关于电磁感应的几个基本问题
电磁感应的四大问题

例2、如图所示,矩形线圈一边长为d,另一边 长为a,电阻为R,当它以速度v匀速穿过宽度 为L,磁感应强度为B的匀强磁场过程中;若
2B 2a 2vL
L<d,产生的电能为_____R____;若L>d,产生
××××× ×××××
2B 2a 2vd
d
的电能为_____R_____.
a
B
L
例3、有一边长为L=0.1m的正方形导线框abcd,
0
x/L
12 3456
A
×××××
B
×××××
×××××
X
LL
3L
x/L
x/L
x/L
0
0
0
12 3456
12 3456
12 3456
B
C
D
3、磁棒自远处匀速沿圆形线圈的轴线运动,并穿过线 圈向远处而去,如图所示,则下列图中正确反映线圈 中电流与时间关系的是(线圈中电流以图示箭头为正 方向)
i
i
SN
过程中感应电流产生的热量为_m__v__02_/_4_.
四.电 磁感应图象问题
一、线圈在均匀磁场中运动时的i-t图象 二、线圈在均匀磁场中运动时的i-x图象 三、线圈在非均匀磁场中运动时的i-t图象 四、图象的应用
1.如图所示,一宽40cm的匀强磁场区域,磁场方向垂直纸面向 里.一边长为20cm的正方形导线框位于纸面内,以垂直于磁场边 界的恒定速度v=20cm/s通过磁场区域,在运动过程中,线框有 一边始终与磁场区域的边界平行.取它刚进入磁场的时刻t=0. 在 下列图线中,正确反映感应电流随时间变化规律的是
B
B
0
t
C
0
t D
高中物理电磁感应问题解析

高中物理电磁感应问题解析电磁感应是高中物理中的一个重要内容,也是考试中的热点考点之一。
在解决电磁感应问题时,我们需要掌握一些基本原理和解题技巧。
本文将通过具体题目的举例,来说明电磁感应问题的解析方法和考点,并给出一些解题技巧,以帮助高中学生顺利解决这类问题。
1. 线圈中的感应电动势问题:一个半径为R的圆形线圈,匀速通过一个磁感应强度为B的磁场,线圈的面积为S。
求线圈中感应电动势的大小。
解析:根据电磁感应的基本原理,当一个线圈通过磁场时,线圈中会产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。
在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的面积有关。
解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的面积和磁感应强度的关系。
在计算时,可以将线圈的面积和磁感应强度代入感应电动势的公式中,直接计算出结果。
2. 导体中的感应电流问题:一个导体棒以速度v与一个磁感应强度为B的磁场垂直运动,求导体中感应电流的大小。
解析:当一个导体棒在磁场中运动时,磁场会对导体中的自由电子产生作用力,从而导致电子在导体内部产生漂移,形成感应电流。
根据洛伦兹力的方向,可以确定感应电流的方向。
解题技巧:对于导体中的感应电流问题,需要注意洛伦兹力的方向和感应电流的方向。
当导体棒以速度v与磁场垂直运动时,洛伦兹力的方向与速度和磁场的方向都有关。
可以通过右手定则来确定洛伦兹力的方向,从而确定感应电流的方向。
3. 电磁感应中的能量转化问题:一个半径为r的圆形线圈以角速度ω绕垂直于平面的轴旋转,磁感应强度为B,求线圈中感应电动势的大小。
解析:当一个线圈以角速度ω旋转时,线圈中会产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。
在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的角速度有关。
解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的角速度和磁感应强度的关系。
法拉第电磁感应定律的四类问题

b θ
例2、水平面光滑,金属环r=10cm、R=1Ω、m=1kg,v=
10m/s向右匀速滑向有界磁场,匀强磁场B=0.5T;从环
刚进入磁场算起,到刚好有一半进入磁场时,圆环释放
了32J的热量,求:(1)此时圆环速度ν;
(2)此时圆环所受安培力的功率。 B
v
电磁感应中的能量问题求解基本方法:
整理ppt
15
2.如图(1)所示,电阻为R的矩形导线框abcd,边长ab=L, ad=h,质量为m,从某一高度自由落下,通过一匀强磁场,磁 场方向垂直纸面向里,磁场区域的宽度为h,线圈cd边刚进入磁 场就恰好开始做匀速运动,那么在线圈穿越磁场的全过程,线框 中产生的焦耳热是多少?(不考虑空气阻力)
A
B
C 整理ppt
D
29
例2:如图(甲)中,A是一边长为l的正方形导
线框,电阻为R。今维持以恒定的速度v沿x轴运
动,穿过如图所示的匀强磁场的有界区域。若沿x
轴的方向为力的正方向,框在图示位置的时刻作
为计时起点,则磁场对线框的作用力F随时间t的
变化图线为图(乙)中的(
)
整理ppt
30
1、常见的图象有: B-t Φ-t E-t U-t I-t F-t E-x U-x I-x F-x 等图象
整理ppt
16
(2)根据功能关系求解
常用动能定理
注:1、我们一共学了几个功能关系, 分别是哪些?
整理ppt
17
(1)重力做功与重力势能变化的关系: (2)弹力做功与弹性势能变化的关系: (3)摩擦力做功与物体内能变化的关系: (4)其他力做功与机械能变化的关系: (5)合外力做功与动能变化的关系: (6)电场力做功与电势能变化的关系: (7)安培力做功与电能变化的关系:
高三复习中的电磁感应问题中的基本十问

高三复习中的电磁感应问题中的基本十问在高考试题中电磁感应问题是一个非常重要的知识点,考查频率很高,题目的难度有难有易,但是可联系到的知识却很繁杂,很多学生在复习的的时候抓不住头绪,无法形成完整的知识链,难以解决电磁感应背景的综合题,笔者尝试以一道基本例题,循序提问,帮助学生熟悉电磁感应问题的知识点,进而形成较为完整的知识链。
如图所示竖直放置的两平行导轨电阻不计,导轨间距为L ,放置在水平方向的匀强磁场当中,磁感应强度为B ,导轨间连接电阻的阻值为R ,一根光滑的质量为m,电阻为r 的导体棒水平放置在导轨上,把导体棒由静止开始释放,当导体棒下落高度为h 时导体棒达到最大速度。
㈠判断流过导体棒的电流方向,和导体棒左右两端电势的高低?㈡求导体棒的最大加速度?求导体棒的最大速度? ㈢求当导体棒的速度为v 时导体棒所受安培力的功率?㈣求当导体棒的速度为v 时,整个回路的电功率?㈤当导体棒达到最大速度时,求导体棒两端的电压?㈥求导体棒达到最大速度的过程中,安培力所做的功?回路中产生的总的热量以及R,导体棒上分别产生的热量?㈦求导体棒达到最大速度的过程中,求通过导体棒横截面的电量h是多少?㈧求导体棒下落高度h所用的时间?㈨求流过导体棒的平均电流是多少?㈩求流过导体棒的电流的有效值是多少?解答和分析㈠考查右手定则和楞次定律,和解决电磁感应问题的第一步,判断那一部分电路充当电源,那一部分是外电路。
㈡㈤路欧姆定律。
a=(G-F)/m ①F=BIL ②E=BLv ③I=E/(R+r) ④整理可得a=(mg-B2L2v)/m由初速度为零可得,导体棒将做初速度为零加速度减小的加速运动,当初速度是零时加速度最大为g,加速度为零时速度最大。
V= mg/ B2L2 ⑤此时导体棒两端的电压u=E-Ir㈢㈣考查瞬时功率的基本公式和简单应用,安培力的功率p1=Fv p1= B2L2v2/(R+r)回路中的电功率p2=EI p2= B2L2v2/(R+r)可获取在动生问题中回路中的电功率和安培力的功率恒等的结论㈥考查动能定理和能量守恒的使用以导体棒为研究对象,使用动能定理W重+W安=mv2/2 结合V= mg/ B2L2 ⑤可得W安= m3g2/ (2B4L4)-mgh以整个回路为研究对象,由能量守恒可得,导体棒减小的重力势能,变为回路中生成的热和导体棒的动能。
专题:电磁感应中的六大问题(精编)

专题:电磁感应中的六大问题一.电磁感应中的杆和导轨问题: 1.阻尼式单棒:例1. AB 杆受一冲量作用后以初速度 v 0=4m/s ,沿水平面内的固定轨道运动,经一段时间后而停止。
AB 的质量为m =5g ,导轨宽为L =0.4m ,电阻为R =2Ω,其余的电阻不计,磁感强度B =0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q =10-2C ,求:上述过程中 (g 取10m/s2)(1)AB 杆运动的距离; (2)AB 杆运动的时间;(3)当杆速度为2m/s 时其加速度为多大?例2.如图,一直导体棒质量为m 、长为l 、电阻为r ,其两端放在位于水平面内间距也为l 的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面。
开始时,给导体棒一个平行于导轨的初速度v 0。
在棒的运动速度由v 0减小至v 1的过程中,通过控制负载电阻的阻值使棒中的电流强度I 保持恒定。
导体棒一直在磁场中运动。
若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。
2.发电式单棒:例1 如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计。
在导轨上端并接2个额定功率均为P 、电阻均为R 的小灯泡。
整个系统置于均强磁场中,磁感应强度方向与导轨所在平面垂直。
现将一质量为m 、电阻可忽略不计的金属棒MN 从图示位置由静止开始释放。
金属棒下落过程中保持水平,且与导轨接触良好。
已知某时刻后两灯泡保持正常发光。
重力加速度为g 。
求:(1)磁感应强度的大小; (2)灯泡正常发光时导体棒的运动速率。
例2.质量m,长度为L ,电阻为R 的金属棒ab ,接在竖直放置的“门”型金属框架上组成闭合回路,框架置于磁感应强度为B 的匀强磁场中,棒ab 在框架上滑动始终保持水平,所受摩擦力为f ,框架电阻不计,当棒ab 从静止下滑,达到稳定速度时,电路的电功率是多少?二.电磁感应中的电荷量问题: 1.利用法拉第电磁感应定律求解: 由闭合电路欧姆定律得E I R r =+,根据法拉第电磁感应定律得E nt∆Φ=∆,所以E q I t t n t n R r R r t R r ∆Φ∆Φ=∆=∆=∆=++∆+()() 。
电磁感应的几个典型问题及参考答案

A.mgbB. mv2
定为R,当导线AC从静止开始下落后,下面有关回路能量转化的叙
述中正确的是()
A.导线下落过程中,机械能守恒;
B.导线加速下落过程中,导线减少的重力势能全部转化为回路产生的热量;
C.导线加速下落过程中,导线减少的重力势能全部转化为导线增加的动能;
D.导线加速下落过程中,导线减少的重力势能转化为导线增加的动能和回路增加的内能
典型课案:第10课时电磁感应的几个典型问题
祁东一中撰稿:邱忠明审查:邹军卫
一、考点梳理
电磁感应重在考查知识的理解与应用以及解决与其它知识相结合的能力,本章综合题目涉及的知识点很多。如力学问题、能量问题、磁场问题、图象问题等都是高考中的热点问题。
1.电学中的力学问题一般解题思路是:先由法拉弟电磁感应定律求感应电动势,然后利用欧姆定律求感应电流。再求出电培力,最后用力学规律求解,并注意能量观点的应用。
8.如图所示,虚线框abcd内为一矩形匀强磁场区域,ab=2bc,磁场方向垂直于纸面;实线框a'b'c'd'是一正方形导线框,a'b'边与ab边平行。若将导线框匀速地拉离磁场区域,以W1表示沿平行于ab的方向拉出过程中外力所做的功,W2表示以同样的速率沿平行于bc的方向拉出过程中外力所做的功,则
A.W1=W2B.W2=2W1C.W1=2W2D.W2=4W1
(1)试计算在离O(原点)30m、130m处列车速度 和 。
关于电磁感应的十五个基本问题50页PPT

21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
关于电磁感应的十五ቤተ መጻሕፍቲ ባይዱ基本问题
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
电磁感应中常见问题

一、电磁感应中常见问题(一)、产生感应电流与产生感应电动势的条件因果关系不明确尽管学生初中对产生感应电流的条件——切割磁感线印象较深,但通过实验和练习对产生感应电流的条件——与产生感应电动势的条件只要穿过闭合导体回路的磁通量发生变化 , 闭合导体回路中就有感应电流产生还是能接受。
但是往往误认为回路没有感应电流就没有感应电动势。
我们知道闭合电路中产生了感应电流,那么就必定存在了对应的电动势,但电路中没有电源,电动势是哪来的呢?引导学生思考是线圈感应出来了电动势,线圈相当与电源,把感应出来的电动势称为感应电动势。
断开电路时,电路中的电流消失,但路端电压(即感应电动势)仍然存在,所以感应电动势的有无,与电路的通断,电路的电阻无关,完全取决于电路的磁通量的变化情况。
所以“感应电动势”比“感应电流”更能反映电磁感应的本质意义。
(二)、二次电磁感应问题1 . 二次电磁感应问题综合程度高,学生做题无从下手。
不明确研究那个回路 ? 找不出回路的磁通量变化的原因?例、当金属棒 a 在处于磁场中的金属轨道上运动时,金属线圈 b 向右摆动,则金属棒a ( BC )A .向左匀速运动B .向右减速运动C .向左减速运动D .向右加速运动解析:根据楞次定律可知穿过线圈的磁通量在减少,可见金属棒 a 向左减速运动或向右减速运动。
2 . 不会具体应用左、右手定则例、如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒 PQ 、 MN ,当 PQ 在外力作用下运动时, MN 在磁场力的作用下向右运动,则 PQ 所做的运动可能是( BC )A .向右加速运动B .向左加速运动C .向右减速运动D .向左减速运动解析:分析该类问题,首先要明确 PQ 运动是引起 MN 运动的原因,然后根据楞次定律和左手定则判断。
由右手定则 PQ 向右加速运动,穿过的磁通量向上且增加,由楞次定律和左手定则可判断 MN 向左运动,故 A 错。
若 PQ 向左加速运动,情况正好和 A 相反,故B 对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于电磁感应的几个基本问题(1)电磁感应现象利用磁场产生电流(或电动势)的现象,叫电磁感应现象。
所产生的电流叫感应电流,所产生的电动势叫感应电动势。
所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场;如周围空间中有导体存在,一般导体中将激起感应电动势;如导体构成闭合回路,则回路程还将产生感应电流。
(2)发生电磁感应现象,产生感应电流的条件:发生电磁感应现象,产生感应电流的条件通常有如下两种表述。
①当穿过线圈的磁通量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。
如线圈闭合,则线圈子里就将产生感应电流。
②当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势,如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。
产生感应电动势的那部分导体相当于电源。
这里注意一点事啊闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。
所以上述两个条件从根本上还应归结磁通量的变化。
但如果矩形线圈abcd在匀强磁场B中以速度v平动时,尽管线圈的bc和ad边都在做切割磁感线运动,但由于穿过线圈的磁通量没有变,所以线圈回路中没有感应电流。
(3)发生电磁感应现象的两种基本方式及其理论解释①导体在磁场中做切割磁感线的相对运动而发生电磁感应现象:当导体在磁场中做切割磁感线的相对运动时,就将在导体中激起感应电动势。
这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。
②磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象:当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。
这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。
引起磁通量变化的常见情况(1)线圈在磁场中转动;(2)线圈在磁场中面积发生变化;(3)线圈中磁感应强度发生变化;(4)通电线圈中电流发生变化。
感应电流方向的判断(1)右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。
四指指向还可以理解为:感应电动势的方向、该部分导体的高电势处。
用右手定则时应注意:①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。
②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。
(2)楞次定律(判断感应电流方向)①楞次定律的内容:感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的)磁场(总是)阻碍(引起感应电流的磁通量的)变化(定语) 主语(状语)谓语 (补语) 宾语②对楞次定律中阻碍二字的正确理解“阻碍”不是阻止,这里是阻而未止。
阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.理解楞次定律要注意四个层次:谁阻碍谁?是感应电流的磁通量阻碍原磁通量;阻碍什么?阻碍的是磁通量的变化而不是磁通量本身;如何阻碍?当磁通量增加时,感应电流的磁场方向与原磁场方向相反,当磁通量减小时,感应电流的磁场方向与原磁场方向相同,即”增反减同”;结果如何?阻碍不是阻止,只是延缓了磁通量变化的快慢,结果是增加的还是增加,减少的还是减少。
(4)楞次定律的灵活运用,楞次定律的拓展楞次定律的广义表述:感应电流的效果总是反抗(或阻碍)引起感应电流的原因。
主要有四种表现形式:1、当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。
2、当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来拒去留)。
在一些由于某种相对运动而引起感应电流的电磁感应现象中,如运用楞次定律从“感应电流的磁场总是阻碍引起感应电流的原磁场的磁通量变化”出发来判断感应电流方向,往往会比较困难,对于这样的问题,在运用楞次定律时,一般可以灵活处理,考虑到原磁场的磁通量变化又是由相对运动而引起的,于是可以从“感应电流的磁场阻碍相对运动”出发来判断。
3、当线圈面积发生变化而引起感应电流时,感应电流的效果总是阻碍回路面积的变化。
4、当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。
几种定则、定律的适用范围类型题:电磁感应现象类型题:楞次定律的应用1.就磁通量而言,感应电流产生的效果总是阻碍引起感应电流的磁通量(原磁通量)的变化。
即当原磁通量增加时,感应电流的磁场就与原磁场方向相反;当原磁通量减小时,感应电流的磁场就与原磁场方向相同。
简称口诀“增反减同”。
注意区分两种磁场:一是研究对象所在位置的磁场和线框中感应电流产生的磁场【例题】如图,在同一铁芯上绕两个线圈A和B,单刀双掷开关S原来接触点1,现在把它扳向触点2,则在开关S断开1和闭合2的过程中,流过电阻R中电流的方向是:()R中电流方向,取决于B线圈产生的感应电流方向;B中感应电流的产生,是由B中磁通量的变化所引起,B中磁通量的变化是由A线圈中电流变化来决定。
当S接触点1时,A和B中的原磁场方向均向右,当S断开触点1时,B中向右的磁通量减少,B中感应电流的磁场阻碍原磁通量的减少,从而B中感应电流的磁场也向右,由楞次定律和安培定则可以判断R中电流方向由Q到P。
当S由断开到闭合2触点的瞬间,B中由原来没有磁场到出现向左的磁场,则B中原磁通量为向左增加,由楞次定律可知,B中产生的感应电流的磁场方向仍为向右,故R中电流方向仍为Q到P。
.ab 匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变化,L2中无感应电流产生,cd保持静止,A不正确;ab向右加速运动时,L2中的磁通量向下,增大,通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确。
选B、D这是一个多种电磁现象相伴产生同时出现的问题。
cd切割磁感线运动是最初的原因,ab受力是最后形成的结果。
分析这类问题,有两种思维方式,一是顺向思维;由于已知cd 是向左运动,其运动状态有三种可能:即匀速运动、加速运动、减速运动,分别就三种运动形式分析出ab的受力。
一是逆向思维;从ab受力分析开始,追根溯源,最终可确定cd的运动状态。
(1)顺向思维:假设cd向左加速运动,由右手定则可知,cd中出现由d向c的逐渐增加的感应电流,由安培定则可知,A中出现向下的逐渐增加的磁场,则B中的磁通量向下逐渐增加;由楞次定律可知,B中产生感应电流,使ef中电流方向为e向f,则ef中电流与ab中电流为同向,同向平行电流相互吸引,故ab向右偏。
(2)逆向思维:ab软导线向左偏,表明ab、ef是相互排斥,则ef中感应电流为由f向e,B线圈中感应电流由g经B流向h,B中感应电流的磁场方向向下。
由楞次定律可知,B中原磁通量可能是向下减少,也可能向上增加。
若B中原磁通量为向下减少,则A中磁场也为向下减小,由安培定则可知,A中存在方向由i经A至j、大小逐渐减小的电流,则cd中有方向由d指向c、大小逐渐减小的感应电动势,由右手定则和直导体切割磁感线产生感应电动势可知cd棒向左减速运动。
若B中原磁通量为向上增加,同理可分析出cd棒为向右加速运动(不符合题意)。
(3)学生自己可以分析出当cd匀速移动时,ab导线不动。
答案:①匀速运动;②减速运动;③加速运动。
2.就相对运动而言,阻碍所有的相对运动,简称口诀“来拒去留”。
从运动的效果上看,也可以形象地述为“敌”进“我”退,“敌”逃“我”追。
如图所示,闭合导体环固定。
条形磁铁S极向下以初速度v0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?从“阻碍磁通量变化”来看,当条形磁铁的中心恰好位于线圈M所在的水平面时,磁铁内部向上的磁感线都穿过了线圈,而磁铁外部向下穿过线圈的磁通量最少,所以此时刻穿过线圈M的磁通量最大。
因此全过程中原磁场方向向上,先增后减,感应电流磁场方向先下后上,感应电流先顺时针后逆时针。
从“阻碍相对运动”来看,线圈对应该是先排斥(靠近阶段)后吸引(远离阶段),把条形磁铁等效为螺线管,该螺线管中的电流是从上向下看逆时针方向的,根据“同向电流互相吸引,反向电流互相排斥”,感应电流方向应该是先顺时针后逆时针的,与前一种方法的结论相同。
如图所示,当磁铁绕O1O2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?本题分析方法很多,最简单的方法是:从“阻碍相对运动”的角度来看,导线框一定会跟随条形磁铁同方向转动起来。
如果不计一切摩擦阻力,最终导线框将和磁铁转动速度无限接近到可以认为相同;如果考虑摩擦阻力,则导线框的转速总比条形磁铁转速小些(线框始终受到安培力矩的作用,大小和摩擦力的阻力矩相等)。
如果用“阻碍磁通量变化”来分析,结论是一样的,但是叙述要复杂得多。
可见这类定性判断的题要灵活运用楞次定律的各种表达方式。
3.就闭合回路的面积而言,致使电路和面积有收缩或扩张的趋势。
收缩或扩张是为了阻碍电路磁通量的变化。
若穿过闭合电路的磁感线皆朝同一个方向,则磁通量增大时,面积有收缩的趋势;磁通量减少时,面积有扩张的趋势。
简称口诀“增缩减扩”。
从阻碍回路面积变化的角度看:当磁铁靠近闭合回路时,磁通量增加,两导体棒由于受到磁场对其中感应电流力的作用而互相靠拢以阻碍磁通量的增加,故A项正确;从阻碍相对运动角度看:磁铁靠近回路时必受到阻碍靠近的向上的力的作用,因此磁铁的加速度小于g,故D项正确。
通过恒定电流的螺线管周围及内部磁场分布类似于条形磁体,铜环下落过程中,通过1位置时磁通量在增加,通过2位置时磁通量最大,通过3位置时磁通量在减少。
可以用楞次定律判断铜环中感应电流的磁场方向,确定铜环所受作用力的方向,从而分析铜环运动过程中的加速度。
本题更直接的方法是应用楞次定律的广义表述:感应电流的效果总是阻碍引起感应电流的原因;当铜环经过1位置时,正在靠近螺线管,铜环受到的磁场力阻碍铜环靠近螺线管(来拒),则加速度a1<g;当铜环经过位置3时,正在远离螺线管,铜环受到的磁场力阻碍铜环远离螺线管(去留),则加速度a3<g;当铜环经过2位置时,环中磁通量最大,且运动方向与磁场平行,故不产生感应电流,则加速度a2=g。