电工基础磁场与电磁感应

合集下载

教案4-1磁场(电工基础第六版)

教案4-1磁场(电工基础第六版)
第 一十七 讲
教学主题 内容 授课班级 授课日期 出勤情况 纪律情况


4-1 磁场
高电 231
计划学时 4 课时
知识要点
1、磁场与磁感线 2、电流的磁效应 3、磁场中的主要物理量
技能要点
态度
磁场的基本概念、电 培养学生专业兴趣和严谨 流的磁效应、右手螺 的职业素养,给他们一个基 旋定则(安培定则)、 磁感应强度与磁通量 础知识的正确认知 与磁导率
3、安培定则 安培定则,也称为右手定则,是物理 学中关于磁场和电流之间相互作用 的重要法则。该定则由法国物理学家 安培提出,是电磁学中一个重要的概
授课 时间 步骤 分配
教学内容
教师活动 学生活动 教学过 程记录
念。安培定则主要涉及到两个方面的
内容:右手螺旋定则和右手定则。本
文将详细介绍这两个方面的原理和


教学重点
磁场与磁场中的物理量、电流的磁效应
教学难点
安培定则、磁感应强度、磁通、磁导率
书本、视频、课件 教学资源
教学后记
授课 步骤
课程 导入
时间 分配
10 分 钟左 右
教学内容
教师活动
问答互动
点名、抽查学生预习情况
做题引入
今天要学
习的内容
1、磁场与磁场线
当两个磁极靠近时,它们之间会发生
相互作用:同名磁极相互排斥,异名
由 N 极指向 S 极,在磁体内部由 S 极 讲 解 今 天
指向 N 极。而磁感线的疏密程度则形 的知识点
象地表现了各处磁场的强弱。书图
听讲、思
4-1 所示为蹄形磁铁的磁感线。图
考、跟着
教 学 75 分 4-2 所示为条形磁铁的磁感线。

高中物理:磁场 电磁感应知识点总结

高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。

2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。

3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。

此外,磁场还可以产生电能,为机器提供动力。

二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。

2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。

3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。

磁场电磁感应试题有答案2

磁场电磁感应试题有答案2

2012—2013学年度下期考试电子一班《电工基础》试题姓名(90分钟完卷)一、填空题(每空1分,共计32分)1、磁极间具有相互作用力,即同名磁极,异名磁极。

2、凡是能吸引等物质的性质成为磁性,具有磁性的物质叫做。

3、磁感应线是一组的闭合曲线,在磁体外部由极指向极,在磁体内部由极指向极。

4、奥斯特发现的周围存在磁场,它一般分产生的磁场和产生的磁场。

5、通电线圈产生的磁场方向,不但与有关,而且还与有关。

6、磁感应强度是个量,它的方向是小磁针在该点静止时极的方向。

7、左手定则的内容:伸平左手,使拇指与四指,让磁感应线穿过手心,四指指向_________________方向,则拇指所指的方向就是方向。

8.B、Φ、μ、H为描述磁场的四个主要物理量。

(1)磁感应强度B是描述磁场的物理量,当通电导线与磁场方向垂直时,其大小为。

磁感应强度B的单位为(2)在匀强磁场中,通过与磁感线方向垂直的某一截面的磁感线的总数,叫做穿过这个面的磁通,即Φ=(3)磁导率μ是用来表示媒介质的物理量,此值越大,说明导磁性能越好。

任一媒介质的磁导率与真空磁导率的比值叫做相对磁导率,即µr= (4)磁场强度为9、感应电流的方向,总是使感应电流的磁场________引起感应电流的 ______的变化,叫做楞次定律。

即若线圈中磁通 __ ___时,感应电流的磁场方向与原磁场的方向相反,若线圈中磁通 __________时,感应电流的磁场方向与原磁场方向相同。

10、空心线圈的电感是线性的,而铁心线圈的电感是的,其电感大小随电流的变化而。

二、判断题(每小题1分,共计25分)1、磁体具有两个磁极,一个是N极,另一个是S极,若把磁体断成两段,则一段为N极,另一段为S极。

()2、地球是一个大磁体,地球的北极附近是地磁体的N极。

()3、磁感应线是一系列假想的有向曲线,它始于N极。

()4、垂直于纸面的磁感应线用符号:“.”。

()5、电流和磁场密不可分,磁场总是伴随着电流而存在,而电流永远被磁场所包围。

电磁学基础知识

电磁学基础知识
几百到上万。材料如铁、钴、镍及其合金等。 所以电器设备如变压器、电机都将绕组套装在铁磁 性材料制成的铁心上。 注意
铁磁性物质的磁导率µ是个变量,它随磁场的强弱而变化。 电磁学基础知识
7.1.3 磁场强度
磁场强度H :介质中某点的磁感应强度 B 与介质
磁导率 之比。 H B
磁场强度H的单位 :安培/米(A/m)
在1831年英国科学家法拉第发现:,变化的磁场能使闭合的回路产生感应 电动势和感应电流。感应电动势的大小正比于回路内磁通对电流的变化率。
楞次定律:
1833年,楞次对法拉第电磁感应定律进行补充:闭合回路中感应 电流的方向,总是使它所产生的磁场阻碍引起感应电流的原磁通的变 化。这就是楞次定律。 具体地说,如果回路由于磁通增加而引起的电磁感应,则感应电流的磁场与原 来的磁场反向;如果回路由于磁通减少引起电磁感应,则感应电流的磁场与原 来的磁场相同。简要地说,感应电流总是阻碍原磁通的变化。
非线
对于铁心线圈来说,电感L不为常数。
性电
感 若为线性电感元件
eLdd t d(dL ti)Ld dti (2)

式(1)与式(2)是电动势的两种表达式,

一般当电感L为常数时,多采用式(2)。 而分析非线性电感时,由于L可变,一般采用式(1)。
电磁学基础知识
3、电感元件上电压与电流的关系
习惯上选择电感元件上的电流、电压、自感 电动势三者参考方向一致,则
1. 概述 电磁铁是利用通电的铁心线圈吸引衔铁或保
持某种机械零件、工件于固定位置的一种电器。 当电源断开时电磁铁的磁性消失,衔铁或其它零 件即被释放。电磁铁衔铁的动作可使其它机械装 置发生联动。
根据使用电源类型分为: 直流电磁铁:用直流电源励磁;

电工基础复习3(磁场与电磁感应)

电工基础复习3(磁场与电磁感应)

电工基础复习3(磁场与电磁感应)一、磁场1)磁场是磁体周围存在的一种特殊物质,磁体通过磁场发生相互作用。

2)磁场的大小和方向可用磁感线来形象的描述:磁感线的疏密表示磁场的强弱,磁感线的切线方向表示磁场的方向。

2、电流的磁效应1)通电导线周围存在着磁场,说明电可以产生磁,由电产生磁的现象称为电流的磁效应。

电流具有磁效应说明磁现象具有电本质。

2)电流产生的磁场方向与电流的方向有关,可用安培定则,即右手螺旋定则来判断。

3、描述磁场的物理量1)磁感应强度BB是描述磁场强弱和磁场方向的物理量,它描述了磁场的力效应。

当通电直导线与磁2)铁磁性物质的B随H而变化的曲线称为磁化曲线,它表示了铁磁性物质的磁性能。

磁滞回线常用来判断铁磁性物质的性质和作为选择材料的依据。

6、磁路1)磁通经过的闭合路径称为磁路。

磁路中的磁通、磁动势和磁阻的关系,可用磁路El欧姆定律来表示,即m,其中RmRmS2)由于铁磁性物质的磁导率不是常数,因此磁路欧姆定律一般不能直接用来进行磁路计算,只用于定性分析。

二、电磁感应1、利用磁场产生电流的现象叫做电磁感应现象,用电磁感应的方法产生的电流,叫感应电流。

2、闭合回路中的一部分在磁场中作切割磁感线运动(磁通发生变化),回路中有感应电流。

3、右手定则:右手,磁力线垂直进入手心;大姆指,运动方向;四指,感生电流方向。

(在感应电流方向、磁场方向、导体运动方向中已知任意两个的方向可以判断第三个的方向。

)4.楞次定律:感应电流的方向,总是使感应电流的磁场阻碍引起感应电流的磁通量的变化,它是判断感应电流方向的普遍规律。

注意:阻碍原来的变化步骤:(1)原磁通方向,增大或减小;(2)感应电流的磁场方向;(3)安培定则——电流方向5、感应电动势E=BLVinθ(θ为B、V的夹角)6、E=N△Φ/△t(N为匝数△Φ/△t为磁通变化率E与磁通的变化率成正比)属于电磁感应现象的问题——右手定则——“电”磁场对电流作用的问题——左手定则——“力”7、导体本身的电流发生变化而产生的电磁感应现象叫做自感现象,自感现象中产生的感应电动势,叫做自感电动势。

电工基础磁与电

电工基础磁与电

电工基础(第3版)
*4.5.3 右手定则
右手定则:伸出右手,让大拇指与四指在同一平面内, 大拇指与四指垂直,磁感线垂直穿过手心,大拇指指向导 体运动方向,四指所指的方向,就是感应电流的方向。
电工基础(第3版)
4.6 自感与互感
◎认识自感现象,说出电感的意义,写出磁场能的 表达式。 ◎知道常用电感器的类型,熟悉常用电感器的符号 功能和 典型应用。 ◎熟悉常用电感器的型号,会识别电感器的主要参 数。 ◎认识互感现象和涡流。
电工基础(第3版)
第4章 磁与电
知识目标
• 了解磁场的基本知识,理解磁场、磁感线、磁感应强度、磁通、 磁导率、磁场强度的基本概念。
• 理解电流的磁效应和安培定则,理解电磁力和左手定则。 • 理解电磁感应现象和电磁感应定律,理解右手定则。 • 知道常用电感器的类型,熟悉常用电感器的型号,会识别电感
器的主要参数。
电工基础(第3版)
3.磁场能
线圈中储存的磁场能量与通过线圈的电流的 平方成正比,与线圈的电感成正比。
电工基础(第3版)
4.6.2 电感器
电感器用绝缘导线绕成一匝或多匝以产生一定自感量的 电子元件,常称电感线圈,简称线圈。
电感器是用绝缘导线绕制而成的电磁感应元件,也是电 子电路中常用的元器件之一。它在电路中用字母“L”表示。 电感器在电子线路中应用广泛,主要作用是对交流信号进行 隔离、滤波或与电容器、电阻器等组成谐振电路,实现振荡、 调谐、耦合、滤波、延迟、偏转等。
μ0 = 4π×10–7H/m
表4.1 常见铁磁物质的相对磁导率
电工基础(第3版)
4.2.4 磁场强度
磁场中各点的磁感应强度B 与磁导率μ 有关,计算比 较复杂。为方便计算,引入磁场强度这个新的物理量来表 示磁场的性质,用字母H 表示。磁场中某点的磁场强度等 于该点的磁感应强度与媒介质的磁导率的比值

电工基础 第3章 磁与电磁

电工基础 第3章 磁与电磁

图3.8
3.3.1自感
根据法拉第电磁感应定律,可以写出自感电动势的表达式为
ψ eL = t

Ψ L = LI 代入,得
Ψ L2 Ψ L 1 LI 2 LI 1 eL = = t t

I eL = L t
2.自感现象的应用与危害
自感现象在各种电器设备和无线电技术中有广泛的应用,日光灯的镇 流器就是利用线圈自感现象的一个例子。 自感现象的危害:在大型电动机的定子绕组中,定子绕组的自感系数很大, 而且定子绕组中流过的电流又很强,当电路被切断的瞬间,由于电流在很短 的时间内发生很大的变化,会产生很高的自感电动势,在断开处形成电弧,这 不仅会烧坏开关,甚至危及工作人员的安全。因此,切断这类电路时必须采 用特制的安全开关。
3.4 同名端的意义及其测定
2.同名端的实验测定 直流判别法: 直流判别法:依据同名端定义以及互感电动势参考方向标注原则来判定。 如图3.18所示,两个耦合线圈的绕向未知,当开关S合上的瞬间,电流从1 端流入,此时若电压表指针正偏转,说明3端电压为正极性,因此1、3端为 同名端;若电压表指针反偏,说明4端电压正极性,则1,4端为同名端。 交流判别法: 交流判别法:如图3.19所示,将两个线圈各取一个接线端联接在一起,如 图中的2和4。并在一个线圈上(图中为线圈)加一个较低的交流电压,再用 交流电压表分别测量、、各值,如果测量结果为:,则说明、绕组为反极性 串联,故1和3为同名端。如果,则1和4为同名端。
图3.2 条形磁铁的磁感线
3.1.2磁场中的基本物理量
图3.3通电直导线的磁场
图3.4通电线圈的磁场
2.磁通量 Φ 磁感应强度B与垂直于磁场方向的面积A的乘积,称为通过该面积的磁φ 磁感应强度B与垂直于磁场方向的面积A的乘积,称为通过该面积的磁φ。即

《电工基础》项目6电磁感应

《电工基础》项目6电磁感应
磁场产生电流的现象称为电磁感应现象,产生的电 流称为为感应电流,产生感应电流的电动势称为感应电动势。
2、用△Φ表示时间间隔△t内一个单匝线圈中的磁通变化 量,则一个单匝线圈产生的感 应电动势的大小为:
e t
如果线圈有N匝,则感应电动势的大小为:
e N t
模块小结
知识连接
任务一 学习电磁感应定律
三、直导体切割磁感线运动
在匀强磁场中放置 一段导体,其两端分别 与检流计相连,形成一 个回路,当导体做切割 磁感线运动时,检流计 指针偏转,表明回路中 有感应电流。
任务一 学习电磁感应定律
三、直导体切割磁感线运动
右手定则判断方向:平伸右手,大拇指与其余四 指垂直,让磁感线传入掌心,大拇指指向导体运 动方向,则其余四指所指的方向就是感应电动势 的方向。
1、 感应电流 、 阻碍 、相反 、 相同 。 2、 楞次 、 法拉第电磁感应、 e=N△Φ/△t 。 3、 电磁感应 、 的电流变化 、 eL 、 iL 表示. 4、 L 、 L=NΦ/I 、 H(亨利) 。 5、 匝数 和 截面积 、 媒介 . 6、 储存 、 电流 。 7、 另一个线圈 。 8、 平行 、 垂直 。 9、 一致 、的极性始终保持一致 。
任务二 理解楞次定律
一、楞次定律
如图,在线圈回路中产生感应电动势和感应 电流的原因是由于磁铁的插入和拔出导致线圈中 的磁通发生了变化。感应电流产生的磁通总是阻 碍原磁通的变化。如果把线圈看成一个电源,则 感应电流流出端为电源的正极。
任务二 理解楞次定律
一、楞次定律
现 象实 验 N极朝下插入 S极朝下插入
任务三 学习自感现象
二、自感系数
自感电动势也应正比于穿过线圈的磁通量的变化率,即: E∝△Φ/△t,而磁场的强弱又正比于电流的强弱,即 磁通量的变化正比于电流的变化。所以也可以说,自感 电动势正比于电流的变化率。即E∝△I/△t写成等式即: E=L△I/△t (1)自感系数,简称自感或电感,用字母L表示。影响 因素:形状、长短、匝数、有无铁芯。 (2)单位:亨利 符号:H 常用单位:毫亨(mH) 微亨(μH)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题一 磁场的基本知识
教学目标
1.掌握磁体及其性质。 2.掌握电流的磁效应及其规律。 3.掌握磁场的基本物理量。
一、磁体及其性质
1.磁体与磁极 人们把物体能够吸引铁、镍、钴等金属及其合金的性质称为磁性。
具有磁性的物体称为磁体。 磁体分天然磁体和人造磁体。
常见人造磁体
磁极——磁体两端磁性最强的部分。一个可以在水平面内自由 转动的条形磁铁或小磁针,静止后总是一个磁极指南,一个磁极指 北。指南的磁极称为指南极,简称南极(S);指北的磁极称为指北 极,简称北极(N)。
根据相对磁导率的大小,可把物质分为两大类。
分类
特点
材料
非铁磁物质
反磁物质 顺磁物质
μr稍小于1 μr稍大于1
如铜、氢等 如空气、铝、铬等
铁磁物质
μr远大于1,可达几百甚至 数万以上,并且不是一个常数。 铁磁物质被广泛应用于电子技术 及计算机技术方面。
如铁、硅钢、 坡莫合金、铁氧体、 钴、镍等
4.磁场强度H
电动式扬声器
三、磁场对运动电荷的作用
洛仑兹力——运动电荷在磁场中受到的电磁力,用f表示。
在均匀磁场中,当电荷的运动方向与磁场方向垂直时,f=qvB
式中,q的单位是C,v的单位是m/s,B的单位是T,f的单位是N。 洛仑兹力的方向同样遵循左手定则。
用左手定则判定洛伦兹力的方向
运动电荷在磁场中受力的作用这一现象,在电子技术中得到 了广泛的应用。电视机中的显像管及示波器中的显像管都是利用 这一原理制成的。在显像管的颈部套有两对相互垂直的线圈,分 别称为水平偏转线圈和垂直偏转线圈。当两对线圈中分别通入交 变电流时,由电子枪射出的电子束就会在线圈磁场的作用下,有 规则地从左到右,从上到下的运动,完成整幅图像的扫描。
磁极之间也有相互作用力,同名磁极相互排斥,异名磁极相互 吸引。
小磁针
任何磁体都有两个磁极,而且无论把磁体怎样分割, 磁体总是保持两个异性磁极,也就是说,单独的N极或单 独的S极是不存在的。
2.磁场与磁感线
(1)磁场 磁场——磁体周围的空间存在着一种特殊的物质。
它看不见、摸不着的,但是又具有一般物质所固有的一 些属性(如力和能的特性)。
二、电流的磁效应
电流通过导体后必然产生磁场,这种现象称为 电流的磁效应。电流越大,产生的磁场越强。
电流磁效应
电流所产生的磁场方向,可以用安培定则(也称右手螺旋定则) 来判断。
直导线电流产生的磁场
三、磁场的基本物理量
1.磁感应强度B, 为向量 2.磁通Φ 3.磁导率μ 4.磁场强度H
1.磁感应强度B
一、磁场对载流直导体的作用
通电的直导体周围存在磁场,它就成了一个磁体,把这个磁体放到 另一个磁场中,它也会受到磁力的作用。这就是通常所说的“电磁生力”。
载流直导体在磁场中受到电磁力的作用
电磁力——通电导体在磁场中受到的作用力。 F=BIlsinα
F——通电导体受到的电磁力,N; B——磁感应强度,T; I——导体中的电流强度,A; l——导体在磁场中的长度,m; α——电流方向与磁感应线的夹角。 α=90°时,则sin90°=1,导体受到的电磁力最大。 α=0° 时,则sin0°=0,导体受到的电磁力最小,等于零。
(3)磁感线的密疏程度表示磁场的强弱,即磁感线越密的地 方磁场越强,反之越弱。磁感线均匀分布而又相互平行的区称为 均匀磁场,反之则称为非均匀磁场。
通常,平行于纸面的磁感线用带箭头的线段表示。垂直于纸面向里 的磁感线用符号“×”表示,垂直于纸面向外的磁感线用符号“•”表示。
提示—磁感线
磁感线试验
“磁感线的方向从N极指向S极。”这话对吗?为什么?
判断某空间是否存在磁场,一般可用一个小磁针来 检验:能使小磁针转动,并总是停留在一个固定方向的 空间都存在磁场。
(2)磁感线
条形磁铁的磁感线
磁感线规定: (1)磁感线是互不交叉的闭合曲线。在磁体外部由N极指向S 极, 在磁体内部由S极指向N极。
(2)磁感线上任意一点的切线方向就是该点的磁场方向,即 小磁针N极所指的方向。
Φ=BScosα
3.磁导率μ
磁导率——用来表示媒介质导磁性能好坏的物理量, 用符号μ表示,其单位是亨利/米(H/m)。
真空的磁导率μ0=4π×10-7 H/m,且为一常数。
把任一物质的磁导率与真空磁导率的比值称为相对磁导率
用μr表示,即:
r
0
相对磁导率是个比值,没有单位。它表明在其他条件相同的 情况下,媒介质中的磁感应强度是真空中磁感应强度的多少倍,即 μ=μrμ0。
通电导体在磁场内的受力方向,可用左手定则来判断。
左手定则 学与用—通电直导体间的电磁力
二、磁场对通电线圈的作用
磁场对通电线圈的作用
把通电的线圈放到磁场中,磁场将对通电线圈产生一个 电磁转矩,使线圈绕轴线转动。
磁场对通电线圈的作用 学与用—直流电动机原理
想一想
电视机、收音机中常用的是电动式扬声器,它是利用通电导线 在磁场中受电磁力作用发生运动,带动空气振动而发声的,电动式 扬声器由环形磁体、音圈、纸盆等组成。在环形磁铁的作用下,软 铁柱和上下两个软铁板都被磁化,在它们的间隙中形成较强的磁场, 磁感线的方向呈辐射状。当大小和方向交替变化的电流通过音圈时, 音圈就会在电磁力的作用下带动纸盆沿上下方向振动,发出声音。
在磁场中垂直于磁场方向的通电导线,所受电 磁力F与电流I和导线有效长度l的乘积Il的比值,称为 该点的磁感应强度,用符号B来表示,即:
B F Il
单位:特斯拉,简称特(T)。 相量:方向为该点磁场的方向。
2.磁通Φ
磁通 —— 磁感应强度B与垂直于磁场方向的面积S的乘积。
Φ=BS 单位:韦伯(Wb),简称韦。
大气中的通电环形线圈:Br0
NIH
l
磁场强度 H NI ,其单位是A/m ,它的数值只与电流的大小 l
及导体的几何形状有关。
安培力是磁场对电流的作用力。
洛伦兹力是磁场对运动电荷的作用力。
安培力可以看作是作用在每个运动电荷上的洛伦兹力的合力, 二者紧密地结合在一起,统称为电磁力。
显像管示意图
课题三
磁铁材料
教学目标
1.了解铁磁材料的磁化。 2.熟悉磁化曲线和磁滞回线。 3.掌握铁磁材料的性质和分类方法。 4.掌握铁磁材料的应用。
相关文档
最新文档