高等数学同济大学版第八章典型习题
最新高等数学同济大学第六版 第八章 单元练习题 参考答案

高等数学同济大学第六版第八章单元练习题参考答案第八章 空间解析几何与向量代数 单元测试题 参考答案:一、填空题1.点(),,M x y z 关于x 轴的对称点为1M (),,x y z --;关于xOy 平面的对称点为2M (),,x y z -;关于原点的对称点为3M (),,x y z ---.2. 平行于a ={1,1,1}的单位向量为}1,1,1;若向量}5,1,{λ=a 与向量}50,10,2{=b 平行,λ为15 . 3.已知两点()1,2,41M 和()2,0,32M ,则向量21M M 在三个坐标轴上的投影分别是 –1 2- 、 1 ,在坐标轴方向上的分量分别是i - 、j 2-、k = 2 ,方向余弦 =αcos 21-、 =βcos 22-、=γcos 21 , 方向角=α 0120、 =β 0135、 =γ 060, 与21M M 同方向的单位向量是⎭⎬⎫⎩⎨⎧--21,22,21 . 4. 已知两向量k j i a 1046+-=,k j i b 943-+=,则=+b a 2k j i 8412-+,=-b a 23k j i 482012+-,b a 23-在oz 轴上的投影为48 .5.过点(1,2,1)M -且与直线2341x t y t z t =-++⎧⎪=-⎨⎪=-⎩垂直的平面方程是340x y z --+=二、选择题1. 向量a 与b 的数量积⋅a b =( C ).A a rj P b a ;B ⋅a rj P a b ;C a rj P a b ;D b rj P a b .2. 非零向量,a b 满足0⋅=a b ,则有( C ).A a ∥b ;B =λa b (λ为实数);C ⊥a b ;D 0+=a b .3. 设a 与b 为非零向量,则0⨯=a b 是( A ).A a ∥b 的充要条件;B a ⊥b 的充要条件;C =a b 的充要条件;D a ∥b 的必要但不充分的条件.4. 设k j i ,, 是三个坐标轴正方向上的单位向量,下列等式中正确的是( C ).A. i j k =⨯,B. k j i =⋅,C. k k i i ⋅=⋅,D. k k k k ⋅=⨯ 5 设d c b a ,,,为向量,则下列各量为向量的是( D ).A. a j b PrB. ()d c b⨯⋅ C. ()()d c b a ⨯⋅⨯ D. ()c b a ⨯⨯6. 设234,5=+-=-+a i j k b i j k ,则向量2=-c a b 在y 轴上的分向量是( B).A 7B 7jC –1;D -9k7. 以下结论正确的是( D ) A. ()222b a b a ⋅=⋅ B. ()b a b a b a ∧=⨯,sinC. 若c a b a ⋅=⋅或c a b a ⨯=⨯,且0≠a ,则c b =D. ()()b a b a b a ⨯-=-⨯+28.方程组2222491x y z x ⎧++=⎪⎨=⎪⎩表示 ( B ).A 椭球面;B 1=x 平面上的椭圆;C 椭圆柱面;D 空间曲线在1=x 平面上的投影. 9. 设空间直线的对称式方程为 012x yz==则该直线必( A ).A 过原点且垂直于x 轴;B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.三、计算题1、求旋转抛物面22y x z +=与平面z y +=1的交线在xy 平面上投影方程解 从曲线方程⎩⎨⎧=++=122z y y x z 中消去z ,得曲线向xy 平面得投影柱面方程122=++y y x 。
高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。
高等数学同济第七版同步练习题第八章1-4节留空版

8-1 向量及其线性运算 8-2数量积 向量积一、填空1. 平行于向量(6,7,6)a 的单位向量为.2. 已知,a b 均为单位向量,且1,2a b则以向量,a b 为邻边的平行四边形的面积为. 2 3. 若,a b =a b 则向量a 与b 的夹角为. π4 4. 设3,5,a b 若a b +k 与a b k 垂直,则常数k . 355. 设向量x 与向量(2,1,2)a 平行,且18,a x 则x . (4,2,4)6. 设(4,2,4),(6,3,2),a b 则Pr b a j =. 107二、设长方体的各棱与坐标轴平行,已知长方体的两个顶点坐标分别为(1,1,2)(3,4,5),,试写出余下六个顶点的坐标.三、一向量的终点为(2,1,7),B 在,,x y z 轴上的投影依次为4,4,7, 求此向量的始点坐标,方向余弦和方向角.四、设358,247,54,a i j k b i j k c i j k 求向量43l a b c 在x 轴上的投影以及在y 轴上的分向量.五、设32,2,a i j k b i j k 求:(1);a b (2)Pr b a j ;(3)cos(,).a b六、设,,a b c 为单位向量,且满足0a b c ,++=求++a b b c c a.七、已知(1,1,2),(5,6,2),(1,3,1),A B C 求同时与,AB AC垂直的单位向量.八、在Oxy 面上,求垂直于(5,3,4)a ,并与a 等长的向量.b的面积.九、已知空间三点(1,1,1),(2,3,4),(3,4,5),A B C求ABC十、用向量法证明:(1)直径所对的圆周角是直角;(2)三角形的三条高交于一点.8-3平面及其方程 8-4空间直线及其方程一、填空1. 过点12(4,1,2),(3,5,1)M M 的直线方程为.412743x y z 2. 设两直线11112x y z 和11x y z 相交,则 .543. 直线320,6320x y z x y z 与z 轴的夹角为.arccos(61二、已知平面0,Ax By Cz D 求下列情况下的系数应满足什么条件:(1)过原点;(2)平行于z 轴;(3)包含x 轴;(4)平行于xOy 平面.三、求满足下列条件的平面方程:(1)过点(3,0,1) 且与平面375120x y z 平行.(2)过点(1,1,1)和点(0,1,1) 且与平面0x y z 相垂直.(3)过点(1,1,1),(2,2,2),(1,1,2).(4)平行于xOz 面且经过点(2,5,3).(5)平行于x 轴且经过两点(4,0,2),(5,1,7).(6)平面22210x y z 与平面72450x z 之间的二面角的平分面.四、求满足下列条件的直线方程:(1)过点(2,1,3) 且平行于直线21215x y z .(2)过点(0,2,4)且同时平行于平面21x z 和3 2.y z(3)过点(0,1,2)且与直线11112x y z 垂直相交.五、写出直线2530,320x z x y z的对称式方程及参量方程.六、确定下列各组中的直线和平面间的位置关系: (1)223314x y z 和3;x y z(2)3210,21030x y z x y z和4220.x y z七、(1)设0M 是直线L 外的一点,M 是直线上的任意一点,且直线L 的方向向量为,s 证明:点0M 到直线L 的距离为0.ss M M d(2)由此计算:点0(3,4,4)M 到直线452221x y z 的距离.八、求下列投影直线的方程:(1)直线240,3290x y z x y z在xOy 面上的投影直线; (2)直线4310,520x y z x y z在平面2530x y z 上的投影直线.。
高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。
同济版高等数学第八章习题PPT

z
在三个坐标面上的投影.
解:
z x2 y2
得
x2 y2 4
x0
y
z 4
故旋转曲面在xoy面上的投影为:
x2
y2
4
z x2 y2
z 0
x 0
得 z y2
故旋转曲面在yoz面上的投影为:由 z y2和z 4围成
z x2 y2
y 0
得 z x2
故旋转曲面在xoz面上的投影为:由 z x2和z 4围成
cos z r
z x2 y2 z2
方向余弦的性质:
四、 两向量的数量积 (内积)
设
a
( ax ,ay ,az ),
b (bx ,by ,bz ),
a b axbx a yby azbz
五、两向量的向量积 (叉积、外积)
1.向量 c 方向: c a , c b 且符合右手规则
的方向向量
ijk
S 0 1 1 (0,1,1)
过点
10 (1,1,1)
0 作以
S
(0,1,1)为法向量的平面
yz0
求解直线与平面的垂足
y
x
z 0
1
0
y z 0
得垂足为:
0,
1 2
,
1 2
所求平面垂直于平面 z 0,
从而设方程为: Ax By D 0
平面过点
(1,1,1)
M 0 , M1 , M 2 三点共线 M 0M1 // M 0M 2
t1 0, t2 2
M1 (0,0, 1), M 2 (2, 2,3) L: x 1 y 1 z 1
112
L1
L2
M0 M2
M1 L
高数(同济三版)第八章习题课

P x, y dx Q x, y dy
y1 y0
P x, y0 dx Q x1 , y dy
x0
Q x0 , y dy P x, y1 dx.
y0 x0
y1
x1
此时,
u x, y
(1)平面曲线
L
2.积分方法 (1)平面曲线
x x t L: y y t
b a
t : a b,
x t , y t x t Q x t , y t y t dt. Pdx Qdy P
1 y yds s L 1 2 2 a 1 cos t x y dt 4a 0 2a 2 t 4 1 cos t sin dt a 0 4a 2 3
y
O
a
x
4 4 即,质心坐标 a, a . 3 3
例
求I
解 曲线弧长
O
a
x
s ds
L
0
x2 y2 dt
2
0
a 1 cos t a 2 sin 2 t dt
2
a
0
2 2 cos t dt
0
2a
t sin dt 4a. 2
1 x xds s L 1 2 2 a t sin t x y dt 0 4a 2a 2 t 4 t sin t sin dt a 0 4a 2 3
b
L : ,
高等数学练习册第八章习题参考答案(1)

解 令x a cos t, y a sin t,
I
2 0
1 a2
[a 2
(cos
t
sin
t
)(
sin
t
)
(cos
t
sin
t
)
cos
t
]dt
2
0 dt 2 .
p55. 2.计算 ( x2 2xy)dx ( y2 2xy)dy,其中 L
L为抛物线y x2上从点(1,1)到点(1,1)的一段弧.
C
(2)曲线弧C的重心坐标为
xG
1 x( x, y)ds
MC
,yG
1 y( x, y)ds .
MC
p51.2.设光滑曲线L关于x轴对称, L1是L在x轴上方的部分, (1)若f ( x, y)在L上连续,且关于y为奇函数,则Biblioteka f ( x, y)ds 0 ; L
(2)若f ( x, y)在L上连续,且关于y为偶函数,
(1)当p点从点A(a , 0)经位于第一象限的弧段到 B(0,b)时, F所作的功;
(2)当p点经过全椭圆时,F所作的功.
p56. 解 F | F | F 0 x2 y2 ( x , y ) x2 y2 x2 y2
( x, y),
(1) W F d s ( x)dx ( y)dy
0
22
a2
2
| cos
t
| dt
2a 2
2 cos udu 2a2 .
20
2
0
p52. 3.计算 | xy | ds,其中L :圆周x2 y2 a2. L
解法1
I 4
2
a3
sin t
高等数学练习册第八章

高等数学练习册第八章同济版高等数学期末复习第八章多元函数微分法及其应用§8.1多元函数的基本概念一.基本作业题1.求下列函数的定义域:(1)zln(y24某8);(2)zarcin2某y22。
解:定义域为解:定义域为y24某80即y24某8。
02某2y21即1某2y22。
2.求下列极限1某y1ln(某ey)(1)lim;(2)lim;4某1某0某y某yy0y0解:解:1某y1li某0某yy0某y1li某0某y1)2y0某y(11某lim某2y0ln(某ey)某y4ln32limln(某ey)某2y0lim某y4某2y0(3)lim(1某y);(4)lim某0y0某0y0in(某2y2)(某y)e22某2y2。
解:解:lim(1某y)某0y01某lim1某yin(某2y2)(某2y2)e某22y某0y0y22lim[(1某y)]e1某0y0limin(某y)1lim122某0(某2y2)某0某yy0y0e某2y3.证明极限lim4不存在。
某0某y4y0某2yky21lim证明:取路径某ky趋于(0,0),则:lim4某0某y4某0k2y2y4ky0y02极限值随k变化,故极限不存在。
§8.2偏导数同济版高等数学期末复习一.基本作业题1.求下列函数的偏导数zz,。
某y(1)z某3y某2y3;(2)zin(某y);zzzyco(某y)z某co(某y),3某2y2某y3;某33某2y2某y某2某y)y2某y)y(3)zlncot;(4)zarctaney;某某zyyy2tancc2某某某某z;某11e2某y1z;eyy某y11e2某ye某y某y2z1yytancc2y某某某(5)f(某,y)某y某2y2,求f某(3,4)。
f某(某,y)1f某(3,4)12.求二阶偏导数某某2y2391625(1)z某某y某yy;(2)zin(a某by)。
322322z6某2y;某22z2某2y某y2z2某6y2y一.基本作业题1.求下列函数全微分(1)zarcin2z2a2co2(a某by)2某2z2abco2(a某by)某y2z2b2co2(a某by)2y§8.3全微分及其应用某2;(2)z某y;ydz2某yd某某dy2dzyd某某dyyy2某2同济版高等数学期末复习(3)求函数zln(2某y3)在点(1,2)的全微分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章典型习题
一.求函数的表达式
1.
设z x y f =++,且当0y =时2z x =,则z = .
2.设22,y f x y x y x ⎛⎫+=- ⎪⎝
⎭,则(),f x y = . 3.设(
)(,ln f x y x =,其中0x y >>,则(),f x y x y +-= .
二.求定义域 1.
ln 1z x y =--
2.u =
3.()2ln 21z y x =-+
三.求极限
1.0x y →→= .
2.00
sin lim x y xy x →→= . 3.()322300
1lim sin x y x y x y →→+= . 4.()1
00
lim 1xy x y xy →→+= . 四.求偏导数和全微分 1.设2,,y z f x x y x ⎛⎫=+ ⎪⎝
⎭,则dz = . 2.设y z x =,则dz = .
3.设(),y
z yf xy e =,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 4.设(),,,y
z f u x y u xe ==,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 5.设函数(),z z x y =由方程5431z xz yz -+=确定,求dz .
6.设函数(),z z x y =由方程0z e xyz -=确定,求dz .
7.设函数(),z z x y =由方程z x y ze xe ye =+确定,求dz .
五.多元函数连续、可导、可微之间的关系
P72.总习题八4
六.多元函数微分法的几何应用
1.曲线sin ,1cos ,4sin 2t x t t y t z =-=-=在对应于2
t π=的点处的 切线方程为 ,法平面方程为 ,
2.曲面3z e z xy -+=在点()2,1,0P 处的切平面方程为 , 法线方程为 ,
3.若函数()22,22425f x y x xy y x y =++++-有驻点()03,1M -, 且0xx M A f ''== ,0xy M B f ''== ,
0yy M C f ''== ,2B AC -= ,
由此可判定函数(),f x y 在0M 有 值.
4.设曲线22sin :sin cos cos x a t y b t t z c t ⎧=⎪Γ=⎨⎪=⎩,则它在对应4t π=的点处的法平面必( ) (A)平行于ox 轴 (B)平行于oy 轴
(C)垂直于xoy 面 (D)垂直于yoz 面
5.曲面222426x y z -+=上点()2,2,3处法线方程是 .
七.条件极值
1.求曲面21z xy -=上到原点最近的点.
2.求平面1345
x y z ++=和柱面221x y +=的交线上到xoy 面距离最短的点. 3.要设计一个容量为0V 的长方体开口水箱,试问
水箱长、宽、高等于多少时所用材料最省?
4.已知曲面方程为()22210,0,0x y z x y z ++=≥≥≥.
⑴.求曲面上任一点()000,,P x y z 处的切平面方程;
⑵.求在曲面上哪一点的切平面与三坐标面构成的四面体体积最小.。