机器人现场编程 川崎机器人坐标系的种类

合集下载

工业机器人的运行知识点:根据坐标系分类

工业机器人的运行知识点:根据坐标系分类

五、平面关节型工业机器人
平面关节型工业机器人又称 为SCARA工业机器人,是圆 柱坐标工业机器人的一种形式 。其轴线相互平行,在平面内 进行定位和定向;SCARA工 业机器人采用一个移动关节和 两个回转关节(即PRR),移 动关节实现上下运动,而两个 回转关节则控制前后、左右运 动。
五、平面关节型工业机器人
五、平面关节型工业机器人
如今SCARA工业机器人广泛应用于塑料工业、汽车工 业、电子产品工业、药品工业和食品工业等领域。它的主 要职能是拾取零件和装配。它的第一个轴和第二个轴具有 转动特性,第三个轴和第四个轴可以根据不同的工作需要 ,制造成相应的多种不同形态,并且一个具有转动、另一 个具有线性移动的特性。由于其具有特定的形状,决定了 其工作范围类似于一个扇形区域。
学习目标
1、掌握直角坐标型工业机器人的结构、特点及应用 2、掌握圆柱坐标型工业机器人的结构、特点及应用 3、掌握球坐标型工业机器人的结构、特点 4、掌握多关节型工业机器人的结构、特点 5、掌握平面关节型工业机器人的结构、特点及应用
一、直角坐标型工业机器人
直角坐标工 业机器人一般 做2~3个自由 度运动,运动 部分由三个相 互垂直的直线 移动(即PPP )组成,工作 空间图形为长 方形。
三、球坐标型工业机器人
球坐标型工业机器人又称 极坐标型工业机器人,其手 臂的运动由两个转动和一个 直线移动(即RRP,一个回转 ,一个俯仰和一个伸缩运动 )所组成,工作空间为一球 体,它可以作上下俯仰动作 并能抓取地面上或教低位置 的协调工件,其位置精度高 ,位置误差与臂长成正比。
四、多关节型工业机器人
多关节型工业机器人又称 回转坐标型工业机器人,这 种工业机器人的手臂与人一 体上肢类似,其前三个关节 是回转副(即RRR),该工 业机器人一般由立柱和大小 臂组成,立柱与大臂间形成 肩关节,大臂和小臂间形成 肘关节,可使大臂做回转运 动和俯仰摆动,小臂做仰俯 摆动。

机器人现场编程-川崎机器人示教-综合命令

机器人现场编程-川崎机器人示教-综合命令

机器人现场编程-川崎机器人示教-综合命令机器人现场编程川崎机器人示教综合命令在当今制造业的快速发展中,机器人的应用日益广泛。

机器人现场编程成为了实现机器人高效、精准作业的关键环节。

其中,川崎机器人以其出色的性能和灵活的编程方式备受青睐。

而川崎机器人示教中的综合命令更是为机器人的复杂操作提供了强大的支持。

川崎机器人的现场编程,是将我们的生产需求转化为机器人可执行的动作序列的过程。

这不仅需要对机器人的基本原理和结构有深入的理解,还需要掌握相应的编程技巧和工具。

在这个过程中,示教编程是一种常见且直观的方式。

所谓示教编程,就是操作人员通过手动引导机器人的动作,机器人会记录下这些动作的轨迹、速度、姿态等信息,然后将其转化为程序代码。

而综合命令则是在示教编程的基础上,进一步整合和优化各种操作指令,以实现更复杂、更高效的机器人作业。

综合命令的一个重要特点是它的集成性。

它将多个单一的指令组合在一起,形成一个功能更强大的复合指令。

比如,在进行物料搬运的任务中,可能需要机器人先移动到指定位置,抓取物料,然后再移动到另一个位置放下物料。

通过综合命令,可以将这一系列的动作整合为一个指令,大大简化了编程的过程,提高了编程的效率。

另一个显著的优点是综合命令的灵活性。

它可以根据不同的生产需求和工况进行定制和调整。

比如,在机器人的运动速度方面,可以通过综合命令设置不同的速度模式,以适应不同的作业要求。

在精度要求较高的场合,可以降低速度以提高精度;而在对效率要求较高的情况下,则可以适当提高速度。

在实际应用中,综合命令还具有良好的可重复性。

一旦编写好一个综合命令,只要生产条件和要求没有发生大的变化,就可以多次重复使用。

这不仅节省了编程的时间,还保证了机器人作业的一致性和稳定性。

为了更好地运用川崎机器人的综合命令进行现场编程,我们需要熟悉相关的编程软件和操作界面。

川崎机器人通常配备有专门的编程软件,其中包含了丰富的指令库和工具。

通过这些工具,我们可以方便地创建、编辑和调试综合命令。

机器人现场编程-川崎机器人AS系统与语言

机器人现场编程-川崎机器人AS系统与语言

机器人现场编程-川崎机器人AS系统与语言机器人现场编程川崎机器人 AS 系统与语言在当今高度自动化的工业生产领域,机器人的应用日益广泛。

机器人现场编程作为机器人应用中的关键环节,对于提高生产效率、保证产品质量具有重要意义。

川崎机器人以其出色的性能和先进的技术在行业中占据了一席之地,而其 AS 系统与语言则为机器人的编程操作提供了强大的支持。

川崎机器人的 AS 系统是一个功能强大、易于使用的编程平台。

它具有直观的用户界面,使得编程人员能够快速上手,即使是对于没有丰富编程经验的人员来说,也能在较短的时间内掌握基本的操作。

通过 AS 系统,编程人员可以对机器人的运动轨迹、动作顺序、速度等参数进行精确的设定,以满足不同生产任务的需求。

在 AS 系统中,川崎机器人所使用的编程语言具有清晰的语法结构和丰富的指令集。

这种编程语言类似于常见的高级编程语言,如 C++或 Python,但又针对机器人控制的特点进行了优化和简化。

编程人员可以通过编写代码来实现各种复杂的机器人动作,例如直线运动、圆弧运动、关节运动等。

同时,还可以设置机器人的等待时间、输入输出信号的处理等,以实现与外部设备的协同工作。

为了更好地理解川崎机器人 AS 系统与语言的编程过程,我们以一个简单的搬运任务为例。

假设需要机器人将一个工件从 A 点搬运到 B点,首先,编程人员需要使用 AS 系统中的指令来定义机器人的起始位置和目标位置。

然后,通过设置运动速度和加速度等参数,确保机器人能够平稳、快速地完成搬运动作。

在这个过程中,还需要考虑机器人与周围环境的碰撞检测以及与其他设备的通信交互。

在实际的编程中,编程人员还需要充分考虑机器人的工作空间、负载能力以及精度要求等因素。

川崎机器人的 AS 系统提供了丰富的工具和功能,帮助编程人员进行这些参数的分析和优化。

例如,通过模拟功能,编程人员可以在虚拟环境中对编写的程序进行测试和验证,提前发现可能存在的问题并进行调整,从而减少在实际生产中的错误和停机时间。

工业机器人的五个坐标系

工业机器人的五个坐标系

工业的五个坐标系1、的五个坐标系简介1.1 世界坐标系1.1.1 世界坐标系的定义1.1.2 世界坐标系的用途1.2 基座坐标系1.2.1 基座坐标系的定义1.2.2 基座坐标系的位置和转动 1.3 动作坐标系1.3.1 动作坐标系的定义1.3.2 动作坐标系的实时控制 1.4 工具坐标系1.4.1 工具坐标系的定义1.4.2 工具坐标系的设置和校准 1.5 关节坐标系1.5.1 关节坐标系的定义1.5.2 关节坐标系的运动控制2、世界坐标系2.1 定义2.1.1 世界坐标系是一个绝对坐标系,用来描述相对于整个工作空间的位置和姿态。

2.1.2 通常选择工作空间中的一个固定点作为世界坐标系原点,并确定一个基准方向作为坐标系的方向。

2.2 用途2.2.1 世界坐标系用于确定在工作空间中的位置和姿态,以及与其他物体的相对位置关系。

3、基座坐标系3.1 定义3.1.1 基座坐标系是基座的参考坐标系,用来描述基座的位置和转动。

3.1.2 基座坐标系通常与世界坐标系相重叠,并通过一个坐标变换矩阵来描述相对关系。

3.2 位置和转动3.2.1 基座坐标系的位置由基座的中心点确定,通常使用三个坐标表示位置。

3.2.2 基座坐标系的转动由基座上的旋转关节控制,通常用欧拉角或四元数表示。

4、动作坐标系4.1 定义4.1.1 动作坐标系是末端执行器的参考坐标系,用来描述末端执行器的位置和姿态。

4.1.2 动作坐标系可以通过运动学模型和传感器数据获得。

4.2 实时控制4.2.1 动作坐标系可以根据任务要求进行调整,以实现精确的位置和姿态控制。

4.2.2 通常使用逆运动学算法来计算关节的运动轨迹。

5、工具坐标系5.1 定义5.1.1 工具坐标系是末端工具的参考坐标系,用来描述工具的位置和姿态。

5.1.2 工具坐标系可以通过工具的几何特性和附加传感器数据获得。

5.2 设置和校准5.2.1 工具坐标系的设置通常通过用户输入的参数进行,如工具的几何形状和相对位置。

机器人现场编程-川崎机器人示教-综合命令

机器人现场编程-川崎机器人示教-综合命令
川崎工业机器人示教
综合命令
一 、综合命令示教
一 、综合命令示教
• 综合命令示教(又称一体化示教)编程,程序由“综合命令”来编辑。
程序行
命令要素显示行
命令要素参数 显示行
二、 综合命令的要素
• 综合命令由在机器人的各应用领域(焊接、 搬运等应用)需要的命令要素组成。
二、 综合命令组成要素参数的设定-插补
• 插补是工业机器人运动方式的控制指令;
• 设定插补类型的方法:A+插补
二 、综合命令组成要素参数的设定-速度
• 速度参数用以设定从前一步到当前步骤运动过程需运动速度等级;
• 按示教器“A+速度”键显示如下画面。按数字键,输入速度编号(0-9), 按 ↵ 确定输入的编号。
二 、综合命令组成要素参数的设定-精度
• 精度参数用以设定在当前步骤中需要的,到达示教点轴一致状态的精度值;
• 按示教器“A+精度”键显示如下的画面。用数字键,输入精度编号(04),按 ↵ 确定输入的精度编号。
二、综合命令组成要素参数的设定-计时
• 计时参数用以设定在当前步骤示教点轴一致后要等待的时间;
• 按示教器“A+计时”键显示如下的画面。按数字键,输入记时器编号(09),按 ↵ 确定输入的计时编号。
二 、综合命令组成要素参数的设定-夹紧
• 夹紧参数用“A+夹紧1”键,在参数显示行夹紧参数值显示区域的显示变化 过程为:夹紧命令编号1→无显示→夹紧命令编号1。
三、 课程预告
• 工业机器人综合命令-运动插补指令。

解密:工业机器人四大坐标系,小白可以进来学习

解密:工业机器人四大坐标系,小白可以进来学习

解密:工业机器人四大坐标系,小白可以进来学习
机器人坐标系的种类
定义:机器人分为机器人本体轴和外部轴。

外部轴又分为滑台和上位机等。

如无特别说明,机器人轴即指机器人本体的运动轴。

对机器人进行轴操作时,可以使用以下几种坐标系(各牌子机器人叫法不一致):
一、关节坐标系
机器人各轴进行单独动作,称关节坐标系。

二.直角坐标系
直角坐标系的原点定义在机器人轴轴线上,是与2轴所在水平面的交点。

直角坐标系的方向规定:X轴方向向前,Z轴方向向上,Y轴根据右手定则确定。

不管机器人处于什么位置,均可沿设定的X 轴、Y 轴、Z 轴平行移动。

三.工具坐标系
工具坐标系把机器人腕部法兰盘所持工具的有效方向作为Z 轴,并把坐标定义在工具的尖端点。

四.用户坐标系
在机器人动作允许范围内的任意位置,设定任意角度的X、Y、Z 轴,用户坐标系一般定义在工件,方向由用户自己定义.
以下是用户坐标的使用范例。

机器人中常用的五种坐标系,你都了解吗?

机器人中常用的五种坐标系,你都了解吗?

机器人中常用的五种坐标系,你都了解吗?
坐标系是为确定机器人的位置和姿态而在机器人或空间上进行定义的位置指标系统。

坐标系分为关节坐标系和直角坐标系。

3. 世界坐标系
世界坐标系是被固定在空间上的标准直角坐标系,其被固定在由机器人事先确定的位置。

用户坐标系是基于该坐标系而设定的。

它用于位置数据的示教和执行。

有关各机器人(R系列/M系列/ARC Mate/LR Mate)的世界坐标系原点位置的大致标准为:
① 顶吊安装机器人、M-710iC以外:在J1轴上水平移动J2轴而交叉的位置。

②顶吊安装机器人、M-710iC:J1轴处于0位时,离开J4轴最近的J1轴上的点。

4. 工具坐标系
这是用来定义工具中心点(TCP)的位置和工具姿态的坐标系。

工具坐标系必须事先进行设定。

在没有定义的时候,将由默认工具坐标系来替代该坐标系。

5. 用户坐标系
这是用户对每个作业空间进行定义的直角坐标系。

它用于位置寄存器的示教和执行、位置补偿指令的执行等。

在没
有定义的时候,将由世界坐标系来替代该坐标系。

工业机器人坐标系的分类及应用

工业机器人坐标系的分类及应用

工业机器人坐标系的分类及应用
在现代工业生产中,工业机器人已经成为了不可或缺的一部分。

主要关于工业机器人的坐标系,一般可以分为直角坐标系、联机坐标系、圆柱坐标系、极坐标
系和人手坐标系等五种。

它们的应用也各有侧重,满足了不同类型的工业生产需求。

首先,直角坐标系型机器人,其结构简单,控制方便,这也是现在应用最广泛的一种类型。

由于其运动轨迹容易设定,因此在汽车、电子产品装配线等需要精
细作业的领域应用广泛。

其次,联机坐标系机器人。

它的前后臂可以自由度的配合配合,实现复杂的空间运动,因此适用于搬运、装配、喷涂、焊接等操作。

在一些需要较高运动精度的领域,如汽车装配等,也有很好的应用前景。

再次,圆柱坐标系机器人,其工作距离比较大,适合于机械加工、装配、搬运等操作。

尤其是在一些有限空间中进行长距离搬运作业,它的优势就体现出来了。

接下来,极坐标系机器人。

它的结构复杂,运动灵活,常用于工件搬运、装配、喷涂等多变的生产环境。

同时,由于其具有较长的工作距离,因此在港口吊装、机械加工等领域也有着广泛的应用。

最后,人手坐标系机器人,这种机器人的结构最接近人手,具有较高的灵活性和适应性,能适应复杂的作业环境。

一般应用于精细装配、卸载等操作。

同时,
在外科手术、矿山探险等特殊应用环境中,也占据了独特的地位。

总的来说,五种坐标系的工业机器人都有自己的特色和应用场景。

在实际工作中,根据需要选择合适的机器人类型,能够极大地提高工作效率,降低人力成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、川崎机器人坐标系-BASE
BASE坐标系基础坐标系建立在第一关节NT,当工具为空时,控制点为
第六轴端面中心点,即空工具中心点)的平
移或转动。
二、川崎机器人坐标系-TOOL
工具坐标系建立在安装于第六关节工具处。
川崎机器人坐标系的种类
一、川崎机器人的坐标系的种类
JOINT(关节(各轴)坐标系)
BASE(基坐标系坐标系) TOOL (工具坐标系)
二、川崎机器人的坐标系-JOINT
机器人的所有关节所构成的坐标系即
为关节坐标系。 通过调节关节坐标系各轴旋转角度 以及速度,可以确定末端夹持工件的位 姿和速度。
机器人的位姿发生变化,其工具坐标系也 发生变化,如右图所示。
二、川崎机器人坐标系-TOOL
TOOL坐标系各轴正方向的定义: Z 轴垂直于夹具法兰端面,方 向向外;
X 轴沿夹具的开口方向;
X Y
Z
Y 轴右手螺旋定则确定。
相关文档
最新文档