空间向量巧解平行,垂直关系

合集下载

空间向量平行公式和垂直公式

空间向量平行公式和垂直公式

空间向量平行公式和垂直公式
1、向量垂直公式
向量a=(a1,a2),向量b=(b1,b2)。

a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)。

a垂直b:a1b1+a2b2=0。

2、向量平行公式
向量a=(x1,y1),向量b=(x2,y2)。

x1y2-x2y1=0。

a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。

相关信息:
空间中具有大小和方向的量叫做空间向量。

向量的大小叫做向量的长度或模(modulus)。

规定,长度为0的向量叫做零向量,记为0。

模为1的向量称为单位向量。

与向量a长度相等而方向相反的向量,称为a的相反向量。

记为-a方向相等且模相等的向量称为相等向量。

1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。

任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。

空间向量的垂直和平行关系

空间向量的垂直和平行关系

空间向量的垂直和平行关系空间向量是三维空间中具有大小和方向的量,它们之间存在着不同的关系。

其中最常见的关系是垂直和平行关系。

本文将深入探讨空间向量的垂直和平行关系,并分析其特点和性质。

一、垂直关系当两个向量的数量积等于零时,它们被称为垂直向量。

具体地说,对于空间中的向量A和A来说:A⋅A=AAA cos A=0其中,A⋅A表示向量A和A的数量积,AAA表示向量A和A的叉积,A表示两个向量之间的夹角。

当A为90度时,cos A=0,表明向量A和A 垂直。

垂直向量的特点和性质如下:1. 垂直向量的数量积为零,即两个向量之间的夹角为90度。

2. 向量的数量积等于零并不意味着它们一定是垂直的,还需考虑向量的长度和方向。

3. 若两个向量垂直,则它们的叉积为非零向量。

4. 若两个向量平行,则它们的数量积为非零常数。

5. 若一个向量与另一个非零向量垂直,则它与另一个向量平行。

二、平行关系当两个向量的叉积为零时,它们被称为平行向量。

具体地说,对于空间中的向量A和A来说:AAA=AAA sin A=0其中,AAA表示向量A和A的代数长度,sin A表示两个向量之间的夹角的正弦值。

当sin A等于零时,表明向量A和A平行。

平行向量的特点和性质如下:1. 平行向量的叉积为零,即两个向量之间的夹角的正弦值为零。

2. 平行向量之间的数量积可能为非零常数,也可能为零。

3. 若两个向量平行,则它们的数量积为非零常数。

4. 若两个向量垂直,则它们的叉积为非零向量。

5. 若一个向量与另一个非零向量平行,则它与另一个向量垂直。

通过对空间向量的垂直和平行关系进行分析,我们可以得出以下结论:1. 垂直和平行是空间向量最基本的关系,它们之间存在着一定的对应性。

2. 垂直和平行关系可以通过向量的数量积和叉积进行判断。

3. 垂直和平行向量在解决实际问题中具有重要的应用价值,如物理力学中的受力分析和几何学中的平面垂直关系。

在实际问题中,我们常常需要确定向量之间的关系,特别是垂直和平行关系。

空间向量的平行与垂直定理

空间向量的平行与垂直定理

空间向量的平行与垂直定理空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

在研究物理、几何和力学等领域时,我们经常需要判断两个向量之间的关系,这个定理就为我们提供了一个有力的工具。

我们来研究两个向量的平行性。

如果两个向量的方向相同或相反,那么它们是平行的。

也就是说,如果向量A和向量B的方向相同或相反,我们可以写成A∥B。

这种平行关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于它们的模长的乘积,即A·B=|A||B|,那么向量A和向量B是平行的。

接下来,我们来研究两个向量的垂直性。

如果两个向量的数量积等于0,那么它们是垂直的。

也就是说,如果向量A和向量B的数量积为0,我们可以写成A⊥B。

这种垂直关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于0,即A·B=0,那么向量A和向量B是垂直的。

空间向量的平行与垂直定理在几何和物理问题中有广泛的应用。

例如,在平面几何中,我们经常需要判断两条线段的平行性或垂直性。

根据空间向量的平行与垂直定理,我们可以通过计算两个向量的数量积来判断它们之间的关系。

这样,我们就可以得到准确的结论,避免了繁琐的几何证明过程。

在物理学中,空间向量的平行与垂直定理也具有重要的应用价值。

例如,在力学中,我们经常需要计算物体受力的情况。

如果两个力的方向相同或相反,那么它们是平行的;如果两个力的数量积为0,那么它们是垂直的。

根据空间向量的平行与垂直定理,我们可以通过计算向量的数量积来判断力的方向和性质,从而进行精确的力学分析。

除了在几何和物理中的应用,空间向量的平行与垂直定理还可以应用于其他领域。

例如,在计算机图形学中,我们经常需要计算向量的平行和垂直关系,以确定图形的方向和位置。

在工程学中,空间向量的平行与垂直定理可以应用于结构分析和力学设计等方面。

空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

空间向量巧解平行、垂直关系

空间向量巧解平行、垂直关系

二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。

难点:用向量语言证明立体几何中有关平行和垂直关系的问题。

考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。

2. 如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。

【核心归纳】①一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。

②在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一确定的。

【随堂练习】已知A(1,1,0),B(1,0,1),C(0,1,1),则平面ABC的一个法向量的单位向量是()A. (1,1,1)B. (,333C.111(,,)333D. (333-思路分析:设出法向量坐标,列方程组求解。

答案:设平面ABC的一个法向量为n=(x,y,z),AB=(0,-1,1),BC=(-1,1,0),AC=(-1,0,1),则·0·0·0AB y zBC x yAC x z⎧=-+=⎪⎪=-+=⎨⎪=-+=⎪⎩nnn,∴x=y=z,又∵单位向量的模为1,故只有B正确。

技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下:(1)设出平面的法向量为n=(x,y,z)。

(2)找出(求出)平面内的两个不共线的向量a=(a1,b1,c1),b=(a2,b2,c2)。

(3)根据法向量的定义建立关于x,y,z的方程组·0·0.=⎧⎨=⎩n an b(4)解方程组,取其中的一个解,即得法向量。

【核心突破】①用向量法解决立体几何问题是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想。

②用空间向量解决立体几何问题的“三步曲”:例题1 (浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC 。

空间向量的垂直与平行解析几何的几何关系

空间向量的垂直与平行解析几何的几何关系

空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。

在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。

本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。

一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。

数学上可以表达为:两个向量的数量积等于零,则它们垂直。

设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。

垂直向量在几何上有许多重要的应用。

例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。

因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。

二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。

数学上可以表达为:两个向量之间存在倍数关系,则它们平行。

设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。

平行向量的性质可以应用于线段、直线和平面的平行关系的判断。

例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。

三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。

求直线L上与已知点A垂直的点B 的坐标。

解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。

高考数学《利用空间向量证明平行与垂直关系》复习

高考数学《利用空间向量证明平行与垂直关系》复习

(4)线面垂直
l a a=kμ a1=ka3,b1=kb3,c=kc3 .
(5)面面平行
v =kv a3=ka4,b3=kb4,c3=kc4.
(6)面面垂直
v ·v=0 a3a4+b3b4+c3c4=0.
解题技巧
利用空间向量证明平行与垂直的方法与步骤 (1) 坐标运算法:一般步骤:①建立空间直角坐标系,建系时, 要尽可能地利用载体中的垂直关系; ②建立空间图形与空间向量之间的关系,用向量表示出问题中所涉及的点、 直线、平面的要素; ③通过空间向量的运算研究平行、垂直关系; ④根据运算结果解释相关问题.
解题技巧
4.利用空间向量求点到平面距离的方法 如图,设 A 为平面 内的一点,B 为平面 外的一点,n 为平面 的法向量,
AB n
则 B 到平面 的距离 d=

n
1.如图,某圆锥 SO 的轴截面 SAC 是等边三角形,点 B 是底面圆周上的一点,且 BOC 60 ,
点 M 是 SA 的中点,则异面直线 AB 与 CM 所成角的余弦值是( )
(4)点到平面的距离的向量求法
如图,设 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,
AB n
则点 B 到平面 α 的距离 d=

n
2.模、夹角和距离公式
(1) 设 a=(a1,a2,a3 ),b=(b1,b2,b3 ) ,则 a = a·a a12a22a32 , b = b·b b12b22b32 ,
B.3
ห้องสมุดไป่ตู้
√C.4
D.6
由直棱柱的性质,知直线 A1B1 到平面 ABO 的距离为棱柱的高,不妨设为 t t 0 .以 O 为坐标原
点, OA,OB,OO1 所在的直线分别为 x, y, z 轴,建立如图所示的空间直角坐标系, 则 O(0,0,0), B(0,6,0), A1(2,0,t) , B1(0,6,t) ,则 D(1,3,t) .所以 A1B (2, 6, t),OD (1,3,t) 所以 A1B OD 2 18 t2 0 ,所以 t 4 ,故选 C.

用空间向量法证明平行垂直

用空间向量法证明平行垂直

用空间向量法证明平行垂直嘿,大家好,今天咱们来聊聊空间向量的那些事儿。

听起来挺学术的对吧?别担心,我们不打算用什么复杂的公式,把它变得像背唐诗那样枯燥。

相反,咱们就像在咖啡馆里聊八卦一样轻松,来一场有趣的向量之旅。

咱们得明白什么叫空间向量。

想象一下,你在一个立体的空间里,就像在三维游戏中走来走去。

空间向量就是从一个点指向另一个点的箭头,简单吧?有了这个概念,咱们可以开始讲平行和垂直这两个小伙伴的故事了。

平行就像是两条平行线,永远不相交,怎么走也不会碰上。

垂直呢,就是像个十字架,两条线碰面,形成个直角,嘿,这可是数学界的“老友记”。

现在,咱们说说平行。

要证明两个向量平行,简单得很。

只要它们的方向相同,或者说一个是另一个的倍数,这就够了。

比如说,你有一个向量 ( vec{a = (2, 4, 6) ),再给你一个向量 ( vec{b = (1, 2, 3) )。

哇,这不就是 ( vec{a = 2vec{b )吗?所以,它们平行,没跑!就像你跟你家狗子,走到哪儿都不离不弃,谁也不影响谁。

再来聊聊垂直。

要证明两个向量垂直,我们用到个小妙招:点积。

点积的计算就像是把两个向量的分量一一相乘,然后加起来。

嘿,只要点积等于零,这俩家伙就立马变成了“好兄弟”,结下不解之缘。

比如,咱们有向量 ( vec{c = (1, 2, 3) ) 和向量 ( vec{d = (3, 1, 0) )。

你算算它们的点积:( 1 times 3 + 2 times (1) + 3 times 0 = 3 2 + 0 = 1 )。

哎呀,这可不等于零啊,所以它们并不是垂直的,可能是“朋友”关系,没那么亲密。

咱们就得提一下空间向量的应用。

想象一下,你在操场上打篮球,向量就是你投篮的路径。

你想让投篮更精准,那就得找到平行和垂直的关系。

比如,平行的向量可以代表你的助攻,而垂直的向量则可以是防守的对手。

你得在这两者之间找到平衡,才能把球稳稳地投进篮筐。

专题08 利用空间向量证明平行、垂直(解析版)

专题08 利用空间向量证明平行、垂直(解析版)

2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学空间向量巧解平行、垂直关系编稿老师刘咏霞一校黄楠二校杨雪审核郑建彬一、考点突破知识点课标要求题型说明空间向量巧解平行、垂直关系1. 能够运用向量的坐标判断两个向量的平行或垂直。

2. 理解直线的方向向量与平面的法向量。

3. 能用向量方法解决线面、面面的垂直与平行问题,体会向量方法在立体几何中的作用。

选择题填空题解答题注意用向量方法解决平行和垂直问题中坐标系的建立以及法向量的求法。

二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。

难点:用向量语言证明立体几何中有关平行和垂直关系的问题。

考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。

2. 如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。

【核心归纳】① 一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。

② 在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的。

【随堂练习】已知A (1,1,0),B (1,0,1),C (0,1,1),则平面ABC 的一个法向量的单位向量是( )A. (1,1,1)B. C. 111(,,) 333D. (333- 思路分析:设出法向量坐标,列方程组求解。

答案:设平面ABC 的一个法向量为n =(x ,y ,z ),AB u u u r=(0,-1,1),BC uuu r =(-1,1,0),AC u u u r =(-1,0,1),则·0·0·0AB y z BC x y AC x z ⎧=-+=⎪⎪=-+=⎨⎪=-+=⎪⎩n n n u u u r u u u r u u ur ,∴x =y =z , 又∵单位向量的模为1,故只有B 正确。

技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下: (1)设出平面的法向量为n =(x ,y ,z )。

(2)找出(求出)平面内的两个不共线的向量a =(a 1,b 1,c 1),b =(a 2,b 2,c 2)。

(3)根据法向量的定义建立关于x ,y ,z 的方程组·0·0.=⎧⎨=⎩n a n b (4)解方程组,取其中的一个解,即得法向量。

考点二:用向量法证明空间中的平行关系、垂直关系【核心突破】①用向量法解决立体几何问题是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想。

②用空间向量解决立体几何问题的“三步曲”:建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题。

通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹角等问题。

把向量的运算结果“翻译”成相应的几何意义。

例题1(浙江改编)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC。

证明:PQ∥平面BCD。

思路分析:利用直线的方向向量和平面的法向量垂直证明线面平行。

答案:证明:如图,取BD的中点O,以O为原点,OD、OP所在射线为y、z轴的正半轴,建立空间直角坐标系O-xyz。

由题意知,A(02,2),B(020),D(02,0)。

设点C的坐标为(x0,y0,0)。

因为3AQ QC=u u u r u u u r,所以Q003231,,4442x y⎛⎫+⎪⎪⎝⎭。

因为M为AD的中点,故M(02,1),又P为BM的中点,故P10,0,2⎛⎫⎪⎝⎭,所以PQuuu r =00323,,044x y ⎛⎫+ ⎪ ⎪⎝⎭。

又平面BCD 的一个法向量为a =(0,0,1),故PQ uuu r ·a =0。

又PQ ⊄平面BCD ,所以PQ ∥平面BCD 。

技巧点拨:解决此类问题的依据是要根据线面平行的判定定理,可证直线的方向向量与平面内某一向量平行,也可证直线的方向向量与平面的法向量垂直。

例题2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点。

求证:AB 1⊥平面A 1BD 。

思路分析:证明线面垂直可以通过证明线与面的法向量平行来实现。

答案:证明:如图所示,取BC 的中点O ,连接AO ,因为△ABC 为正三角形,所以AO ⊥BC 。

∵在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,∴AO ⊥平面BCC 1B 1,取B 1C 1的中点O 1,以O 为原点,分别以OB uuu r ,1OO u u u u r ,OA u u ur 所在直线为x 轴,y 轴,z轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,23),A (0,0,3,B 1(1,2,0)。

1BA u u u r =(-1,23),BD u u u r=(-2,1,0)。

1u u u r AB =(1,2,3-) 设平面A 1BD 的法向量为n =(x ,y ,z ),因为n ⊥1BA u u u r ,n ⊥BD u u u r ,故10230200BA x y z x y BD ⎧⎧⋅=-++=⎪⎪⇒⎨⎨-+=⎪⋅=⎪⎩⎩n n u u u ru u u r, 令x =1,则y =2,z 3n =(1,23A 1BD 的一个法向量,而1AB u u u r =(1,23),所以1AB u u u r =n ,所以1AB u u r∥n ,故AB 1⊥平面A 1BD 。

技巧点拨:解决此类问题的依据是要根据线面垂直的判定定理,证明直线的方向向量与平面的法向量平行。

例题3 如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C 。

思路分析:建系写出坐标,分别求出两个平面的法向量,证明两个平面垂直。

答案:证明:由题意得AB ,BC ,B 1B 两两垂直,以B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12), 则1AA u u u r =(0,0,1),AC u u u r =(-2,2,0),1AC u u u u r =(-2,2,1),AE u u u r =(-2,0,12)。

设平面AA 1C 1C 的一个法向量为n 1=(x ,y ,z ),则11·0·0AA AC ⎧=⎪⎨=⎪⎩1n n u u u r u u u r⇒0220z x y =⎧⎨-+=⎩ 令x =1,得y =1,∴n 1=(1,1,0)。

设平面AEC 1的一个法向量为n 2=(x 0,y 0,z 0),则21·0·0AC AE ⎧=⎪⎨=⎪⎩2n n u u u u r u u u r ⇒000002201202x y z x z -++=⎧⎪⎨-+=⎪⎩令z 0=4,得x 0=1,y 0=-1。

∴n 2=(1,-1,4)。

∵n 1·n 2=1×1+1×(-1)+0×4=0, ∴n 1⊥n 2.∴平面AEC 1⊥平面AA 1C 1C 。

技巧点拨:利用空间向量证明面面垂直通常可以有两个途径,一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直。

向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系。

恰当建系或用基向量表示后,只须经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度。

利用向量解决立体几何中的探索性问题【满分训练】在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 的中点,棱BB 1上是否存在一点M ,使得D 1M ⊥平面EFB 1。

思路分析:设出点M 的坐标,利用线面垂直列方程组求解。

答案:建立如图所示的空间直角坐标系D -xyz ,设正方体的棱长为2,则E (2,1,0),F (1,2,0),D 1(0,0,2),B 1(2,2,2)。

设M (2,2,m ),则EF u u u r =(-1,1,0),1B E u u u r =(0,-1,-2),1D M u u u u u r =(2,2,m -2)。

∵D 1M ⊥平面EFB 1, ∴D 1M ⊥EF ,D 1M ⊥B 1E ,∴1D M u u u u u r ·EF u u u r=0且1D M u u u u u r ·1B E u u u r =0,于是22022(2)0m -+=⎧⎨---=⎩,∴m =1。

故取B 1B 的中点为M 就能满足D 1M ⊥平面EFB 1。

技巧点拨:对于“是否存在”型问题的探索方式有两种:一种是根据条件做出判断,再进一步论证。

另一种是利用空间向量,先设出假设存在的点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”。

(答题时间:40分钟)1. (东营高二检测)已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A. 4B. -4C. 5D. -52. (青岛高二检测)若AB u u u r =λCD uuu r +μCE u u u r ,则直线AB 与平面CDE 的位置关系是( )A. 相交B. 平行C. 在平面内D. 平行或在平面内3. 已知AB u u u r =(1,5,-2),BC uuu r =(3,1,z ),若AB u u u r ⊥BC uuu r ,BP u u u r =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B. 407,-157,4 C. 407,-2,4 D. 4,407,-154. (汕头模拟)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1。

(1)求证:E ,B ,F ,D 1四点共面; (2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1。

相关文档
最新文档