电磁感应基础知识
初中物理电磁感应知识点总结

初中物理电磁感应知识点总结一、电磁感应现象1、定义:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应,产生的电流叫做感应电流。
2、产生条件:(1)闭合电路;(2)一部分导体;(3)做切割磁感线运动。
需要注意的是,这三个条件缺一不可。
如果电路不闭合,只会产生感应电压,而不会有感应电流。
3、能的转化:在电磁感应现象中,机械能转化为电能。
例如,当我们手摇发电机时,通过转动把手,使导体在磁场中做切割磁感线运动,从而产生电能,此时就是将机械能转化为电能。
二、感应电流的方向1、影响因素:感应电流的方向与导体切割磁感线的运动方向和磁场方向有关。
2、右手定则:伸开右手,使大拇指与其余四指垂直,并且都跟手掌在同一个平面内,让磁感线垂直穿过手心,大拇指指向导体运动的方向,那么其余四指所指的方向就是感应电流的方向。
这个定则可以帮助我们快速判断感应电流的方向。
例如,当导体向右运动,磁场方向向上时,根据右手定则,我们可以判断出感应电流的方向是向前的。
三、发电机1、原理:发电机是根据电磁感应原理制成的。
2、构造:主要由定子(固定不动的部分)和转子(能够转动的部分)组成。
定子一般是磁极,转子一般是线圈。
当转子在磁场中转动时,就会产生感应电流。
3、能量转化:发电机工作时,将机械能转化为电能。
大型的发电机通常采用线圈不动、磁极旋转的方式来发电,这样可以产生更强、更稳定的电流。
四、电动机1、原理:电动机是利用通电导体在磁场中受到力的作用而运动的原理制成的。
2、构造:主要由定子、转子和换向器组成。
定子一般是磁极,转子一般是线圈。
换向器的作用是当线圈转过平衡位置时,自动改变线圈中的电流方向,使线圈能够持续转动。
3、能量转化:电动机工作时,将电能转化为机械能。
在日常生活中,我们使用的电风扇、洗衣机等电器,其内部都有电动机。
五、电磁感应的应用1、动圈式话筒:它是把声音的振动转化为电流的变化。
当声音使膜片振动时,与膜片相连的线圈在磁场中做切割磁感线运动,从而产生随声音变化的电流。
高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。
2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。
1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。
电磁感应知识点总结

电磁感应知识点总结电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。
电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。
下面我们将对电磁感应的相关知识点进行总结。
1. 法拉第电磁感应定律。
法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应电动势的现象。
定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。
这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。
2. 感应电动势的方向。
根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。
当磁通量增加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。
这一规律在电磁感应现象的分析和应用中具有重要的指导意义。
3. 感应电动势的大小。
感应电动势的大小与磁通量的变化率成正比,即。
ε = -dΦ/dt。
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。
这一关系式说明了磁通量的变化越快,感应电动势的大小就越大。
这一规律在电磁感应现象的定量分析中起着重要的作用。
4. 涡旋电场。
当磁场发生变化时,会在空间中产生涡旋电场。
这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。
涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。
5. 涡旋电流。
涡旋电场的存在导致了涡旋电流的产生。
涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。
涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。
通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。
电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。
希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。
什么是电磁感应电磁感应的现象有哪些

什么是电磁感应电磁感应的现象有哪些电磁感应是指当一个导体或线圈处于变化的磁场中时,会在导体中产生感应电流或感应电动势的现象。
这个现象主要由法拉第电磁感应定律描述。
本文将介绍电磁感应的基本原理和相关的现象。
一、电磁感应的基本原理电磁感应的基本原理是法拉第电磁感应定律,即磁通量的变化率与感应电动势成正比。
具体表达为:ε = - dΦ/dt式中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。
根据电磁感应的基本原理,我们可以进一步分析电磁感应的现象。
二、电磁感应的现象1. 电磁感应产生的感应电流当一个导体或线圈通过一个变化的磁场时,会在导体中产生感应电流。
这是因为磁场的变化导致磁通量的变化,进而产生感应电动势,从而驱动电子在导体中流动形成电流。
这种现象常见于变压器、感应电动机等电器设备中。
2. 电磁感应产生的感应电动势与感应电流类似,变化的磁场也会在导体中产生感应电动势。
感应电动势的存在导致电子在导体中发生偏移,从而产生电场效应。
这种现象常见于发电机、电磁铁等设备中。
3. 电磁感应的自感现象自感是指导体自身产生的感应电动势。
当导体中的电流发生变化时,会产生变化的磁场,进而导致导体中产生感应电动势。
这种现象常见于继电器、电感等设备中。
4. 电磁感应的互感现象互感是指不同的导体之间由于共享磁场而产生的互相感应的现象。
当一个导体中的电流发生变化时,会产生变化的磁场,进而影响到附近的另一个导体,使其中产生感应电动势。
这种现象常见于变压器、互感器等设备中。
需要注意的是,电磁感应的现象主要是在变化的磁场中产生的。
当磁场稳定时,不会产生感应电流或感应电动势。
结论电磁感应是指导体或线圈在变化的磁场中产生感应电流或感应电动势的现象。
通过法拉第电磁感应定律,我们可以了解到磁通量的变化率与感应电动势的关系。
电磁感应的现象包括感应电流、感应电动势、自感和互感等。
这些现象在电子设备、电动机等领域中有广泛的应用。
电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。
电磁感应是电磁学的重要基础,具有广泛的应用。
2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。
它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。
3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。
磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。
4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。
根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。
楞次圈定律是描述电磁感应中感应电动势的方向的定律。
根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。
5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。
根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。
6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。
涡流会在导体内部产生能量损耗,称为涡流损耗。
涡流损耗的大小与导体特性、磁场强度、频率等因素有关。
7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。
互感的大小与线圈的匝数、磁场强度等因素有关。
自感是指线圈中自身磁场变化所产生的感应电动势。
自感的大小与线圈的匝数、磁场强度等因素有关。
8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。
它们的原理都是利用电磁感应现象。
以上是电磁感应的高中物理知识点的简要介绍。
电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。
希望这份文档能对你有所帮助!。
电磁感应-知识点总结

第16章:电磁感应一、知识网络二、重、难点知识归纳1. 法拉第电磁感应定律(1).产生感应电流的条件:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
(2).感应电动势产生的条件:穿过电路的磁通量发生变化。
闭合电路中磁通量发生变化时产生感应电流当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ=BS sin α。
磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法自感电磁感应自感电动势灯管 镇流器 启动器闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小E=BL νsin θtnE ∆∆=φ 实验:通电、断电自感实验大小:tI LE ∆∆= 方向:总是阻碍原电流的变化方向应用日光灯构造日光灯工作原理:自感现象感应现象:这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
(3). 引起某一回路磁通量变化的原因a磁感强度的变化b线圈面积的变化c线圈平面的法线方向与磁场方向夹角的变化(4). 电磁感应现象中能的转化感应电流做功,消耗了电能。
消耗的电能是从其它形式的能转化而来的。
在转化和转移中能的总量是保持不变的。
(5). 法拉第电磁感应定律:a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同—磁通量,—磁通量的变化量,c定律容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。
知识清单-电磁感应篇

知识清单-电磁感应篇知识点1、磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。
2.公式:Φ=BS。
3.单位:1 Wb=1T·m2。
4.公式的适用条件(1)匀强磁场;(2)磁感线的方向与平面垂直,即B⊥S。
5.磁通量的意义磁通量可以理解为穿过某一面积的磁感线的条数。
知识点2、电磁感应现象1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
2.产生感应电流的条件(1)条件:穿过闭合电路的磁通量发生变化。
(2)特例:闭合电路的一部分导体在磁场内做切割磁感线运动。
3.产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合,则产生感应电流;如果回路不闭合,那么只有感应电动势,而无感应电流。
知识点3、楞次定律知识点4、法拉第电磁感应定律1.感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E=n ΔΦΔt,其中n为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I=ER+r。
3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Bl v。
(2)v∥B时,E=0。
知识点5、自感、涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。
(2)自感电动势①定义:在自感现象中产生的感应电动势叫做自感电动势。
②表达式:E=L ΔI Δt。
(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H),1 mH=10-3 H,1 μH=10-6 H。
2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡所以叫涡流。
电磁感应基础知识

电磁感应基础知识总结【基础知识梳理】一、电磁感应现象1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积。
(2)公式:①二坠。
(3)单位:1Wb=1T・m2。
(4)物理意义:相当于穿过某一面积的磁感线的条数。
2.电磁感应现象(1)电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象。
(2)产生感应电流的条件①条件:穿过闭合电路的磁通量发生变化。
②特【典例】闭合电路的一部分导体在磁场内做切割磁感线的运动。
(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只产生感应电动势,而不产生感应电流。
(4)能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。
二、楞次定律1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:适用于一切回路磁通量变化的情况。
(3)楞次定律中“阻碍”的含义£SAAt2.右手定则(1) 内容① 磁感线穿入右手手心。
② 大拇指指向导体运动的方向。
③ 其余四指指向感应电流的方向。
(2) 适用范围:适用于部分导体切割磁感线。
三、法拉第电磁感应定律的理解和应用1.感应电动势(1) 概念:在电磁感应现象中产生的电动势。
(2) 产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
⑶方向判断:感应电动势的方向用楞次定律或右手定则判断。
2.法拉第电磁感应定律⑴内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
A ①(2) 公式:E=njt ,其中n 为线圈匝数。
E(3) 感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即1=越。
3.磁通量变化通常有三种方式 (1) 磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E=nB-(2) 垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=nA^S ,其中普是B —t图象的斜率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应基础知识知识网络12、通量Φ、磁通量变化∆Φ、磁通量变化率t∆∆Φ对比表34、感应电动势在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。
a) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生感应电动势,它相当于一个电源b) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动势,磁通量发生变化的那部分相当于电源。
5、公式n E ∆Φ=与E=BLvsin θ 的区别与联系6、楞次定律a)感应电流方向的判定方法碍产生感应电流的原因i.阻碍原磁通量的变化或原磁场的变化;ii.阻碍相对运动,可理解为“来拒去留”。
iii.使线圈面积有扩大或缩小趋势;iv.阻碍原电流的变化。
知识点一—磁通量▲知识梳理磁通量1.穿过某一面积的磁感线条数,在匀强磁场中, =BS,单位是韦伯,简称韦,符号是Wb.使用条件是B为匀强磁场,S为平面在磁场方向上的投影.磁通量虽然是标量,但有正负之分.2.磁通量的物理意义磁通量指穿过某一面积的磁感线条数。
3.磁通量的单位:Wb。
4.磁通密度垂直穿过单位面积的磁感线条数,即磁感应强度的大小。
:如图所示,矩形线圈的面积为S (),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。
求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。
解析:初位置时穿过线圈的磁通量;转过时,;转过时,;转过时,,负号表示穿过面积S的方向和以上情况相反,故:(1);(2);(3)。
负号可理解为磁通量在减少。
变式练习:1.如图所示,平面M的面积为S,垂直于匀强磁场B,求平面M由此位置出发绕与B垂直的轴线转过60°时磁通量的变化为____________,转过180°时磁通量的变化量为____________。
知识点二—电磁感应现象:如图所示,有一根通电长直导线MN,通融入向右的电流,另有一闭合线圈P位于导线的正下方,现使线圈P竖直向上运动,问在线圈P到达MN上方的过程中,穿过P的磁通量是如何变化的?有无感应电流产生?解析:根据直线电流磁场的特点,靠近电流处磁场强,远离电流处磁场弱,把线圈P 向上的运动分成几个阶段;第一阶段:从开始到线圈刚与直导线相切,磁通量增加;第二阶段:从线圈与直导线相切到线圈直径与直导线重合,磁通量减少;第三阶段:从线圈直径与导线重合到线圈下面与直导线相切,磁通量增加;第四阶段:远离直导线,磁通量减少。
每一个阶段均有感应电流产生。
变式练习1.如图所示,环形金属软弹簧套在条形磁铁的中心位置,若将弹簧沿半径向外拉,使其面积增大,则穿过弹簧所包围面积的磁通量的变化情况和感应电流的说法正确的是A.磁通量不发生变化,无感应电流Array B.磁通量变小,有感应电流C.磁通量变大,有感应电流D.无法判断知识点三—感应电流方向的判定▲知识梳理①右手定则适用于部分导体切割磁感线运动时感应电流方向的判定,而楞次定律适用于一切电磁感应现象。
②导体切割磁感线产生感应电流用右手定则简便;变化的磁场产生感应电流用楞次定律简便。
安培定则、左手定则、右手定则、楞次定律应用于不同现象。
:一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,放手后让它在如图所示的匀强磁场中运动已知线圈平面始终与纸面垂直,当线圈第一次通过位置I 和位置Ⅱ时,顺着磁场方向看去,线圈中感应电流的方向分别为( ) 位置I 位置Ⅱ A .逆时针方向 逆时针方向 B .逆时针方向 顺时针方向 C .顺时针方向 顺时针方向 D .顺时针方向 逆时针方向 答案:B解析:顺着磁场方向看去,线圈在位置I 时,磁通量是增加的趋势,而在位置Ⅱ时是磁通量减少的趋势,根据楞次定律,线圈中产生的感应电流的磁场将阻碍磁通量的变化,则在位置I 时感应电流的磁场与原磁场相反,而在位置Ⅱ时,感应电流的磁场与原磁场相同。
变式练习 :1.如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将A .圆环高度不变,但圆环缩小B .圆环高度不变,但圆环扩张C .圆环向上跳起,同时圆环缩小D .圆环向上跳起,同时圆环扩张2..在两根平行长直导线MN 中,如图所示,通有同方向同强度的电流,导线框abcd 和两导线在同一平面内,线框沿着与两导线垂直的方向,自右向左在两导线间匀速移动,在移动过程中,线框中感应电流方向怎样?A .先abcda ,后adcbaB .先adcba ,后abcdaC .始终是abcdaD . 始终是adcba知识点四 一—法拉弟电磁感应定律▲知识梳理一、感应电动势分类1、感生电动势:由感生电场产生的感应电动势,叫感生电动势。
感应电动势的大小跟穿过这一闭合电路的磁通量的变化率成正比。
,其中n 为线圈匝数。
2、动生电动势:由于导体运动而产生的感应电动势,叫动生电动势。
a bM II导体垂直切割磁感线时, 感应电动势可用求出,式中L 为导体切割磁感线的有效长度。
3.感应电动势计算的两个特例(1)导体棒在垂直匀强磁场方向转动切割磁感线时,感应电动势可用求出,应避免硬套公式。
(2)单匝矩形线圈(面积为S )在匀强磁场(磁感应强度为B )中以角速度绕线圈平面内的任意轴匀速转动,产生的感应电动势: 线圈平面与磁感线平行时;线圈平面与磁感线垂直时E=0; 线圈平面与磁感线夹角为时。
【例题】如图所示,用均匀导线做成一个正方形线框,每边长为0.2 cm ,正方形的一半放在和线框垂直的垂直纸面向里的匀强磁场中,当磁场的变化为每0.1 s 增加1 T 时,线框中点a 、b 两点的电势差是 A .U ab =0.1V B .U ab =-0.1V C .U ab =0.2VD .U ab =-0.2V〖解析〗由楞次定律可以判断,当线框中的磁场增加时,感应电流的磁场与原磁场方向相反,为垂直于纸面向外,由安培定则可以判断出感应电流的方向为逆时针方向,这个电路的等效电路如图所示,由题意可知t B∆∆=10 T/s ,由法拉第电磁感应定律ε =22l tB tBS t∆∆=∆∆=∆∆φ=0.2V ,由闭合电路欧姆定律U ab =IR ==+22r r Rε0.1 V ,由于b 点电势高于a 点电势,所以U ab =-0.1 V ,B 选项正确。
变式练习1.下列说法正确的是A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B .线圈中的磁通量越大,线圈中产生的感应电动势一定越大C .线圈处在磁场最强的位置,线圈中产生的感应电动势一定越大D .线圈中磁通量变化得越快,线圈中产生的感应电动势越大r /22. 如图所示,匀强磁场的磁感应强度B =0.1T ,导体ab 可在平行金属导轨上自由滑动,导轨宽cd =0.2m 。
若导体ab 以v =10m/s 的速度向右匀速运动,则ab 中的感应电动势的大小为_________V ,通过ab 中的感应电流的方向为_________(选取“a 至b ”或“b 至a ”)典型例题透析1、如图所示,半径为R 的圆形线圈共有n 匝,其中心位置处半径r 的虚线范围内有匀强磁场,磁场方向垂直线圈平面。
若磁感应强度为B ,则穿过线圈的磁通量为( ) A . C .C .D .2、电阻R 、电容C 与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示。
现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( ) A .从a 到b ,上极板带正电 B .从a 到b ,下极板带正电 C .从b 到a ,上极板带正电 D .从b 到a ,下极板带正电3、如图所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路。
当一条形磁铁从高处下落接近回路时( ) A .P 、Q 将互相靠拢 B .P 、Q 将互相远离 C .磁铁的加速度仍为g D .磁铁的加速度小于g4、如图所示三种情况导体棒长均为L ,匀强磁场的磁感应强度均为B ,导体棒的平动速度为v ,转动角速度为,试分别求出产生的感应电动势。
5、如图所示,导线全部为裸导线,半径为r的圆内有垂直于圆平面的匀强磁场,磁感应强度为B,一根长度大于2r的导线MN以速率v在圆环上无摩擦地自左端匀速滑到右端,电路的固定电阻为R,其余电阻不计,求MN从圆环的左端滑到右端的过程中电阻R上的电流强度的平均值和通过电阻R的电荷量。
6、如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)ab棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持ab棒做匀速运动的水平外力F的大小。
7、如图所示,长L的金属导线上端悬挂于C点,下悬一小球A,在竖直向下的匀强磁场中做圆锥摆运动,圆锥的半顶角为,摆球的角速度为,磁感应强度为B,试求金属导线中产生的感应电动势。