1.1.1集合的概念

合集下载

1.1.1集合的概念

1.1.1集合的概念

(5) 由既在R中又在N*中的数组成的集合 中一定包含数0; 错 (6) 不在N中的数不能使方程4x=8成立.
(5) 由既在R中又在N*中的数组成的集合 中一定包含数0; 错 (6) 不在N中的数不能使方程4x=8成立.

(5) 由既在R中又在N*中的数组成的集合 中一定包含数0; 错 (6) 不在N中的数不能使方程4x=8成立.
课堂练习
1.课本P5练习1,2; 2.判断:
(1)所有在N中的元素都在N*中;
(2)所有在N中的元素都在Z中; (3)所有不在N*中的数都不在Z中;
(4)所有不在Q中的实数都在R中;
课堂练习
1.课本P5练习2; 2.判断:
(1)所有在N中的元素都在N*中;
(2)所有在N中的元素都在Z中;

(3)所有不在N*中的数都不在Z中;
(3) 方程x2-9=0的解的集合;
请用列举法表示下列集合. (1) 小于5的正奇数; (2) 能被3整除且大于4小于15的自 然数;
(3) 方程x2-9=0的解的集合;
(4){15以内的质数}.
练习题:用列举法表示下列集合
6 (1){x| ∈Z,x∈Z}; 3 x
如: 方程 x2x 0的解集为{1}而非{1, 1}.
问题:
4. A={太平洋,大西洋},
B={大西洋,太平洋}是否表示为
同一集合?
集合中的元素具有以下三大特征
1. 确定性:集合中的元素必须是确定的. 2. 互异性:集合中的元素必须是互异的. 3. 无序性:集合中的元素是没有先后顺序
的,也就是说,对于一个给定集合,它与集合的关系有“属于∈”及
“不属于 ” 如: A={2,4,8,16}
4∈ A, 8∈A, 32 A .

高中数学:1.1.1集合的概念

高中数学:1.1.1集合的概念

1.1 集合与集合的表示方法1.1.1 集合的概念1.了解集合的概念. 2.理解元素与集合的关系. 3.掌握集合中元素的特性的应用.1.集合的概念(1)集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).通常用英语大写字母A ,B ,C ,…表示.(2)元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a ,b ,c ,…表示.2.元素与集合的关系 知识点关系 概念记法 读法 元素与集合的关系属于如果a 是集合A 的元素,就说a 属于Aa ∈A“a 属于A ” 不属于 如果a 不是集合A 的元素,就说a 不属于Aa ∉A“a 不属于A ”元素 意义确定性元素与集合的关系是确定的,即给定元素a 和集合A ,a ∈A 与a ∉A 必居其一互异性 集合中的元素互不相同,即a ∈A 且b ∈A 时,必有a ≠b无序性集合中的元素可以任意排列顺序4集合⎩⎨⎧空集:不含任何元素,记作∅非空集合:按含有元素的个数分为⎩⎪⎨⎪⎧有限集:含有有限个元素无限集:含有无限个元素5.常用数集的意义及表示意义名称记法非负整数全体构成的集合自然数集N在自然数集内排除0的集合正整数集N+或N*整数全体构成的集合整数集Z有理数全体构成的集合有理数集Q实数全体构成的集合实数集R1.下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2016届本科生D.满足3x-2>x+3的全体实数答案:A2.设M是所有偶数组成的集合,下列选项正确的是()A.3∈M B.1∈MC.2∈M D.2∉M答案:C3.方程x2-2x+1=0的解集中有________个元素.答案:14.指出下列集合是有限集还是无限集.(1)满足2 011≤x≤2 013的整数构成的集合;(2)平面α内所有直线构成的集合.答案:(1)有限集(2)无限集集合概念的理解判断下列各组对象能否构成一个集合:(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)直角坐标平面内第一象限的一些点.【解】(1)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(2)类似于(1),也能构成集合.(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.判断一组对象构成集合的依据判断一组对象能否构成集合的关键是看是否有明确的判断标准,给定的对象是“确定无疑”的还是“模棱两可”的,如果是“确定无疑”的,就可构成集合;如果是“模棱两可”的,就不能构成集合.下列各组对象能构成集合的有________(填序号).①中国农业银行的所有员工; ②我国的大河流; ③不大于3的所有自然数;④在平面直角坐标系中,和原点距离等于1的点; ⑤未来世界的高科技产品; ⑥所有的好心人.解析:①能,①中的对象是确定的;②不能,“大”无明确标准;③能,不大于3的所有自然数有0、1、2、3,其对象是确定的;④能,在平面直角坐标系中任给一点,可明确地判断是不是“和原点的距离等于1”,故能组成一个集合;⑤不能,“高科技”的标准不能确定;⑥不能,没有一个确定的标准来判断某个人是否是“好心人”.答案:①③④元素与集合的关系(1)下列关系中,正确的有( ) ①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个B .2个C .3个D .4个(2)满足“a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ”,有且只有2个元素的集合A 的个数是( )A .0B .1C .2D .3扫一扫 进入91导学网(www .91daoxue .com )元素与集合的关系【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)因为a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,若a =0,则4-a =4,此时A 满足要求;若a =1,则4-a =3,此时A 满足要求;若a =2,则4-a =2,此时A 含1个元素不满足要求.故有且只有2个元素的集合A 有2个,故选C .【答案】 (1)C (2)C判断元素和集合关系的两种方法(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可. 此时应首先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2解析:选D .因为1∉A ,2∈A ,所以⎩⎪⎨⎪⎧2×1+a ≤0,2×2+a >0即-4<a ≤-2.集合中元素的特性已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 【解】 因为-3∈P ,a 2+4≥4, 所以a -3=-3或2a -1=-3, 解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性; a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性. 综上可知,a 的值为0或-1.由集合中元素的特性求解字母取值(范围)的步骤已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解:若1∈A ,则a =1或a 2=1, 即a =±1. 当a =1时,集合A 有重复元素,不符合互异性, 所以a ≠1; 当a =-1时,集合A 含有两个元素1,-1, 符合互异性. 所以a =-1.1.集合中的元素具有确定性、互异性、无序性三大特性.利用集合中元素的三个特性,一方面可以判断一些对象是否构成集合,另一方面可以解决与集合有关的问题.2.(1)符号“∈”“∉”是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系;(2)a ∈A 与a ∉A 取决于a 是不是集合A 中的元素.根据集合中元素的确定性,对任何a 与A ,在a ∈A 与a ∉A 这两种情况中必有一种且只有一种成立.初学者由于对集合中元素的特性把握不准,而容易忽视集合中元素的互异性致错.1.下列各组对象,能构成集合的是( ) A .平面直角坐标系内x 轴上方的y 轴附近的点 B .平面内两边之和小于第三边的三角形 C .新华书店中有意义的小说 D .π(π=3.141…)的近似值的全体解析:选B .选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为∅,故能构成集合.2.所给下列关系正确的个数是( ) ①-12∈R ;②2∉∅;③0∈N +;④-3∉N .A .1B .2C .3D .4解析:选C .①②④正确,③错误,故选C .3.由“book 中的字母”构成的集合中元素个数为( )A .1B .2C .3D .4解析:选C .“book 中的字母”构成的集合中有b ,o ,k 共3个元素.4.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________.解析:由题意知,m =2或m 2-3m +2=2, 解得m =2或m =0或m =3,经验证, 当m =0或m =2时, 不满足集合中元素的互异性, 当m =3时, 满足题意,故m =3. 答案:3[A 基础达标]1.下列各组对象中能构成集合的是( ) A .2017年中央电视台春节联欢晚会中好看的节目 B .某学校高一年级高个子的学生 C .2的近似值D .2016年全国经济百强县解析:选D .由于集合中的元素是确定的,所以D 中对象可构成集合.2.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的个数为( )A .1B .2C .3D .4解析:选B .13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数, (4)正确.故选B .3.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A .矩形 B .平行四边形 C .菱形D .梯形解析:选D .因为a ,b ,c ,d 为集合A 中的四个元素,故a ,b ,c ,d 均不相同,故选D .4.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A解析:选C .因为-1=3×0-1∈A ,故A 错; -11=3×(-4)+1=3×(-3)-2∉A ,故B 错; -34=3×(-11)-1∈A ,故D 错; 因为k ∈Z ,所以k 2∈Z , 所以3k 2-1∈A ,故C 正确.5.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有( ) A .2个元素 B .3个元素 C .4个元素D .5个元素解析:选A .x 2=|x |,-3x 3=-x . 当x =0时,它们均为0;当x >0时,它们分别为x ,-x ,x ,x ,-x ; 当x <0时,它们分别为x ,-x ,-x ,-x ,-x .通过以上分析,它们最多表示两个不同的数,故集合中元素最多含有2个.6.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 含有三个元素3,4,6,且当a ∈A ,有8-a ∈A ,那么a =________. 解析:若a =3,则8-a =5∉A ,故a ≠3; 若a =4,则8-4=4∈A ,故a =4合适; 若a =6,则8-6=2∉A ,故a ≠6. 答案:48.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a >0且b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2. 即元素的个数为3. 答案:39.由三个数a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,求a 2 017+b 2 017的值.解:由a ,ba ,1组成一个集合,可知a ≠0,且a ≠1.由题意可得⎩⎪⎨⎪⎧a 2=1,a =a +b ,b a =0或⎩⎪⎨⎪⎧a 2=a ,a +b =1,b a =0,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去), 所以a 2 017+b 2 017=(-1)2 017+0=-1.10.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时, 有0=-3,不成立; 当a =2a -1时,有a =1, 此时A 中有两个元素-2,1, 符合题意.综上知a =1.[B 能力提升]11.集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ).则下列选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C .集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,经验证,(3,10)∈B ,故选C .12.已知集合A 中的元素满足ax 2-bx +1=0,又集合A 中只有唯一的一个元素1,则实数a +b 的值为________.解析:当a ≠0时,由题意可知方程ax 2-bx +1=0有两个相等的实数根, 故⎩⎨⎧1+1=--ba,1×1=1a,解得a =1,b =2.故a +b =3.当a =0时,b =1,此时也满足条件, 所以a +b =1, 故a +b 的值为1或3. 答案:1或313.已知集合A 中含有1,0,x 这三个元素. (1)求实数x 的取值范围; (2)若x 2∈A ,求实数x 的值.解:(1)由集合中元素的互异性可知,x 的取值范围为x ≠1,x ≠0的实数.(2)若x 2=0,则x =0,此时三个元素为1,0,0,不符合集合中元素的互异性,舍去. 若x 2=1,则x =±1.当x =1时,集合中元素为1,0,1,舍去; 当x =-1时,集合中元素为1,0,-1,符合题意. 若x 2=x ,则x =0或x =1,不符合元素的互异性, 所以x =-1.14.(选做题)某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为:若x 号同学去,则8-x 号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M ,则有x ∈M ,8-x ∈M . 若只有一个名额,即M 中只有一个元素,必须满足x =8-x ,故x =4,所以应该派学号为4的同学去.(2)若有两个名额,即M 中有且仅有两个不同的元素x 和8-x ,从而全部含有两个元素的集合M 应含有1,7或2,6或3,5.也就是两个名额的分派方法有3种.。

1.1.1集合的含义与表示

1.1.1集合的含义与表示

作业
教材P.11
T1~4.
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
费曼学习法-实操
第四步 循环强化
什么是学习力
什么是学习力-你遇到这些问 题了吗
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人 学得慢
总是 比别人学得差 不会举一反三
什么是学习力含义
学习知识的能力 (学习新知识 速度、质量等)
管理知识的能力 (利用现有知识 解决问题)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
• 例3:已知A={a-2,2a2+5a,10},且 -3∈A,求a。
例4若A={x|x=3n+1,n ∈ Z}, B= {x|x=3n+2,n ∈ Z} C={x|x=6n+3,n ∈ Z}
(1) 若c ∈ C,问是否有a ∈ A,b ∈ B,使得 c=a+b; (2)对于任意a ∈ A,b ∈ B,是否 一定有a+b ∈ C ?并证明你的结论;
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。

第1章 1.1 1.1.1 第1课时 集合的含义

第1章  1.1  1.1.1  第1课时 集合的含义

集合1.1.1 集合的含义与表示第一课时集合的含义[新知初探]1.元素与集合的概念(1)元素:一般地,把研究对象统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素的特性:确定性、无序性、互异性.[点睛] 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物.2.元素与集合的关系[点睛] 对元素和集合之间关系的两点说明(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a ∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.常用的数集及其记法[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合.( )(2)新课标数学人教A版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )答案:(1)√(2)×(3)×2.下列元素与集合的关系判断正确的是( )A.0∈N B.π∈QC.2∈Q D.-1∉Z答案:A3.已知集合A中含有两个元素1,x2,且x∈A,则x的值是( )A.0 B.1C.-1 D.0或1答案:A4.方程x2-1=0与方程x+1=0所有解组成的集合中共有________个元素.答案:2集合的基本概[例1] 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④[解析] ①中“成绩优秀”没有明确的标准,所以不能构成一个集合;②③④中的对象都满足确定性,所以能构成集合.[答案] B1.给出下列说法:①中国的所有直辖市可以构成一个集合; ②高一(1)班较胖的同学可以构成一个集合; ③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合. 其中正确的有________.(填序号)解析:②中由于“较胖”的标准不明确,不满足集合元素的确定性,所以②错误;④中的所有整数能构成集合,所以④错误.答案:①③[例2] (1)下列关系中,正确的有( ) ①12∈R ;② 2∉Q ;③|-3|∈N ;④|-3|∈Q. A .1个 B .2个 C .3个D .4个(2)集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)由题意可得:3-x 可以为1,2,3,6,且x 为自然数,因此x 的值为2,1,0.因此A 中元素有2,1,0. [答案] (1)C (2)0,1,2元素与集合的关系[活学活用]2.已知集合A 中有四个元素0,1,2,3,集合B 中有三个元素0,1,2,且元素a ∈A ,a ∉B ,则a 的值为( ) A .0 B .1 C .2D .3解析:选D ∵a ∈A ,a ∉B ,∴由元素与集合之间的关系知,a =3. 3.用适当的符号填空:已知A ={x|x =3k +2,k ∈Z},B ={x|x =6m -1,m ∈Z},则有:17________A ;-5________A ;17________B.解析:令3k +2=17得,k =5∈Z. 所以17∈A.令3k +2=-5得,k =-73∉Z.所以-5∉A.令6m -1=17得,m =3∈Z , 所以17∈B. 答案:∈ ∉ ∈[例3] 已知集合A 含有两个元素a 和a 2,若1∈A ,则实数a 的值为________.集合中元素的特性及应用[解析] 若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,不符合元素的互异性,∴a≠1;当a=-1时,集合A含有两个元素1,-1,符合元素的互异性.∴a=-1.[答案] -1[一题多变]1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.解:因2∈A,则a=2或a2=2即a=2,或a=2,或a=- 2.2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?解:因A中有两个元素a和a2,则由a≠a2解得a≠0且a≠1.3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.解:由a∈A可知,当a=1时,此时a2=1,与集合元素的互异性矛盾,所以a≠1.当a=a2时,a=0或1(舍去).综上可知,a=0.根据集合中元素的特性求解字母取值(范围)的3个步骤层级一学业水平达标1.下列说法正确的是( )A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素解析:选C A项中元素不确定.B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D项中方程的解分别是x1=1,x2=x3=-1.由互异性知,构成的集合含2个元素.2.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈AC.0∈A D.-1∉A解析:选C 很明显3,1不满足不等式,而0,-1满足不等式.3.下面几个命题中正确命题的个数是( )①集合N*中最小的数是1;②若-a∉N*,则a∈N*;③若a∈N*,b∈N*,则a+b最小值是2;④x2+4=4x的解集是{2,2}.A.0 B.1 C.2 D.3解析:选C N*是正整数集,最小的正整数是1,故①正确;当a=0时,-a∉N*,且a∉N*,故②错;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为( )A.2 B.2或4C .4D .0解析:选B 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A.故选B.5.由实数-a ,a ,|a|,a 2所组成的集合最多含有的元素个数是( ) A .1 B .2 C .3 D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a≠0时,a 2=|a|=⎩⎪⎨⎪⎧a ,a>0,-a ,a<0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.6.下列说法中:①集合N 与集合N +是同一个集合; ②集合N 中的元素都是集合Z 中的元素; ③集合Q 中的元素都是集合Z 中的元素; ④集合Q 中的元素都是集合R 中的元素. 其中正确的有________(填序号).解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b________A ,ab________A .(填∈或∉).解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A. 答案:∉ ∈8.已知集合P 中元素x 满足:x ∈N ,且2<x<a ,又集合P 中恰有三个元素,则整数a =________. 解析:∵x ∈N,2<x<a ,且集合P 中恰有三个元素, ∴结合数轴知a =6. 答案:69.设A 是由满足不等式x<6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解:∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧a<6,3a<6,解得a<2.又a ∈N ,∴a =0或1.10.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值. 解:因为集合A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.层级二 应试能力达标1.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而B 、C 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选A.2.若以集合A 的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选A 由于a ,b ,c ,d 四个元素互不相同,故它们组成的四边形的四条边都不相等. 3.若集合A 中有三个元素1,a +b ,a ;集合B 中有三个元素0,ba ,b.若集合A 与集合B 相等,则b-a =( )A .1B .-1C .2D .-2解析:选C 由题意可知a +b =0且a≠0,∴a =-b , ∴ba=-1.∴a =-1,b =1,故b -a =2. 4.已知a ,b 是非零实数,代数式|a|a +|b|b +|ab|ab 的值组成的集合是M ,则下列判断正确的是( )A .0∈MB .-1∈MC .3∉MD .1∈M解析:选B 当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.5.不等式x -a≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 解析:因为3∉A ,所以3是不等式x -a<0的解,所以3-a<0,解得a>3. 答案:a>36.若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:(1)若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.(2)若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.(3)若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由(2)知不合题意.综上可知:a=0或a=1.答案:0或17.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.解:∵9∈A,∴2a-1=9或a2=9,若2a-1=9,则a=5,此时A中的元素为-4,9,25;B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.若a2=9,则a=±3,当a=3时,A中的元素为-4,5,9;B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去.当a=-3时,A中的元素为-4,-7,9;B中的元素为9,-8,4,符合题意.综上所述,满足条件的a存在,且a=-3.8.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.11 又∵2∈A ,∴11-2=-1∈A.∵-1∈A ,∴11--1=12∈A.∵12∈A ,∴11-12=2∈A.∴A 中必还有另外两个元素,且为-1,12.(2)若A 为单元素集,则a =11-a ,即a 2-a +1=0,方程无解. ∴a≠11-a ,∴集合A 不可能是单元素集.。

1.1.1集合的概念

1.1.1集合的概念
(3)−3

(4)




N,0.5
Z,0

Q,

R,π


Байду номын сангаас

N,0


Z,

Q,π
R,


N*;
Z;


Q;
R.
3.判断下列集合是有限集还是无限集.
(1)你所在班级的所有同学组成的集合;
有限集
(2)方程 + = 的所有正整数解组成的集合;有限集
(3)小于3的所有整数组成的集合;
无限集
典型例题
典型例题
【例】方程 = 的所有实数解组成的集合为,则 −


A
(用符号“ ∈ ”或“ ∉ ”填空)。
练习:如果是由方程 = 的所有解组成的集合,则 − ,



. (用符号“ ∈ ”或“ ∉ ”填空)
运用知识,强化练习
练习: 用符号“”或“”填空:
(4)数轴上表示大于0且小于1的所有点组成的集合. 无限集
课堂总结
➢1、集合的有关概念:集合、元素;
➢2、元素与集合的关系:属于、不属于;
➢3、集合中元素的特征;
➢4、集合的分类:有限集、无限集;
➢5、常用数集的定义及记法.
(2)某校汉字录入速度为90字符/min及以上的所有学生; 能
(3)方程( − )( + ) = 的所有实数解; 能
(4)大于−5且小于5的所有整数; 能
(5)大于3且小于1的所有实数; 能
(6)非常接近0的数. 不能;不满足元素的确定性.
2.用符号“∈”或“∉”填空.

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集

Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.

1.1.1集合的概念及其表示(一)

1.1.1集合的概念及其表示(一)

用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征

1.1.1集合的概念及表示方法

1.1.1集合的概念及表示方法
第一章 集合与逻辑用语
教师:张友蛟
1.1集合及其运算
1.1.1集合的概念及表示方法
集合
举例1: (1)小于5的自然数,0,1,2,3,4,5; (2)中国古典四大名著; (3)云南医药健康职业学院护理x班的全体学生; (4)到线段两端距离相等的点;
举例2: 某商店进了一批货,包括:面包、牛奶、汉堡、彩笔、
例1 下列对象能否组成集合? (1)所有小于10的自然数; (2)某班个子高的同学; (3)方程 x2 1 0的所有解; (4)不等式 x 2 0的所有解;
(三)集合的分类:
由方程的所有解组成的集合叫做这个方程的解集; 由不等式的所有解组成的集合叫做这个不等式的解集; 元素个数有限的集合叫做有限集; 元素个数无限的集合叫做无限集; 像平面上与原点 O 的距离为2厘米的所有点组成的集合那样,由平 面内的点组成的集合叫做平面点集; 由数组成的集合叫做数集,方程的解集与不等式的解集都是数集
• ①很小的数
②不超过 30的非负实数
• ③直角坐标平面的横坐标与纵坐标相等的点
• ④的近似值 ⑤高一年级优秀的学生
• ⑥所有无理数 ⑦大于2的整数
• ⑧正三角形全体
• A.⑥⑦
D. ②③⑤⑥⑦⑧
• 练习1.下列指定的对象,能构成一个集合的是 (B)
• ①很小的数
水笔、橡皮、果冻、薯片、裁纸刀、尺子。那么如何将这 些商品放在指定的篮筐里? 食品篮筐:
面包、牛奶、汉堡、果冻、薯片; 文具篮筐:
彩笔、水笔、橡皮、裁纸刀、尺子
(一)集合的概念
1.集合
由某些确定的对象组成的整体叫做集合,简称 “集”。
组成集合的每一个对象叫做这个集合的元素。
• 练习1.下列指定的对象,能构成一个集合的是 ()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六、集合分类及数集
1.分类: (1)含有有限个元素的集合叫做有限集 (2)含有无穷个元素的集合叫做无限集
2.常用数集及符号 自然数集(非负整数集):记作 N
正整数集:记作 N *或 N 整数集:记作 Z 有理数集:记作 Q
实数集:记作 R
常用数集的关系:
正整数集:N+或N﹡ 自然数集:N 整数集: Z 有理数集: Q 实数集: R
(1)属于:如果a是集合A的元素,就说a属于 A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a
不属于A,记作 a A
方程x+1=x+2的解的全体构成的集合.
一般地,我们把不含任何元素的集合叫 做空集,记作Ф
五.知识探究
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
三.集合举例
(1)方程 x2 1 的解
(2)平行四边形的全体.
(3)平面上与一个定点O的距离等于 定长r>0的点的全体.
以上各例是否构成集合?若能,它们 的元素是什么?
四.“元素”与“集合”:
1. 集合通常用大写英语字母A,B,C,…来 表示,元素通常用小写英语字母a,b,c,…来 表示;
2、元素与集合的关系
问以上各例有什么特点?
二、集合的概念:
1.我们看到的、听到的、闻到的、触摸到 的、想到的各种各样的事物或一些抽象的 符号,都可以看作对象。
2.一般地,把一些能够确定的不同的对象 看成一个整体,就说这个整体是由这些对 象的全体构成的集合(或集)。构成集合 的每个对象叫做这个集合的元素(或成员)
康托尔是德国数学家,集合论的创 始者。1845年3月3日生于圣彼得堡 ,1918年1月6日病逝于哈雷。 康 托尔11岁时移居德国,在德国读中 学。1862年17岁时入瑞士苏黎世大 学,翌年入柏林大学,主修数学, 1866年曾去格丁根学习一学期。 1867年以数论方面的论文获博士学 位。1869年在哈雷大学通过讲师资 格考试,后在该大学任讲师,1872 年任副教授,1879年任教授。 集 合论是现代数学的基础,康托尔在 研究函数论时产生了探索无穷集和 超穷数的兴趣。康托尔肯定了无穷 数的存在,并对无穷问题进行了哲 学的讨论,最终建立了较完善的集 合理论,为现代数学的发展打下了 坚实的基础。
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:0705班的全体同学组成一个集合,调整座位后 这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
ห้องสมุดไป่ตู้
集合中元素的特性
(1)确定性:给定一个集合,任何对象是 不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的. (3)无序性:集合中的元素没有固定的顺序.
1.1.1集合的概念
一.新课引入
1.初中数学哪部分知识涉及集合一词?
“集合”与“整体”、“一类”、“一群”等词 语的含义相近.例如:“数学书的全体”、“地 球上人的全体”、“所有文具的全体”都可以看 成一些“对象”的集合.
思考: (1)“小于10”的自然数0,1,2,…,9. (2)满足3x-2>x+3的全体实数. (3)所有直角三角形. (4)到两定点距离的和等于两定点间的 距离的点. (5)我校高一全体学生.
相关文档
最新文档