是20元和30元.(2)设购买B 型学习用品m 件,根据题意,得30m +20(1000-m )≤28000,解得m ≤800.所以,最多购买B 型学习用品800件.22.(1)见解析; (2)60BAD ∠=° ,40CAD ∠=°【解析】【分析】(1)延长BC ,作AD ⊥BC 于D ;根据角平分线的做法作出角平分线AE 即可;(2)可根据三角形的内角和定理解答即可.【详解】解:(1)如图所示:AD,AE 即为所求;(2)在△ABD 中,AD ⊥BD ,即∠ADB=90°,∵∠B=30°,∴∠BAD=180°-90°-30°=60°;在△ABC 中,∠B+∠ACB+∠BAC=180°∴∠BAC=180°-30°-130°=20°∴∠CAD=60°-20°=40°.【点睛】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.23.11x x +-,3. 【解析】【分析】 根据分式的运算法则即可求出答案.【详解】原式=2234(1)222x x x x x ⎛⎫--+÷ ⎪+++⎝⎭=221(1)22x x x x --÷++=2(1)(1)22(1)x x x x x +-+⋅+-=11x x +-,∵|x|=2时,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.24.54【解析】【分析】利用平行线的性质和角平分线的定义进行求解即可.【详解】解:∵AB//CD,∠EFG=72° (已知) ,∴∠BEF=180°-∠EFG=108°(两直线平行,同旁内角互补) ,∵EG平分∠BEF,∴∠BEG=12∠BEF=54° (角平分线定义) ,∵AB//CD,∴∠EGF=∠BEG=54°(两直线平行,内错角相等).【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.25.(1)﹣2m2+4m+3;(2)﹣x+y,52.【解析】【分析】(1)直接利用乘法公式化简进而合并同类项即可;(2)直接利用多项式的乘法运算进而结合整式的混合运算法则计算得出答案.【详解】(1)原式=2(m2+2m+1)﹣(4m2﹣1)=2m2+4m+2﹣4m2+1=﹣2m2+4m+3;(2)原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=12时,原式=2+12=52.【点睛】此题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021上海民办张江集团学校八年级数学上期末一模试卷(含答案)一、选择题1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 2.下列边长相等的正多边形能完成镶嵌的是( ) A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形3.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②①4.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣65.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .86.如图,在△ABC 中,∠ACB=90°,分别以点A 和B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( )A .AD=BDB .BD=CDC .∠A=∠BED D .∠ECD=∠EDC7.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65°9.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④10.如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,CD 是斜边AB 上的高,AD =3 cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm11.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度12.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm二、填空题13.如图所示,请将12A ∠∠∠、、用“>”排列__________________.14.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.15.分解因式:2288a a -+=_______16.已知9y 2+my+1是完全平方式,则常数m 的值是_______.17.因式分解34x x -= .18.若n 边形内角和为900°,则边数n= .19.如图,ABC 的三边AB BC CA 、、 的长分别为405060、、,其三条角平分线交于点O ,则::ABO BCO CAO S S S =______.20.若a ,b 互为相反数,则a 2﹣b 2=_____.三、解答题21.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE=AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.22.分解因式:(1)(a﹣b)2+4ab;(2)﹣mx2+12mx﹣36m.23.先化简,再求值:224(2)24xxx x--÷+-,其中x=5.24.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.25.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.2.D解析:D【解析】【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

【详解】A. 2个正八边形和1个正三角形:135°+135°+60°=330°,故不符合;B. 3个正方形和2个正三角形:90°+90°+90°+60°+60°=390°,故不符合;C. 1个正五边形和1个正十边形:108°+144°=252°,故不符合;D. 2个正六边形和2个正三角形:120°+120°+60°+60°=360°,符合;故选D.【点睛】本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键.3.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH ⊥AC 即可.【详解】用尺规作图作△ABC 边AC 上的高BH ,做法如下:④取一点K 使K 和B 在AC 的两侧;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;①分别以点D 、E 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;故选B .【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.4.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.5.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.D解析:D【解析】【分析】根据题目描述的作图方法,可知MN垂直平分AB,由垂直平分线的性质可进行判断.【详解】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.【点睛】本题考查垂直平分线的性质,熟悉尺规作图,根据题目描述判断MN为AB的垂直平分线是关键.7.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF≌△ADE,即可判断①②;利用SSS即可证明△BDE △ADF,故可判断③;利用等量代换证得BE CF AB +=,从而可以判断④.【详解】∵△ABC 为等腰直角三角形,且点在D 为BC 的中点,∴CD=AD=DB ,AD ⊥BC ,∠DCF =∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中, BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.8.A解析:A【解析】【分析】利用等边三角形三边相等,结合已知BC=BD ,易证ABD 、CBD 都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD ∠的度数.【详解】ABC 是等边三角形,BC AC AB ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒ 00000018018020206080CBD BAD BDA ABC∴∠=-∠-∠-∠=---=,BC BD =,11(180)(18080)5022BCE CBD ∠=⨯︒-∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 9.A解析:A【解析】【分析】由作法可知BD 是∠ABC 的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL 可得Rt △BDC≌Rt △BDE,故BC=BE ,③正确,【详解】解:由作法可知BD 是∠ABC 的角平分线,故②正确,∵∠C=90°, ∴DC ⊥BC ,又DE ⊥AB ,BD 是∠ABC 的角平分线,∴CD=ED ,故①正确,在Rt △BCD 和 Rt △BED 中,DE DC BD BD =⎧⎨=⎩, ∴△BCD≌△BED ,∴BC=BE ,故③正确.故选:A.【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键. 10.D解析:D【解析】【分析】先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.【详解】在Rt △ABC 中,∵CD 是斜边AB 上的高,∴∠ADC=90°,∴∠ACD+∠DCB=90°,∠B+∠DCB=90°,∴∠ACD=∠B=30°.∵AD=3cm .在Rt △ACD 中,AC=2AD=6cm ,在Rt △ABC 中,AB=2AC=12cm ,∴AB 的长度是12cm .故选D .【点睛】本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质.11.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A 、符合全等三角形的判定SAS ,能作出唯一三角形;B 、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA 判定全等,因而所作三角形是唯一的;C 、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D 、符合全等三角形的判定SSS ,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.12.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .二、填空题13.【解析】【分析】根据三角形的外角的性质判断即可【详解】解:根据三角形的外角的性质得∠2>∠1∠1>∠A ∴∠2>∠1>∠A 故答案为:∠2>∠1>∠A 【点睛】本题考查了三角形的外角的性质掌握三角形的一个解析:21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.14.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD 是∠BAC 平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD ⊥BC ,BD=CD=12BC=5. 【详解】解:∵AB=AC ,AD 是∠BAC 平分线,∴AD ⊥BC ,BD=CD=12BC=5. 故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键. 15.【解析】=2()=故答案为解析:22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-. 16.±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可【详解】∵9y2+my+1是完全平方式∴m=±2×3=±6故答案为:±6【点睛】此题考查完全平方式熟练掌握完全平方公式是解本题的关键解析:±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可.【详解】∵9y 2+my+1是完全平方式,∴m=±2×3=±6, 故答案为:±6. 【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.17.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 18.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n ﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n ﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.19.【解析】【分析】首先过点O 作OD ⊥AB 于点D 作OE ⊥AC 于点E 作OF ⊥BC 于点F由OAOBOC是△ABC的三条角平分线根据角平分线的性质可得OD=OE=OF又由△ABC的三边ABBCCA长分别为40解析:4:5:6【解析】【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.【点睛】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.20.0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】∵ab互为相反数∴a+b=0∴a2﹣b2=(a+b)(a﹣b)=0故答案为0【点睛】本题考查了公式法分解因式以及相解析:0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.三、解答题21.(1)证明见解析;(2)结论:BD2+FC2=DF2.证明见解析;(3)35.【解析】【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF=90°,EF=DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题.【详解】(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD 和△ACE 中12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE .(2)结论:BD 2+FC 2=DF 2.理由如下:连接FE ,∵∠BAC=90°,AB=AC ,∴∠B=∠3=45°由(1)知△ABD ≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE 2+CF 2=EF 2,∴BD 2+FC 2=EF 2,∵AF 平分∠DAE ,∴∠DAF=∠EAF ,在△DAF 和△EAF 中AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===,∴△DAF ≌△EAF∴DF=EF∴BD 2+FC 2=DF 2.(3)过点A 作AG ⊥BC 于G ,由(2)知DF 2=BD 2+FC 2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC ,AG ⊥BC ,∴BG=AG=12BC=6, ∴DG=BG-BD=6-3=3,∴在Rt △ADG 中, 【点睛】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22.(1)(a +b )2;(2)﹣m (x ﹣6)2【解析】【分析】(1)先进行去括号,然后合并同类项,最后根据公式法进行因式分解即可.(2)先提取公因式,然后运用公式法,即可得出答案.【详解】解:(1)(a ﹣b )2+4ab=a 2﹣2ab +b 2+4ab=a 2+2ab +b 2=(a +b )2;(2)﹣mx 2+12mx ﹣36m=﹣m (x 2﹣12xy +36)=﹣m (x ﹣6)2.【点睛】本题主要考察了因式分解,解题的关键是灵活运用因式分解与整式的乘除.23.-x+2,3.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】 原式=22x 4x •x 2--+ ()()x 2x 2x 2x 24+-=--=-+(), 当x 5=时,原式=523-+=.24.(1)画图见解析;点1B 坐标为:(﹣2,﹣1);(2)画图见解析;点2C 的坐标为:(1,1)【解析】【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△111A B C ,即为所求;点1B 坐标为:(﹣2,﹣1);(2)如图所示:△222A B C ,即为所求,点2C 的坐标为:(1,1).考点:作图-轴对称变换;作图-平移变换25.赚了520元【解析】【分析】(1)设第一次购书的单价为x 元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x 的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【详解】(1)设第一次购书的单价为x 元, 根据题意得:1200x +10=15000(120)0x , 解得:x =5,经检验,x =5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本), 第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元), 所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【点睛】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

相关文档
最新文档