《复变函数与积分变换》试题及答案.

合集下载

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

() 2.因为|sin |1z ≤,所以在复平⾯上sin z 有界。

()3.若()f z 在0z 解析,则()()n f z 也在0z 解析。

() 4.对任意的z ,2Ln 2Ln z z =()⼆填空(每题3分)1.i 22i =-- , ia r g 22i =-- 。

2.ln(3i)-= , i i = 。

3.在映照2()24f z z z =+下,曲线C在iz =处的伸缩率是,旋转⾓是。

4.0z =是241e zz -的阶极点,241Re [,0]ze s z -=。

三解答题(每题7分)设2222()i()f z x axy by cx dxy y =++-++。

问常数,,,a b c d为何值时()f z 在复平⾯上处处解析?并求这时的导数。

求(1)-的所有三次⽅根。

3.2d Cz z其中C 是0z=到34i z =+的直线段。

4.||2e cos d z z z z=?。

(积分曲线指正向)5.||2d (1)(3)z zz z z =+-?。

(积分曲线指正向)6 将1()(1)(2)f z z z =--在1||2z <<上展开成罗朗级数。

7.求将单位圆内||1z <保形映照到单位圆内||1w <且满⾜1()02f =,1πarg ()22f '=的分式线性映照。

四解答题(1,2,3题各6分, 4题各9分)1.求0 0()e 0ktt f t t -设22()e e sin 6()t t f t t t t t δ-=+++, 求()f t 的拉⽒变换。

设221()(1)F s s s =+,求()F s 的逆变换。

4. 应⽤拉⽒变换求解微分⽅程23e (0)0, (0)1t'==? 复变函数与积分变换试题答案 1若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数与积分变换试题及答案

复变函数与积分变换试题及答案

南昌大学2008~2009学年第一学期期末考试试卷Q(z) f(z)=复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。

2.-8i 的三个单根分别为: , , 。

3.Ln z 在 的区域内连续。

4.z z f =)(的解极域为:。

5.xyi y x z f 2)(22+-=的导数=')(z f。

6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是:。

9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。

10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。

五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。

1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。

(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。

八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2.3-i2i3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110.⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π- 四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i,)1(1Re 221 (3分) z 1=0 z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换试题及解答

复变函数与积分变换试题及解答

复变函数与积分变换试题系别班级学号姓名得分评卷人-------------- 一、填空(每题3分,共24分)1.(上£1严的实部是 _______ ,虚部是________ ,辐角主值是______1-V3/2.满足lz + 21 + lz-2K5的点集所形成的平面图形为,该图形是否为区域—.3. 7(z)在福处可展成Taylor级数与/(%)在处解析是否等价? .4. (l + i)i的值为______________________________________________主值为.5.积分,的值为 _____________ ,f '—dz. = ________ .Juw z J izi=2 4)a--)"1 -L6.函数J (z)=——7"-3在Z =。

处Taylor展开式的收敛半径是 ______ .z-l7.设F [<(。

]=Z3), F 则F [/1(0*/2(r)]=,其中力⑺* /2(0定义为.8.函数/(外=任的有限孤立奇点z°=_,Z。

是何种类型的奇点? .Z得分评卷人二、(6分)设/仁)=/一丫3+2//〃问/仁)在何处可导?何处解析?并在可导处求出导数值.三、(8分)设i ,= eXsiny,求p 的值使P 为调和函数,并求出解析函数 f(z) = u + iv.四、(10分)将函数〃z) = "—在有限孤立奇点处展开为 2z~ — 3z+1Laurent 级数.得分评卷人 -------------- 五、计算下列各题(每小题6分,共24分)1. /(z) = f求/(1 + )J 图7 4-z2. 求出/(z) = eV 在所有孤立奇点处的留数3. L(f 32产(”。

)4. 尸——二~<公J 。

1 + sin- x六、(6分)求上半单位圆域{2:1[1<1,11]12>0}在映射卬=22下的象.七、(8分)求一映射’将半带形域-恭,<”,>。

复变函数与积分变换试题及答案9

复变函数与积分变换试题及答案9

∂u ∂v =x= ∂x ∂y
∴ u = xy + g ( x )
∂v ∂u =y= ∂y ∂x
∴ u = xy + c (3 分)
∴ u = xy + g ′( x )
∵ f (0) = u (0,0) + iv (0,0) = c = 0 ∴ f ( z ) = (−
(2 分)
x2 1 2 i + y )i + xy = − z 2 2 2 2
v = 3x 2 y − y 3
∂u ∂u ∂u ∂u = 3x 2 − 3 y 2 = , = −6 xy = − 且四个偏导连续 ∂x ∂y ∂y ∂x
∴f(z)在整个复平面上解析 ∴ f ′( z ) = 3x − 3 y + i 6 xy = 3 z
2 2
2
(4 分) (3 分)
2.解:∵ −
原式(4 分)= 2πi
∑ Re s ⎢ z ( z − i)
k =1
2
⎡ ⎣
1
3
⎤ , zk ⎥ ⎦
z1 = 0, z 2 = i
(3 分)= 2πi⎜ +
⎛1 ⎝i
1 2⎞ ⋅ ⎟ =0 2! i 3 ⎠
7
4.解:∵
1 1 1 = = z i + z −i z −i
1 1+ i z −i
=
1 ∞ 1 (−i) n ∑ z − i m=0 ( z − i) n
4.解: s 3 F ( s ) + 3s 2 F ( s ) + F ( s ) =
1 s
(4 分)
F (S ) =
1 1 1 1 = = ⋅ 2 3 s( s + 3s + 3s + 1) s ( s + 1) s ( s + 1) 3

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年级专业: 教学班号:
学号: 姓名:
装订线
课程名称:复变函数与积分变换考试时间:110_分钟
课程代码:7100031试卷总分:100_分
一、计算下列各题(本大题共3小题,每小题5分,总计15分)
1
; 2、; 3、'
|和它的主值
二、(8分)设
',函数
'■在•平面的哪些点可导?若可导,
求出在可导点的导数值。

三、(10分)证明为调和函数,并求出它的共轭调和函 数。

四、(25分,每小题各5分)计算下列积分:
的正向;
-de + sin 0
5.
五、(10分)将函数 gm 在下列圆环域内分别展开为洛朗级数
1.
2.
;・伫一
15界 ^: M=i
? ・
的正向;
3. ,■:
的正向; 4.
们;<:6山「:
的正向;
(1)
(2)
六、(10)1、求将上半平面lm(z>0映射到单位圆域,且满足
arg r(n =匸
■,的分式线性映射,。

I
U-1"=—-
2、平面的区域恥环犬-.被映射映射到’平面的什么区域?
「2 (f
f(t)--
七、(5分)求矩形脉冲函数〔° 曲我的傅氏变换。

八、(6分)求’1的拉普拉斯变换。

九、(5分)求的拉氏逆变换。

十、(6分)利用拉氏变换(其它方法不得分)求解微分方程:
一、参考答案及评分标准:(本大题共3小题,每小题5分,总计15分)
1、
* _ JT It &
(1 - = ]6[oos( ——) + /sin( ——)] - m + +
4 4
=16(QDS(-2JT)-F /SII M -2«))
=16 (2)
3 3、
2
1
四、参考答案及评分标准:(每小题 5分,共25分)
由柯西-黎曼方程得: '
即 '.所以’在 ’可导.
三、参考答案及评分标准:(10分)
v^= 2-3?十3穴二…欣空二= “
&x
J A 2 dy
得,
卩二
J(-6砂必=-3A y 十 g(y}
-
r
故 -?」;、’;J/'
二、参考答案及评分标准:( 8 分)
解: ■
异上F ,因为
dv ov
=乩——=
0,——=2y Ex
d 2u 沪 口
W C?j/
,所以
为调和函数.
证明:
P V (? u
由"M 得3A1 d g\y}= 2- ?A
2
2 四、参考答案及评分标准:(每小题5分,共25分)
3
1
1
5~
/ -1
-4 Sill 0
—+ - 4
4 2 iz
2? + 5J >-2
JZ
一心
2/1(2 d
3+2
4 .因为
-上在c 内无奇点,
所以:
cir = 0
r
/ -J6
(Z4 2fl(2z+ “
vsinZ? --- -------
2J >
4
2.
1
-------------------------------- S -------------
所以洛朗级数为
H m _送
JJ-0
所以洛朗级数为
原式- 六、参考答案及评分标准: 1解:将上半平面 内点• (每小题 5分,共10分)
lm (z>0映射到单位圆域 的变换为 为上半平面
,所以
-,故 ,
所以
解:边界1: ,
..= i =i "丄 “0
x 〉n ,
忑〔故 羔
K ;>= f ^df
V . -uj
解:
r (s}= Hr + 3sin(20■+ /cos Z] =
r 2] + 3i(sin 2/J + Zj/cos 小八 (2)
2 3x 2
=—十 -------------------------
$ S~ + 4 2 b
二—+ — ------
解:
设二也上一在方程的两边取 拉氏变换并考虑初始条件得:
,故
七、 Z
特殊点:
作图
参考答案及评分标准:(5分)
十、
参考答案及评分标准:(6分) 3+2
八、 参考答案及评分标准:(6分)
S 1 + 1
I - y (/ 4 1)? 九、 参考答案及评分标准: (5分)
解:
取逆变换得:。

相关文档
最新文档