IEEE 754关于浮点数的规定解析
浮点数754标准

浮点数754标准
IEEE二进制浮点数算术标准(IEEE 754)是20世纪80年代以来最广泛使
用的浮点数运算标准,为许多CPU与浮点运算器所采用。
这个标准定义了
表示浮点数的格式(包括负零-0)与反常值(denormal number)),一
些特殊数值(无穷(Inf)与非数值(NaN)),以及这些数值的“浮点数
运算符”;它也指明了四种数值舍入规则和五种例外状况(包括例外发生的时机与处理方式)。
IEEE 754规定了四种表示浮点数值的方式:单精确度(32位)、双精确度(64位)、延伸单精确度(43比特以上,很少使用)与延伸双精确度(79比特以上,通常以80位实现)。
具体来说,IEEE 754标准定义了两种浮点数:32位单精度浮点数和64位
双精度浮点数。
其中,32位精度浮点数使用1位表示符号位,8位表示阶码,23位表示尾数;而64位精度浮点数使用1位表示符号位,11位表示
阶码,52位表示尾数。
此外,IEEE 754还规定了四种数值舍入规则和五种
例外状况的处理方式。
如需了解更多信息,可以查阅IEEE官方网站上发布的相关资料,或咨询计
算机领域专业人士。
IEEE 745浮点数标准

IEEE 745浮点数标准解读IEEE标准754:浮点数表示如须转载请注明作者为Lolita@,并请保持文章的完整和提供转载出处。
N的实际值n由下列式子表示:其中:★ n,s,e,m分别为N,S,E,M对应的实际数值,而N,S,E,M仅仅是一串二进制位。
★ S(sign)表示N的符号位。
对应值s满足:n>0时,s=0; n<0时,s=1。
★ E(exponent)表示N的指数位,位于S和M之间的若干位。
对应值e值也可正可负。
★ M(mantissa)表示N的尾数位,恰好,它位于N末尾。
M也叫有效数字位(sinificand)、系数位(coefficient), 甚至被称作“小数”。
三、浮点数格式IEEE标准754规定了三种浮点数格式:单精度、双精度、扩展精度。
前两者正好对应C语言里头的float、double或者FORTRAN里头的real、double精度类型。
限于篇幅,本文仅介绍单精度、双精度浮点格式。
★ 单精度:N共32位,其中S占1位,E占8位,M占23位。
★ 双精度:N共64位,其中S占1位,E占11位,M占52位。
上图中,|E|表示E的二进制序列表示的整数值,例如E为"10000100",则|E|=132,e=132-127=5 。
k则表示E的位数,对单精度来说,k=8,则bias=127,对双精度来说,k=11,则bias=1023。
此时m的计算公式如下图所示:标准规定此时小数点左侧的隐含位为1,那么m=|1.M|。
如M="101",则|1.M|=|1.101|=1.625,即 m=1.6252、非规格化:当E的二进制位全部为0时,N为非规格化形式。
此时e,m 的计算都非常简单。
注意,此时小数点左侧的隐含位为0。
为什么e会等于(1-bias)而不是(-bias),这主要是为规格化数值、非规格化数值之间的平滑过渡设计的。
后文我们还会继续讨论。
ieee754标准float单精度浮点数

IEEE754标准Float单精度浮点数一、IEEE754标准Float单精度浮点数的定义IEEE754标准Float单精度浮点数是一种用于表示浮点数的二进制编码格式,它由三个部分组成:符号位、指数位和尾数位。
在IEEE754标准下,Float单精度浮点数总长度为32位,其中符号位占据1位,指数位占据8位,尾数位占据23位,这种编码格式的设计旨在能够有效地表示不同大小和精度的浮点数。
二、浮点数的表示范围1. IEEE754标准Float单精度浮点数可以表示的范围为1.4x10^(-45)至3.4x10^38,这个范围非常广泛,可以满足大多数实际需求。
2. 在表示浮点数时,IEEE754标准Float单精度浮点数遵循一定的存储规则,其中指数位用于表示浮点数的阶码,尾数位用于表示浮点数的尾数。
三、浮点数的精度1. 由于IEEE754标准Float单精度浮点数的尾数位只有23位,因此其表示的精度有限。
在进行浮点数计算时,可能会出现精度丢失的情况,因此在设计算法时需要特别注意。
2. 尽管浮点数的精度有限,但在实际应用中,IEEE754标准Float单精度浮点数仍然广泛应用于科学计算、图形处理等领域。
四、浮点数的舍入规则1. 在进行浮点数运算时,由于IEEE754标准Float单精度浮点数的精度有限,可能会出现舍入误差。
在进行舍入时,IEEE754标准规定了一套标准的舍入规则,以确保浮点数运算的结果尽可能地准确。
2. 浮点数的舍入规则在不同的编程语言中可能会有所不同,但大多数编程语言都遵循IEEE754标准的舍入规则。
五、浮点数的特殊值1. 在IEEE754标准Float单精度浮点数中,有一些特殊的浮点数值,例如正无穷大、负无穷大、NaN(Not a Number)等。
这些特殊的浮点数值在实际计算中可能会起到重要的作用,需要特别注意处理。
2. 特殊值的存在使得IEEE754标准Float单精度浮点数在表示浮点数时更加灵活和丰富。
ieee754标准32位浮点数和普通浮点数

ieee754标准32位浮点数和普通浮点
数
IEEE 754标准是一种被广泛使用的浮点数表示方法,它规定了浮点数的表示
格式和计算规则。
在计算机中,浮点数被用来表示实数,包括小数和无限大。
IEEE 754标准定义了32位浮点数和64位浮点数两种格式,其中32位浮点数是最常用的。
在IEEE 754标准中,32位浮点数被分为三个部分:符号位、指数位和尾数位。
符号位用来表示浮点数的正负,占1位;指数位用来表示浮点数的指数,占8位;尾数位用来表示浮点数的小数部分,占23位。
在计算浮点数时,首先要根据指数位的值来确定浮点数的范围和精度,然后根据尾数位的值来确定浮点数的小数部分。
普通浮点数是指在计算机中用常规方式表示的实数。
它通常用定点数表示,也可以用浮点数表示。
在普通浮点数中,小数点的位置是固定的,而在IEEE 754标准中,小数点的位置是可以浮动的。
这种可变性使得IEEE 754标准能够更好地适应不同情况下的精度需求。
在IEEE 754标准中,32位浮点数的精度比普通浮点数更高。
由于它使用了更多的位数来表示小数部分,因此它可以更精确地表示小数。
此外,IEEE 754标准
还支持负指数和无穷大的表示,这使得它能够更好地处理特殊情况。
总之,IEEE 754标准是一种非常优秀的浮点数表示方法,它具有高精度、范
围大、易读易懂等优点。
相比之下,普通浮点数的表示方法则显得较为简单粗糙。
因此,在需要高精度计算或处理特殊情况时,我们应该优先考虑使用IEEE 754标准的32位浮点数。
ieee754标准浮点数

ieee754标准浮点数IEEE 754标准浮点数,简称IEEE 754,是一种用于表示浮点数的二进制格式的国际标准。
它由电气与电子工程师学会(Institute of Electrical and Electronics Engineers)制定,并于1985年首次发布。
该标准已经成为计算机科学领域广泛采用的表示浮点数的标准。
IEEE 754标准浮点数由三个主要部分组成:符号位、指数位和尾数位。
其中,符号位用来表示浮点数是正数还是负数,0表示正数,1表示负数。
指数位用来表示浮点数的数量级,一般为一个整数。
尾数位用来存储实际的浮点数值的二进制表示。
IEEE 754规定了两种浮点数的表示格式:单精度浮点数和双精度浮点数。
单精度浮点数使用32位二进制表示,双精度浮点数使用64位二进制表示。
其中,单精度浮点数可以表示范围更小、精度更低的浮点数,而双精度浮点数可以表示范围更大、精度更高的浮点数。
在单精度浮点数中,符号位占用1位,指数位占用8位,尾数位占用23位。
在双精度浮点数中,符号位占用1位,指数位占用11位,尾数位占用52位。
通过这样的表示方式,IEEE 754可以表示非常大或非常小的浮点数,并且能够保证在一定的误差范围内保留足够的精度。
IEEE 754标准浮点数还定义了一些特殊的值,包括正无穷大、负无穷大、NaN(Not a Number)等。
正无穷大用来表示大于任何实数的特殊值,负无穷大用来表示小于任何实数的特殊值,而NaN用来表示一个不确定的或无法表示的结果。
使用IEEE 754标准浮点数表示浮点数时,也会涉及到一些舍入误差。
由于二进制和十进制之间的转换问题,有些十进制浮点数在转换为二进制浮点数时可能会引起舍入误差。
这是因为有些十进制浮点数在二进制中无法精确表示,只能以近似值表示。
因此,在进行浮点数运算时,可能会出现误差累积的问题,导致计算结果与预期结果不一致。
为了解决这个问题,IEEE 754标准浮点数引入了舍入规则。
ieee 754标准的浮点数表示方法

ieee 754标准的浮点数表示方法
IEEE 754标准定义了浮点数的表示方法,包括单精度和双精
度浮点数。
单精度浮点数(32位)的表示方法如下:
- 1位符号位(S),用来表示正负号,0表示正数,1表示负数。
- 8位指数位(E),用来表示指数部分,采用偏移表示法,即
真正的指数值等于E - 127,其中E的取值范围为1到254,保留了0和255两个特殊值。
- 23位尾数位(M),用来表示尾数部分,在计算机内部以二
进制表示的小数部分。
双精度浮点数(64位)的表示方法如下:
- 1位符号位(S),用来表示正负号,0表示正数,1表示负数。
- 11位指数位(E),用来表示指数部分,采用偏移表示法,
即真正的指数值等于E - 1023,其中E的取值范围为1到2046,保留了0和2047两个特殊值。
- 52位尾数位(M),用来表示尾数部分,在计算机内部以二
进制表示的小数部分。
根据上述规定,浮点数的数值表示为:(-1)^S * (1.M) * 2^(E-
偏移值)。
其中,(1.M)表示1加上尾数M的二进制表示值,偏移值为
127(对于单精度浮点数)或1023(对于双精度浮点数)。
例如,对于单精度浮点数0.15625,其二进制表示为:
- 符号位S为0表示正数。
- 指数位E为3,表示指数部分为3 - 127 = -124。
- 尾数位M为10000000000000000000000(二进制表示),表示尾数部分。
因此,浮点数0.15625的IEEE 754标准单精度表示为:0 01111100 10000000000000000000000。
ieee754标准的浮点数

ieee754标准的浮点数IEEE 754是一种标准,用于表示和执行浮点数运算的规范。
该标准定义了浮点数的表示方式、运算规则和异常处理等内容。
下面我将从多个角度对IEEE 754标准的浮点数进行全面回答。
首先,IEEE 754标准定义了两种浮点数格式,单精度(32位)和双精度(64位)。
单精度浮点数由1位符号位、8位指数位和23位尾数位组成,而双精度浮点数由1位符号位、11位指数位和52位尾数位组成。
这两种格式都采用了规格化表示方式,即指数位偏移量为127(单精度)或1023(双精度)。
其次,IEEE 754标准规定了浮点数的表示范围和精度。
单精度浮点数可以表示的范围约为±1.4e-45到±3.4e38,而双精度浮点数的表示范围约为±4.9e-324到±1.8e308。
同时,IEEE 754标准还规定了不同精度下的有效位数,单精度为23位,双精度为52位。
此外,IEEE 754标准还定义了浮点数的运算规则。
浮点数的加法、减法和乘法都遵循一定的规则,如舍入规则、溢出处理和下溢处理等。
舍入规则有四种模式可选,向最近偶数舍入、向正无穷舍入、向负无穷舍入和向零舍入。
当运算结果超出表示范围时,会发生溢出;当运算结果小于最小表示值时,会发生下溢。
最后,IEEE 754标准还规定了一些特殊的浮点数值。
其中,正无穷大(+∞)、负无穷大(-∞)和NaN(非数)是三个特殊的值。
正无穷大表示一个超过浮点数表示范围的值,负无穷大表示一个超过负浮点数表示范围的值,而NaN表示一个无效的操作或未定义的结果。
总结起来,IEEE 754标准定义了浮点数的表示方式、运算规则和异常处理等内容。
它是计算机中广泛使用的浮点数表示和计算的标准,确保了浮点数的精度和可靠性。
ieee754的单精度浮点数c0a00000h的值

IEEE 754标准是一种用于浮点数表示的二进制编码规范,它规定了浮点数的表示方式、精度以及运算规则。
在IEEE 754标准中,单精度浮点数占用32位二进制位,其中第一位表示符号位,接下来的8位表示指数部分,剩下的23位表示尾数部分。
在本文中,我们将讨论IEEE 754标准中单精度浮点数c0a00000h的具体值是多少。
1. 单精度浮点数c0a00000h的二进制表示我们需要将十六进制数c0a00000h转换为二进制数。
c0a00000h的十六进制表示为11000000101000000000000000000000。
将其转换为二进制数得到11000000101000000000000000000000。
2. 将二进制数按照IEEE 754标准进行分段将得到的32位二进制数按照IEEE 754标准进行分段,即将第一位作为符号位,接下来的8位作为指数部分,剩下的23位作为尾数部分。
c0a00000h的二进制表示为1 10000010 01000000000000000000000。
3. 计算指数部分和尾数部分的实际值根据IEEE 754标准,指数部分需进行偏移计算。
偏移计算的具体方式为通过减去偏移值127来得到实际的指数值。
c0a00000h中的指数部分为10000010,减去偏移值127后得到实际的指数值为2。
根据IEEE 754标准,尾数部分需将整数部分转换为实际值并加上1得到最终的尾数值。
c0a00000h中的尾数部分为01000000000000000000000,将其转换为实际值为1.25,再加上1得到最终的尾数值为2.25。
4. 计算符号位的实际值c0a00000h中的符号位为1,根据IEEE 754标准,符号位为1表示负数,符号位为0表示正数。
5. 单精度浮点数c0a00000h的实际值综合以上计算,c0a00000h表示的单精度浮点数的实际值为-2.25乘以2的2次方,即-9。
通过以上分析,我们得出了单精度浮点数c0a00000h的具体值为-9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
000C 405ED9999999999A Data4 DQ 123.4;定义双精度浮点数 0014 405ED9999999999A Data5 REAL8 123.4;定义双精度浮点数 001C 4005F6CCCCCCCCCCCCCD Data6 REAL10 123.4 ;定义扩展精度浮点数
255 255
任意
0 非0
规格化数
±无穷大 NaN
三、十进制数转换成浮点数的步骤 1、将十进制数转换成二进制数:整数部分用 2来除,小数部分用2来乘; 2、规格化二进制数:改变阶码,使小数点前 面仅有第一位有效数字; 3、计算阶码: 短型浮点数的阶码加上偏移量7FH 长型浮点数的阶码加上偏移量3FFH 扩展型浮点数的阶码加上偏移量3FFFH 4、以浮点数据格式存储。 把数值的符号位、阶码和尾数合在一起 就得到了该数的浮点存储形式。
例1 把十进制数100.25转换成协处理器中的 浮点数 解:1、进制转换: (100.25)10=(1100100.01)2 2、规格化: (1100100.01)2=1.10010001×26 =1.10010001×2110 3、计算阶码: 110+01111111=10000101 4、数值的符号位为:0, 阶码为:10000101, 尾数为: 1001 0001 0000 0000 0000 000
对上溢用无穷大表示=无穷大 任何有限数÷无穷大=0 无穷大÷无穷大=NaN NaN(Not A Number)
。 这样IEEE754有5种类型浮点数据,如下表:
S
0/1 0/1
E
0 0
M
0 非0
意义
±0 非规格化数
0/1
0/1 0/1
1~254
习题: 1.将下列十进制数用16进制IEEE 754 单精 度代码表示 (1) –35 (2) 3.75 (3) 5 2.将下列16进制IEEE 754 单精度代码转换成 十进制数 (1) 41F00000 (2) BF600000 (3) 3F800000
例11.2 把浮点数 1100000111001001000000000000转换成十 进制数。 解: 1、把浮点数 1100000111001001000000000000 分割成三部分,可得: 符号位是1, 阶码 是10000011, 尾数 是1001001000000000000
2、还原阶码: 10000011 – 01111111=100 3、该浮点数的规格化形式: 1.1001001×24 (其中前面的“1.”从隐含位而来)
在定义浮点数时,要使用伪指 令.8087、.287或.387等。 例如: .387 0000 3F9DF3B6 Data1 DD 1.234 ;定义单精度浮点数 0004 C1BB3333 Data2 DD –23.4 0008 43D20000 Data3 REAL4 4.2E2 ;定义单精度浮点数
四、浮点数转换成十进制数的步骤
该步骤与前面“十进制数转换成浮点数” 的步骤是互逆的,其具体步骤如下: 1、分割数字的符号、阶码和有效数字; 2、将偏移阶码减去偏移,得到真正的阶码; 3、把数字写成规格化的二进制数形式; 4、把规格化的二进制数改变成非规格化的 二进制数; 5、把非规格化的二进制数转换成十进制数。
4、该浮点数的非规格化形式: 11001.001 5、该浮点数的十进制数为-25.125 (因为符 号位为1,所以,该数是负数)
五、浮点数说明形式 在汇编语言中,可用DD、DQ和DT来分 别说明单精度、双精度和扩展精度的浮点数。 在MASM 6.11系统提供了新的浮点数说 明方法。 即:可用REAL4、REAL8和REAL10来分别 代替DD、DQ和DT。
一、 IEEE754对阶码作如下规定
偏移阶码E 0 1 2 … 127 128 129 … 254 255 实际阶码值 保留做操作数 -126 -125 0 1 2 127 保留做操作数
二、对上溢和下溢的处理 当运算结果小于规格化浮点数所能表示的 最小值时,以前硬件处理策略,或者结果置0 或者产生一个下溢陷阱,这两种方案均不能 令人满意。 IEEE754 处理方法是使用非规格化数。 这时阶码为0(即移码-127),尾数没有隐含 位,最高位是0。 这样的结果是降低精度,扩大表示范围。 如原来规格化单精度最小值是 1.0x2-126, 而非 规格化单精度最小值是2-23 x2-126=2-149(只有1 位有效位) 。2010年10月11日星期一
根据 IEEE 754 标准 , 符号位也是“ 0 ”代 表正数;“1”代表负数. 阶码用移码表示,尾数规格化形式 , 但格 式如下:1.XXX…X。由于最高位总是1,因此省 略,称隐藏位(临时实数则不隐藏). 尾数比规格化表示大一倍 , 而阶码部分则 比一般小1,即[E]移=2n+E-1=127+E 这样 , 尾数与通常意义的尾数的含义不一 致,为了区别,754 中的尾数称为有效数.
IEEE 754 关于浮点数的规定 在计算机中,浮点数一般由三部分组成: 数值的符号位、阶码和尾数。 这种浮点数是用科学记数法来表示的, 即: 浮点数=符号位.尾数×2阶码。
根据IEEE 754国际标准,常用的浮点数有两 种格式: (1) 单精度浮点数(32位),阶码8位,尾数24 位(内含1位符号位)。 (2) 双精度浮点数(64位),阶码11位,尾数53 位(内含1位符号位)。 (3) 临时浮点数(80位),阶码15位,尾数65位 (内含1位符号位)。
综合上述可得: (100.25)10的浮点形式为: 0 10000101 10010001000000000000000
几个特殊数据的存储规则:
正0: 所有的数据位都是0; 负0: 最高位为1,其它的数据位是0; 正/负无穷: 符号位为0/1,阶码位全为1, 有效数字全为0;
NAN: 非法的浮点数,阶码位全为1,有效 数字不全为0; 其中:NAN — Not-A-Number。