电场、磁场和电磁感应高考题目

合集下载

高考电磁感应经典题型汇总

高考电磁感应经典题型汇总

1.(单选)如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t 的变化关系如图乙所示.在0﹣2T 时间内,直导线中电流向上,则在2T﹣T 时间内,线框中感应电流的方向与所受安培力情况是( )A .感应电流方向为顺时针,线框受安培力的合力方向向左B .感应电流方向为逆时针,线框受安培力的合力方向向右C .感应电流方向为顺时针,线框受安培力的合力方向向右D .感应电流方向为逆时针,线框受安培力的合力方向向左答案及解析:.C 解:在﹣T 时间内,直线电流方向向下,根据安培定则,知导线右侧磁场的方向垂直纸面向外,电流逐渐增大,则磁场逐渐增强,根据楞次定律,金属线框中产生顺时针方向的感应电流.根据左手定则,知金属框左边受到的安培力方向水平向右,右边受到的安培力水平向左,离导线越近,磁场越强,则左边受到的安培力大于右边受到的安培力,所以金属框所受安培力的合力水平向右.故C 正确,A 、B 、D 错误.故选:C .2.(单选)如图所示,a 、b 、c 三个线圈是同心圆,b 线圈上连接有直流电源E 和电键K ,则下列说法正确的是( )A .在K 闭合的一瞬间,线圈a 中有逆时针方向的瞬时电流,有收缩趋势B .在K 闭合的一瞬间,线圈c 中有顺时针方向的瞬时电流,有收缩趋势C .在K 闭合电路稳定后,再断开K 的一瞬间,线圈c 中有感应电流,线圈a 中没有感应电流D .在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势答案及解析:.D 解:A 、K 闭合时线圈b 中顺时针的电流,根据右手定则可知内部有向里增大的磁场,则a 线圈产生阻碍原磁通量变化的电流;根据楞次定律可知,电流方向为逆时针,线圈受到向外的安培力,故有扩张的趋势;故A 错误;B 、根据楞次定律可知,c 中感应电流为逆时针且有收缩的趋势;故B 错误;C 、在K 闭合电路稳定后,再断开K 的一瞬间,两线圈中均有磁通量的变化,故线圈中均有感应电流;故C 错误D 、在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势;故D 正确;故选:D .3.(多选)如图所示,一电子以初速度v 沿与金属板平行方向飞入MN 极板间,突然发现电子向M 板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是( )A .开关S 闭合瞬间B .开关S 由闭合后断开瞬间C .开关S 是闭合的,变阻器滑片P 向右迅速滑动D .开关S 是闭合的,变阻器滑片P 向左迅速滑动答案及解析:AD 解:电子向M 板偏转,说明电子受到向左的电场力,两金属板间的电场由M 指向N ,M 板电势高,N 板电势低,这说明:与两金属板相连的线圈产生的感应电动势:左端电势高,与N 板相连的右端电势低;A 、开关S 闭合瞬间,由安培定则可知,穿过线圈的磁通量向右增加,由楞次定律知在右侧线圈中感应电流的磁场方向向左,产生左正右负的电动势,电子向M板偏振,A正确;B、开关S由闭合后断开瞬瞬间,穿过线圈的磁通量减少,由楞次定律知在右侧线圈中产生左负右正的电动势,电子向N板偏振,B错误;C、开关S是闭合的,变阻器滑片P向右迅速滑动,变阻器接入电路的电阻增大,电流减小,穿过线圈的磁通量减小,由楞次定律知在上线圈中产生左负右正的电动势,电子向N偏振,C错误;D、开关S是闭合的,变阻器滑片P向左迅速滑动,滑动变阻器接入电路的阻值减小,电流增大,穿过线圈的磁通量增大,由楞次定律知在上线圈中感应出左正右负的电动势,电子向M偏振,D 正确.故选:AD.4.(单选)如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d答案及解析:B解:由静止释放到最低点过程中,磁通量减小,且磁场方向向上,由楞次定律,感应电流产生磁场也向上,再由右手螺旋定则可知,感应电流的方向:d→c→b→a→d;同理,当继续向右摆动过程中,向上的磁通量增大,根据楞次定律可知,电流方向是d→c→b→a→d;故选:B.5.(单选)如图甲所示,电路的左侧是一个电容为C的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S.在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t0时间内电容器()A.上极板带正电,所带电荷量为012)( t BB CS-B.上极板带正电,所带电荷量为012)(t BBC-C.上极板带负电,所带电荷量为012)( t BB CS-D.上极板带负电,所带电荷量为012)(t BBC-答案及解析:.A解:根据法拉第电磁感应定律,电动势E=,电容器两端的电压等于电源的电动势,所以电容器所带的带电量.根据楞次定律,在环形导体中产生的感应电动势的方向为逆时针方向,所以电容器的上极板带正电.故A正确,B、C、D错误.故选A.6.(单选)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣21Bl 2ω,金属框中无电流D .U bc =21Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a 答案及解析:.C 解:AB 、导体棒bc 、ac 做切割磁感线运动,产生感应电动势,根据右手定则,感应电动势的方向从b 到c ,或者说是从a 到c ,故U a =U b <U c ,磁通量一直为零,不变,故金属框中无电流,故A 错误,B 错误; CD 、感应电动势大小=Bl ()=Bl 2ω,由于U b <U c ,所以U bc =﹣Bl 2ω,磁通量一直为零,不变,金属框中无电流,故C 正确,D 错误;故选:C .7.(多选)如图所示,一个矩形线框从匀强磁场的上方自由落下,进入匀强磁场中,然后再从磁场中穿出.已知匀强磁场区域的宽度L 大于线框的高度h ,那么下列说法中正确的是( )A .线框只在进入和穿出磁场的过程中,才有感应电流产生B .线框从进入到穿出磁场的整个过程中,都有感应电流产生C .线框在进入和穿出磁场的过程中,都是机械能变成电能D .整个线框都在磁场中运动时,机械能转变成内能答案及解析:AC 解:A 、B 、线框在进入和穿出磁场的过程中,穿过线框的磁通量发生变化,有感应电流产生,而整个线框都在磁场中运动时,线框的磁通量不变,没有感应电流产生.故A 正确,B 错误.C 、线框在进入和穿出磁场的过程中,产生感应电流,线框的机械能减小转化为电能.故C 正确.D 、整个线框都在磁场中运动时,没有感应电流产生,线框的重力势能转化为动能,机械能守恒.故D 错误.故选:AC .8.(多选)如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止):( )A .感应电流所做的功为2mgdB .线圈的最小速度可能为22L B mgR C .线圈的最小速度一定是)(2d L h g -+D .线圈穿出磁场的过程中,感应电流为逆时针方向答案及解析:.ABC解:A、据能量守恒,研究从cd边刚进入磁场到cd边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q=mgd.cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,所以从cd边刚穿出磁场到ab边离开磁场的过程,线框产生的热量与从cd边刚进入磁场到ab边刚进入磁场的过程产生的热量相等,所以线圈从cd边进入磁场到ab边离开磁场的过程,产生的热量Q′=2mgd,感应电流做的功为2mgd,故A正确.B、线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg=,解得可能的最小速度v=,故B正确.C、因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg(h+L)=Q+,解得最小速度v=,故C正确.D、线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D错误.故选:ABC.9.(单选)在竖直方向的匀强磁场中,水平放置一个矩形的金属导体框,规定磁场方向向上为正,导体框中电流的正方向如图所示,当磁场的磁感应强度B随时间t如图变化时,下图中正确表示导体框中感应电流变化的是()A.B.C.D.答案及解析:.C解:根据法拉第电磁感应定律有:E=n=n s,因此在面积、匝数不变的情况下,感应电动势与磁场的变化率成正比,即与B﹣t图象中的斜率成正比,由图象可知:0﹣2s,斜率不变,故形成的感应电流不变,根据楞次定律可知感应电流方向顺时针(俯视)即为正值,而在2﹣4s斜率不变,电流方向为逆时针,整个过程中的斜率大小不变,所以感应电流大小不变;根据楞次定律,向上的磁场先减小,再向下磁场在增大,则感应电流方向为逆时针,即为负方向,故ABD错误,C正确.故选:C.10.(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流顺时针方向为正、竖直边cd所受安培力的方向水平向左为正.则下面关于感应电流i和cd所受安培力F随时间t变化的图象正确的是()A.B.C.D.答案及解析:.AC解:A、0~2s内,磁场的方向垂直纸面向里,且逐渐减小,根据楞次定律,感应电流的方向为顺时针方向,为正值.根据法拉第电磁感应定律,E==B0S为定值,则感应电流为定值,.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据楞次定律,感应电流方向为顺时针方向,为正值,大小与0~2s 内相同.在3~4s内,磁感应强度垂直纸面向外,且逐渐减小,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.故A正确,B错误.C、在0~2s内,磁场的方向垂直纸面向里,且逐渐减小,电流恒定不变,根据F A=BIL,则安培力逐渐减小,cd边所受安培力方向向右,为负值.0时刻安培力大小为F=2B0I0L.在2s~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据F A=BIL,则安培力逐渐增大,cd 边所受安培力方向向左,为正值,3s末安培力大小为B0I0L.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向右,为负值,第4s初的安培力大小为B0I0L.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向左,6s末的安培力大小2B0I0L.故C正确,D错误.故选AC.11.(单选)圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向外,磁感应强度B随时间变化规律如图示,若规定逆时针方向为感应电流i的正方向,下列图中正确的是()A.B.C.D.答案及解析:C解:由B﹣t图象可知,0﹣1s内,线圈中磁通量增大,由楞次定律可知,电路中电流方向为逆时针,即电流为正方向,故BD错误;由楞次定律可知,1﹣2s内电路中的电流为顺时针,为正方向,2﹣3s内,电路中的电流为顺时针,为正方向,3﹣4s内,电路中的电流为逆时针,为正方向,A错误,C正确;故选:C.12.(单选)一正三角形导线框ABC(高度为a)从图示位置沿x轴正向匀速穿过两匀强磁场区域.两磁场区域磁感应强度大小均为B、方向相反、垂直于平面、宽度均为a.图乙反映感应电流I与线框移动距离x的关系,以逆时针方向为电流的正方向.图象正确的是()A.B.C.D.答案及解析:.C解:A、x在a~2a范围,线框穿过两磁场分界线时,BC、AC边在右侧磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,AC边在左侧磁场中切割磁感线,产生的感应电动势E2增大,两个电动势串联,总电动势E=E1+E2增大.故A错误;B、x在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故B错误;CD、在2a~3a,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故C正确,D错误.故选:C.13.(多选)如图,A、B为两个完全相同的灯泡,L为自感线圈(自感系数较大;直流电阻不计),E为电源,S为开关.下列说法正确的是()A.闭合开关稳定后,A、B一样亮B.闭合开关的瞬间,A、B同时亮,但A很快又熄灭C.闭合开关稳定后,断开开关,A闪亮后又熄灭D.闭合开关稳定后,断开开关,A、B立即同时熄灭答案及解析:.BC解:A、B刚闭合S的瞬间,电源的电压同时加到两灯上,由于L的自感作用,L瞬间相当于断路,所以电流通过两灯,两灯同时亮.随着电流的逐渐稳定,L将A灯短路,所以A灯很快熄灭,B灯变得更亮,故A错误,B正确.C、D闭合S待电路达到稳定后,再将S断开,B灯立即熄灭,而L与A灯组成闭合回路,线圈产生自感电动势,相当于电源,A灯闪亮一下而后熄灭,故C正确,D错误.故选:BC14.(单选)如图所示,E为电池,L是电阻可忽略不计、自感系数足够大的线圈,D1、D2是两个规格相同的灯泡,S 是控制电路的开关、对于这个电路,下列说法中不正确的是()A.刚闭合S的瞬间,通过D1、D2的电流大小相等B.刚闭合S的瞬间,通过D1、D2的电流大小不等C.闭合S待电路达到稳定后,D1熄灭,D2比S刚闭合时亮D.闭合S待电路达到稳定后,再将S断开的瞬间,D1不立即熄灭,D2立即熄灭答案及解析:.B解:A、S闭合瞬间,由于自感线圈相当于断路,所以两灯是串联,电流相等,故A正确,B错误;C、闭合开关S待电路达到稳定时,D1被短路,D2比开关S刚闭合时更亮,C正确;D、S闭合稳定后再断开开关,D2立即熄灭,但由于线圈的自感作用,L相当于电源,与D1组成回路,D1要过一会在熄灭,故D正确;本题选择错误的,故选:B.15.(单选)如图所示的电路中,A1、A2是完全相同的灯泡,线圈L的自感系数较大,它的电阻与定值电阻R相等.下列说法正确的是()A.闭合开关S,A1先亮、A2后亮,最后它们一样亮B.闭合开关S,A1、A2始终一样亮C.断开开关S,A1、A2都要过一会才熄灭D.断开开关S,A2立刻熄灭、A1过一会才熄灭答案及解析:C解:A、闭合开关S,电阻R不产生感应电动势,A2立即发光.线圈中电流增大,产生自感电动势,根据楞次定律得知,自感电动势阻碍电流的增大,电流只能逐渐增大,A1逐渐亮起来,所以闭合开关S,A2先亮、A1后亮,最后它们一样亮.故AB错误.C、D断开开关S时,A2灯原来的电流突然消失,线圈中电流减小,产生感应电动势,相当于电源,感应电流流过A1、A2和R组成的回路,所以A1、A2都要过一会才熄灭.故C正确,D错误.16.(多选)如图所示,相同电灯A和B的电阻为R,定值电阻的阻值也为R,L是自感线圈.当S1闭合、S2断开且电路稳定时,A、B亮度相同.再闭合S2,待电路稳定后将S1断开.下列说法中正确的是()A.A灯将比原来更亮一些后再熄灭B.B灯立即熄灭C.没有电流通过B灯D.有电流通过A灯,方向为b→a答案及解析:.BCD解:A、由于自感形成的电流是在L原来电流的基础上逐渐减小的,并没有超过A灯原来电流,故A灯虽推迟一会熄灭,但不会比原来更亮,故A错误.B、S1闭合、S2断开且电路稳定时两灯亮度相同,说明L的直流电阻亦为R.闭合S2后,L与A灯并联,R与B灯并联,它们的电流均相等.当断开后,L将阻碍自身电流的减小,即该电流还会维持一段时间,在这段时间里,因S2闭合,电流不可能经过B灯和R,只能通过A灯形成b→A→a→L→c→b的电流,所以BCD正确;故选:BCD.17.(多选)如图中甲、乙两图,电阻R和自感线圈L的阻值都较小,接通开关S,电路稳定,灯泡L发光,则()A.在电路甲中,断开S,L逐渐变暗B.在电路甲中,断开S,L突然亮一下,然后逐渐变暗C.在电路乙中,断开S,L逐渐变暗D.在电路乙中,断开S,L突然亮一下,然后逐渐变暗答案及解析:AD解:A、在电路甲中,断开S,由于线圈阻碍电流变小,导致L将逐渐变暗.故A正确;B、在电路甲中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比电阻的电流小,当断开S,L将不会变得更亮,但会渐渐变暗.故B错误;C、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故C错误;D、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故D正确;故选:AD.18.(单选)如图所示装置中,cd杆光滑且原来静止.当ab杆做如下哪些运动时,cd杆将向右移动()A.向右匀速运动B.向右加速运动C.向左加速运动D.向左匀速运动答案及解析:.B解:A、ab杆向右匀速运动,在ab杆中产生恒定的电流,该电流在线圈L1中产生恒定的磁场,在L2中不产生感应电流,所以cd杆不动.故A错误.B、ab杆向右加速运动,根据右手定则,知在ab杆上产生增大的a到b的电流,根据安培定则,在L1中产生向上增强的磁场,该磁场向下通过L2,根据楞次定律,在cd杆上产生c到d的电流,根据左手定则,受到向右的安培力,向右运动.故B正确.C、ab杆向左加速运动,根据右手定则,知在ab杆上产生增大的b到a的电流,根据安培定则,在L1中产生向下增强的磁场,该磁场向上通过L2,根据楞次定律,在cd杆上产生d到c的电流,根据左手定则,受到向左的安培力,向左运动.故C错误.D、ab杆向左匀速运动,根据右手定则,知在ab杆上产生不变的b到a的电流,根据安培定则,在L1中产生向下不变的磁场,该磁场向上通过L2,因此没有感应电流,则没有安培力,所以不会移动.故D错误.故选:B.20.截面积为0.2m 2的100匝圆形线圈A 处在匀强磁场中,磁场方向垂直线圈平面向里,如图所示,磁感应强度正按t B ∆∆=0.02T/s 的规律均匀减小,开始时S 未闭合.R 1=4Ω,R 2=6Ω,C=30µF ,线圈内阻不计.求:(1)S 闭合后,通过R 2的电流大小;(2)S 闭合后一段时间又断开,则S 切断后通过R 2的电量是多少?解:(1)磁感应强度变化率的大小为=0.02 T/s ,B 逐渐减弱, 所以E=n S=100×0.02×0.2 V=0.4 V I== A=0.04 A , (2)R 2两端的电压为U 2=E=×0.4 V=0.24 V所以Q=CU 2=30×10﹣6×0.24 Q=7.2×10﹣6 C .21.如图,两足够长的平行粗糙金属导轨MN ,PQ 相距d=0.5m .导轨平面与水平面夹角为α=30°,处于方向垂直导轨平面向上、磁感应强度B=0.5T 的匀强磁场中,长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,导体棒质量m=0.lkg ,电阻R=0.lΩ,与导轨之间的动摩擦因数μ=63,导轨上端连接电路如图,已知电阻R 1与灯泡电阻R L 的阻值均为0.2R ,导轨电阻不计,取重力加速度大小g=10m/s 2,(1)求棒由静止刚释放瞬间下滑的加速度大小a ;(2)假若导体棒有静止释放向下加速度运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实际功率P 及棒的速率v .解:(1)金属棒刚刚开始时,棒受到重力、支持力和摩擦力的作用,垂直于斜面的方向:N=mgcosα沿斜面的方向:mgsinα﹣μN=ma 代入数据解得:a=0.25g=2.5m/s 2(2)当金属棒匀速下滑时速度最大,达到最大时有mgsinα﹣μN=F 安又 F 安=Bid I= R 总=Ω联立以上方程得金属棒下滑的最大速度为:v m ==m/s=0.8m/s电动势:E=Bdv m =0.5×0.5×0.8=0.2V 电流: A灯泡两端的电压:U L =E ﹣IR=0.2﹣1×0.1=0.1V 灯泡的功率:W22.如图所示,表面绝缘且光滑的斜面MM′N′N固定在水平地面上,斜面所在空间有一边界与斜面底边NN′平行、宽度为d的匀强磁场,磁场方向垂直斜面.一个质量m=0.15kg、总电阻R=0.25Ω的正方形单匝金属框,放在斜面的顶端(金属框上边与MM′重合).现从t=0时开始释放金属框,金属框将沿斜面下滑.图2给出了金属框在下滑过程中速度v的二次方与对应的位移x的关系图象.取重力加速度g=l0m/s2.求:(1)斜面的倾角θ;(2)匀强磁场的磁感应强度B的大小;(3)金属框在穿过磁场的过程中电阻上生热的功率.解:(1)s=0到s=0.4 m由公式v2=2as,该段图线斜率:,所以有:a==5m/s2,根据牛顿第二定律mgsinθ=ma,得:sinθ=,所以:θ=30°(2)线框通过磁场时,v2=4,v=2 m/s,此时安培力等于重力沿斜面向下的分量:F安=mg sinθ,即:,所以解得: =T(3)由图象可知线框匀速穿过磁场,该过程中线框减少的重力势能转化为焦耳热,所以金属框在穿过磁场的过程中电阻上生热的功率等于重力做功的功率,即:P R=P G=mgsinθ•v=0.15×10×0.5×2W=1.5W23.如图所示,倾角θ为30°的光滑斜面上,有一垂直于斜面向下的有界匀强磁场区域PQNM,磁场区域宽度L=0.1m.将一匝数n=10匝、质量m=0.02kg、边长L=0.1m、总电阻R=0.4Ω的正方形闭合线圈abcd由静止释放,释放时ab边水平,且到磁场上边界PQ的距离也为L,当ab边刚进入磁场时,线圈恰好匀速运动.(g=10m/s2).求:(1)ab边刚进入磁场时,线圈所受安培力的大小及方向;(2)ab边刚进入磁场时,线圈的速度及磁场磁感应强度B的大小;(3)线圈穿过磁场过程产生的热量.解:(1)ab边刚进入磁场时线框做匀速运动,对线圈受力分析,如图所示,可知:线圈所受安培力的大小 F安=mgsinθ=0.1N方向沿斜面向上.(2)线框进入磁场前沿斜面向下做匀加速直线运动,设ab边刚进磁场时的速度为v,则由机械能守恒定律得:v2=mgL•sin30°得:v=1m/s线框切割磁感线产生的感应电动势 E=nBLv 线框中的感应电流 I=底边所受的安培力 F安=nBIL由以上各式解得:B=0.2T(3)分析可知线圈穿过磁场的过程中一直匀速运动,由能量守恒可得:Q=2mgL•sin30°=0.01J24.如图所示装置由水平轨道、倾角θ=37°的倾斜轨道连接而成,轨道所在空间存在磁感应强度大小为B、方向竖直向上的匀强磁场.质量m、长度L、电阻R的导体棒ab置于倾斜轨道上,刚好不下滑;质量、长度、电阻与棒ab 相同的光滑导体棒cd置于水平轨道上,用恒力F拉棒cd,使之在水平轨道上向右运动.棒ab、cd与导轨垂直,且两端与导轨保持良好接触,最大静摩擦力等于滑动摩擦力,sin37°=0.6,cos37°=0.8.(1)求棒ab与导轨间的动摩擦因数μ;(2)求当棒ab刚要向上滑动时cd速度v的大小;(3)若从cd刚开始运动到ab刚要上滑过程中,cd在水平轨道上移动的距离x,求此过程中ab上产生热量Q.解:(1)当ab刚好不下滑,静摩擦力沿导轨向上达到最大,由平衡条件得:mgsin37°=μmgcos37°则μ=tan37°=0.75(2)设ab刚好要上滑时,cd棒的感应电动势为E由法拉第电磁感应定律有 E=BLv设电路中的感应电流为I,由闭合电路欧姆定律有 I=设ab所受安培力为F安,有 F安=BIL此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F安cos37°=mgsin37°+μ(mg cos37°+F安sin37°)代入数据解得:F安==mg又F安=代入数据解得 v=(3)设ab棒的运动过程中电路中产生的总热量为Q总,由能量守恒有 F•x﹣2Q=mv2解得Q=F•x﹣mv2=F•x﹣。

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。

4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。

4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。

五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。

2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。

3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。

4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。

5. 请简述电阻、电容和电感的区别与联系。

答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。

2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。

备战2023年高考物理真题汇编12电磁感应篇(含答案解析)

备战2023年高考物理真题汇编12电磁感应篇(含答案解析)

备战2023年高考物理真题汇编选择题篇(解析版)历年高考真题是备考的重中之重,尤其是经典的真题,历经岁月淘漉磨炼,其包含的知识点依然活跃在高考的试题中,有些高考试题甚至出现类似的往年真题。

因此,专注高考教学一线物理教师,查阅近几年的各地区全部真题,结合最新考情,精挑细选,进行分类重组,做出这套试卷,愿为你的备考点燃一盏指路明灯。

该套卷共包含直线运动、曲线运动、光学、近代(原子)物理、机械振动和机械波、万有引力、热力学、静电场、交变电流、牛顿运动定律,功能及动量、磁场、电磁感应12个篇章。

十二、电磁感应125.(2022·河北·统考高考真题)将一根绝缘硬质细导线顺次绕成如图所示的线圈,其中大圆面积为1S ,小圆面积均为2S ,垂直线圈平面方向有一随时间t 变化的磁场,磁感应强度大小0B B kt =+,0B 和k 均为常量,则线圈中总的感应电动势大小为( )A .1kSB .25kSC .12()5S k S -D .12(5)k S S +【答案】D【详解】由法拉第电磁感应定律可得大圆线圈产生的感应电动势1111B S E kS t t∆Φ∆⋅===∆∆;每个小圆线圈产生的感应电动势222ΔΦΔE kS t==;由线圈的绕线方式和楞次定律可得大、小圆线圈产生的感应电动势方向相同,故线圈中总的感应电动势大小为()121255E E E k S S =+=+;故D 正确,ABC 错误。

126.(2021·辽宁·统考高考真题)(多选)如图(a )所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b )所示的匀强磁场,t =0时磁场方向垂直纸面向里。

在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒。

整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在02t t =时,金属棒受到安培力的大小为2300B L t RB .在t =t 0时,金属棒中电流的大小为200B L t RC .在032t t =时,金属棒受到安培力的方向竖直向上D .在t =3t 0时,金属棒中电流的方向向右【答案】BC【详解】AB .由图可知在0~t0时间段内产生的感应电动势为200∆Φ==∆B L E t t ;根据闭合电路欧姆定律有此时间段的电流为200=B L E I R Rt =;在02t 时磁感应强度为02B ,此时安培力为23002B L F BIL Rt ==;故A 错误,B 正确;C .由图可知在032t t =时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;D .由图可知在03t t =时,磁场方向垂直纸面向外,金属棒向下掉的过程中磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误。

大学电磁场考试题及答案

大学电磁场考试题及答案

大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。

答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。

2016-2018年物理高考真题试题分类汇编:磁场、电磁感应(精编+解析版)

2016-2018年物理高考真题试题分类汇编:磁场、电磁感应(精编+解析版)

2016-2018年物理高考真题试题分类汇编试题部分磁场1.【2018·全国I卷】(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。

将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。

下列说法正确的是()A. 开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动2.【2018·全国II卷】(多选)如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,L1中的电流方向向左,L2中的电流方向向上;L1的正上方有a、b两点,它们相对于L2对称。

整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外。

已知a、b)A. 流经L1的电流在bB. 流经L1的电流在aC. 流经L 2的电流在bD. 流经L 2的电流在a 3.【2018·北京卷】某空间存在匀强磁场和匀强电场。

一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是A. 磁场和电场的方向B. 磁场和电场的强弱C. 粒子的电性和电量D. 粒子入射时的速度4.【2017·全国Ⅰ卷】如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c 。

已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动。

下列选项正确的是A .a b cm m m >> B .b a c m m m >> C .a c b m m m >> D .c b a m m m >>5.【2017·新课标全国Ⅰ卷】如图,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流I ,L 1中电流方向与L 2中的相同,与L 3中的相反,下列说法正确的是A .L 1所受磁场作用力的方向与L 2、L 3所在平面垂直B .L 3所受磁场作用力的方向与L 1、L 2所在平面垂直C .L 1、L 2和L 3单位长度所受的磁场作用力大小之比为D .L 1、L 2和L 36.【2017·新课标全国Ⅱ卷】如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点。

高考物理题目

高考物理题目

高考物理题目一、关于电磁感应现象,下列说法正确的是:A. 导体在磁场中运动时,一定会产生感应电流B. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流C. 感应电流的磁场总是与原磁场方向相反D. 感应电流的产生是由于磁场变化引起了电路中电荷的重新分布(答案)B二、关于光的本性,下列说法正确的是:A. 光的干涉和衍射现象说明光具有波动性B. 光电效应现象说明光具有粒子性C. 康普顿效应揭示了光的波动性D. 光的波粒二象性是指光既是一种电磁波,又是一种粒子流(答案)A、B、D(多选,若需单选可选A或B,这里展示多选形式)三、关于原子核的结构和变化,下列说法正确的是:A. 原子核由质子和中子组成,质子和中子统称为核子B. 原子核内的质子数和中子数一定相等C. 原子核发生变化时,一定会释放出能量D. 放射性元素的半衰期是指该元素原子核数量减少一半所需的时间(答案)A、D四、关于热力学定律,下列说法正确的是:A. 热量不能自发地从低温物体传向高温物体B. 一定质量的某种理想气体在等压膨胀过程中,内能增加C. 第二类永动机违反了能量守恒定律,因此无法制成D. 绝热过程中,外界对气体做功,气体的内能一定增加(答案)A、B、D五、关于机械波,下列说法正确的是:A. 机械波的传播需要介质B. 机械波的频率由波源决定C. 机械波在传播过程中,质点随波迁移D. 横波中凸起的最高处和凹下的最低处是波峰和波谷(答案)A、B、D六、关于万有引力定律,下列说法正确的是:A. 万有引力定律只适用于天体之间B. 万有引力定律的公式中,当两物体间的距离趋近于0时,万有引力趋近于无穷大C. 地球对物体的引力与物体对地球的引力是一对作用力和反作用力D. 卡文迪许通过扭秤实验测出了引力常量(答案)C、D七、关于电场和磁场,下列说法正确的是:A. 电场线和磁感线都是闭合曲线B. 电场和磁场都可以对放入其中的电荷产生力的作用C. 静电场的电场线从正电荷或无穷远处出发,终止于负电荷或无穷远处D. 磁场的方向就是小磁针静止时北极所指的方向(答案)C、D八、关于动量守恒定律,下列说法正确的是:A. 动量守恒定律只适用于不受外力作用的系统B. 动量守恒定律既适用于点系,也适用于质点系C. 如果系统内存在摩擦力,则系统的动量一定不守恒D. 在某一方向上,系统如果不受外力或所受外力的矢量和为零,则系统在该方向上动量守恒(答案)B、D。

带电粒子在电场磁场中的运动(原卷版)—三年(2022-2024)高考物理真题分类汇编(全国通用)

带电粒子在电场磁场中的运动(原卷版)—三年(2022-2024)高考物理真题分类汇编(全国通用)

带电粒子在电场磁场中的运动考点01 带电粒子电场加速或偏转后进入磁场1. (2024年高考全国新课程卷)一质量为m 、电荷量为()0qq >的带电粒子始终在同一水平面内运动,其速度可用图示的直角坐标系内,一个点(),x y P v v 表示,x v 、y v 分别为粒子速度在水平面内两个坐标轴上的分量。

粒子出发时P 位于图中()00,a v 点,粒子在水平方向的匀强电场作用下运动,P 点沿线段ab 移动到()00,b v v 点;随后粒子离开电场,进入方向竖直、磁感应强度大小为B 的匀强磁场,P 点沿以O 为圆心的圆弧移动至()00,c v v -点;然后粒子离开磁场返回电场,P 点沿线段ca 回到a 点。

已知任何相等的时间内P 点沿图中闭合曲线通过的曲线长度都相等。

不计重力。

求(1)粒子在磁场中做圆周运动的半径和周期;(2)电场强度的大小;(3)P点沿图中闭合曲线移动1周回到a点时,粒子位移的大小。

2 (2024年高考山东卷)如图所示,在Oxy坐标系x>0,y>0区域内充满垂直纸面向里,磁感应强度大小为B的匀强磁场。

磁场中放置一长度为L的挡板,其两端分别位于x、y轴上M、N两点,∠OMN=60°,挡板上有一小孔K位于MN中点。

△OMN之外的第一象限区域存在恒定匀强电场。

位于y轴左侧的粒子发生器在0<y L的范围内可以产生质量为m,电荷量为+q的无初速度的粒子。

粒子发生器与y轴之间存在水平向右的匀强加速电场,加速电压大小可调,粒子经此电场加速后进入磁场,挡板厚度不计,粒子可沿任意角度穿过小孔,碰撞挡板的粒子不予考虑,不计粒子重力及粒子间相互作用力。

(1)求使粒子垂直挡板射入小孔K的加速电压U0;(2)调整加速电压,当粒子以最小的速度从小孔K射出后恰好做匀速直线运动,求第一象限中电场强度的大小和方向;(3)当加速电压为2224qB Lm时,求粒子从小孔K射出后,运动过程中距离y轴最近位置的坐标。

高考物理专项复习《电磁感应》十年高考真题汇总

高考物理专项复习《电磁感应》十年高考真题汇总
A.选用铜质弦,电吉他仍能正常工作 B.取走磁体,电吉他将不能正常工作 C.增加线圈匝数可以增大线圈中的感应电动势 D.弦振动过程中,线圈中的电流方向不断变化 24.(2012·海南卷)图中装置可演示磁场对通电导线的作用。电磁铁上下两磁极之间某一水平 面内固定两条平行金属导轨,L 是置于导轨上并与导轨垂直的金属杆。当电磁铁线圈两端 a、 b,导轨两端 e、f,分别接到两个不同的直流电源上时,L 便在导轨上滑动。下列说法正确 的是
挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是
A. 开关闭合后的瞬间,小磁针的 N 极朝垂直纸面向里的方向转动 B. 开关闭合并保持一段时间后,小磁针的 N 极指向垂直纸面向里的方向 C. 开关闭合并保持一段时间后,小磁针的 N 极指向垂直纸面向外的方向 D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的 N 极朝垂直纸面向外的方向转动 8.(2011·北京卷·T19)某同学为了验证断电自感现象,自己找来带铁心的线圈L、小灯泡A、开 关S和电池组E,用导线将它们连接成如图所示的电路。检查电路后,闭合开关S,小灯泡发 光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时 出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡末闪亮的原因 是
A.T1>mg,T2>mg B.T1<mg,T2<mg
C.T1>mg,T2<mg D.T1<mg,T2>mg
13.(2016·上海卷)磁铁在线圈中心上方开始运动时,线圈中产生如图方向的感应电流,则磁

A.向上运动
B.向下运动
C.向左运动
D.向右运动
14.(2016·海南卷)如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29.(16分)如图所示,厚度为h ,宽度为d 的导体板放在垂直于它的磁感应强度为B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A /之间会产生电热差,这种现象称为霍尔效应,实验表明,当磁场不太强时,电热差U 、电流I 和B 的关系为:dIB K U =,式中的比例系数K 称为霍尔系数。

霍尔效应可解释如下:外部磁场的洛仑兹力运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场,横向电场对电子施加与洛仓兹力方向相反的静电力,当静电力与洛仑兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差。

设电流I 是由电子定向流动形成的,电子的平均定向速度为v ,电量为e 回答下列问题:(1)达到稳定状态时,导体板上侧面A 的电势_____下侧面A 的电势(填高于、低于或等于)(2)电子所受的洛仑兹力的大小为______。

(3)当导体板上下两侧之间的电差为U 时,电子所受静电力的大小为_____。

(4)由静电力和洛仑兹力平衡的条件,证明霍尔系数为ne K 1=其中h 代表导体板单位体积中电子的个数。

解析:(1)低于 (2)evB (3))(evB h U e或 (4)电子受到横向静电力与洛仑兹力的作用,两力平衡,有evB h U e得:U=hvB ……①通过导体的电流密度I=nev ·d ·h ……② 由 dIB K U =,有 dh d neuB k huB ⋅⋅⋅= 得 neK 1= ……③ 30.(18分)如图所示,直角三角形的斜边倾角为30°,底边BC 长为2L ,处在水平位置,斜边AC 是光滑绝缘的,在底边中点O 处放置一正电荷Q ,一个质量为m ,电量为q 的带负电的质点从斜面顶端A 沿斜边滑下,滑到斜边上的垂足D 时速度为v 。

(将(1),(2)题正确选项前的标号填在题后括号内)(1)在质点的从D 点向C 点运动的过程中不发生变化的是①动能②电势能与重力势能之和③动能与重力势能之和④动能、电势能、热能三者之和 ( )(2)质点从D 点向C 点的运动是A 、匀加速运动B 、匀减速运动C 、先匀加速后匀减速的运动D 、加速度随时间变化的运动 ( )(3)该质点到非常挨近斜边底端C 点时速度v c 为多少?沿斜面向下的加速度a c 为多少?解析:(1)C (2)D(3)因OD OC BO BC BD ====2,则B 、C 、D 三点在以O 为圆心的同一圆周上,是O 点处点电荷Q 产生的电场中的等势点,所以,q 由D 到C 的过程中电场力作功为零,由机械能守恒定律,222121mv mv mgh c -= ……① 其中 232321260sin 30sin 60sin 000L L BC BD h =⨯⨯=== 得 gL v v c 32+=……② 质点在C 点受三个力的作用;电场力?,方向由C 指向O 点;重力mg ,方向竖直向下;支撑力N ,方向垂直于斜面向上根据牛顿定理有c ma L kQa mg mac f mg =-=-02030cos 30sin cos sin θθ ……① 22321mL kQa g a c -= ……② 5.如下图所示,虚线框abcd 内为一矩形匀强磁场区域,ab=2bc ,磁场方向垂直于纸面;实线框a 'b 'c 'd '是一正方形导线框,a 'b '边与ab 平行.若将导线框匀速地拉离磁场区域,以W 1表示沿平行于ab 的方向拉出过程中外力所做的功,W 2表示以同样速率沿平行于bc 的方向拉出过程中外力所做的功,则(C )A .W 1=W 2B .W 2=2W 1C .W 1=2W 2D .W 2=4W 17.如下图,虚线a 、b 和c 是某电场中的三个等势面,它们的电势分别为U a 、U b 和U C ,U a >U b >U C .一带正电的粒子射入电场中,其运动轨迹如实线KLMN 所示,由图可知(AC)A.粒子从K到L的过程中,电场力做负功B.粒子从L到M的过程中,电场力做负功C.粒子从K到L的过程中,静电势能增加D.粒子从L到M的过程中,动能减少13.如图所示,q1、q2、q3分别表示在一条直线上的三个点电荷,已知q1与q2之间的距离为1l,q2与q3之间的距离为2l,且每个电荷都处于平衡状态.(1)如q2为正电荷,则q1为负电荷,q3为负电荷.(2)q1、q2、q3三者电量大小之比是:22121221():1:()l l l ll l++.18.(12分)如下图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感强度为B,一带正电的粒子以速度υ0从O点射入磁场,入射方向在xy 平面内,与x轴正向的夹角为θ.若粒子射出磁场的位置与O点的距离为l,求该粒子的电量和质量之比mq.解析:带正电粒子射入磁场后,由于受到洛仑兹力的作用,粒子将沿图示的轨迹运动,从A 点射出磁场,O、A间的距离为l,射出时速度的大小仍为0υ,射出方向与x轴的夹角仍为θ.由洛仑兹力公式和牛顿定律可得,RmBq2υυ=式中R为圆轨道的半径,解得qBmR0υ=……①圆轨道的圆心位于OA 的中垂线上,由几何关系可得 θsin 2R l =……② 联立①、②两式,解得 lBm q θυsin 20=……③20.(13分)如图1所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20m ,电阻R=1.0Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感强度B=0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图2所示.求杆的质量m 和加速度a.解析:导体杆在轨道上做匀加速直线运动,用υ表示其速度,t 表示时间,则有at =υ……① 杆切割磁力线,将产生感应电动势,υεBl =……②在杆、轨道和电阻的闭合回路中产生电流R I ε=……③杆受到的安培力为IBl f =…④根据牛顿第二定律,有 ma f F =-……⑤ 联立以上各式,得 at Rl B ma F 22+=……⑥ 由图线上取两点代入⑥式,可解得 kg m s m a 1.0,/10==3.A 、B 两点各放有电量为十Q 和十2Q 的点电荷,A 、 B 、C 、D 四点在同一直线上,且AC =CD =DB .将一正电荷从C 点沿直线移到D 点,则(B )(A )电场力一直做正功 (B )电场力先做正功再做负功(B )电场力一直做负功 (D )电场力先做负功再做正功5.如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B 、及一根质量为m 的金属杆从轨道上由静止滑下。

经过足够长的时间后,金属杆的速度会趋近于一个最大速度,则(B 、C )(A )如果B 增大,v m 将变大 (B )如果α变大,v m 将变大(C )如果R 变大,v m 将变大 (D )如果m 变小,v m 将变大6.如图所示是一种延时开关,当S 1闭合时,电磁铁F 将衔铁D 吸下,C 线路接通。

当S 1断开时,由于电磁感应作用,D 将延迟一段时间才被释放。

则(B 、C )(A )由于A 线圈的电磁感应作用,才产生延时释放D 的作用(B )由于B 线圈的电磁感应作用,才产生延时释放D 的作用(C )如果断开B 线圈的电键S 2,无延时作用(D )如果断开B 线圈的电键S 2,延时将变长11.一束质量为m 、电量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场,如图所示,如果两极板间电压为U ,两极板间的距离为d ,板长为L ,设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 (粒子的重力忽略不计)答案:2022222v md L U q 22.(3分)半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO’的瞬时(如图所示)MN 中的电动势和流过灯L 1的电流。

?(2)撤去中间的金属棒MN 将右面的半圆环OL 2O’以OO’为轴向上 翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB/Δt =(4 /Ω)T/s ,求L 1的功率。

解析:(1)ε1=B2av =0.2×0.8×5=0.8V ①I 1=ε1/R =0.8/2=0.4A ②?(2)ε2=ΔФ/Δt =0.5×πa 2×ΔB/Δt =0.32V ③P 1=(ε2/2)2/R =1.28×102W ④10.如图,平行板电容器经开关K 与电池连接,a 处有一带电量非常小的点电荷。

K 是闭合的U a 表示a 点的电势,f 表示点电荷的电场力。

现将电容器的B 板向下稍微移动,使两板间的距离增大,则( B )A .U a 变大,f 变大B .U a 变大,f 变小C .U a 不变,f 不变D .U a 不变,f 变小4.初速为0v 的电子,沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图所示,则(A )(A )电子将向右偏转,速率不变(B )电子将向左偏转,速率改变(C )电子将向左偏转,速率不变(D )电子将向右偏转,速率改变7.一平行板电容器,两板之间的距离d 和两板面积S 都可以调节,电容器两板与电池相连接.以Q 表示电容器的电量,E 表示两极板间的电场强度,则(A 、C )(A )当d 增大、S 不变时,Q 减小、E 减小(B )当S 增大、d 不变时,Q 增大、E 增大(C )当d 减小、S 增大时,Q 增大、E 增大 (D )当S 减小、d 减小时,Q 不变、E 不变12.一质量为kg 15100.4-⨯、电量为9100.2-⨯C 的带正电质点,以s m /100.44⨯的速度垂直于电场方向从a 点进入匀强电场区域,并从b 点离开电场区域.离开电场时的速度为s m /100.54⨯.由此可知,电场中a 、b 两点间的电势差=-b a U U ____________ V ;带电质点离开电场时,速度在电场方向的分量为______________sm/.不考虑重力作用.答案:2100.9⨯(2分),4100.3⨯(3分)20.(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l。

相关文档
最新文档