第5章-蛋白质结构解析

合集下载

第5章-蛋白质的三维结构

第5章-蛋白质的三维结构


第5章 蛋白质的三维结构

比较稳定的环状结构
主要存在于球状蛋白分子中 多数处在蛋白质分子的表面
第5章 蛋白质的三维结构

脯氨酸和甘氨酸在β-转角中出现的频率较高。 脯氨酸的亚胺氮形成的肽键有顺反异构体,统计表 明大约6%为顺式构型,多半出现在β-转角中。 非脯氨酸参与形成的肽键中99.95%是反式构型。



第5章 蛋白质的三维结构
α螺旋也称3.613-螺旋
Pitch height 0.54 nm
第5章 蛋白质的三维结构

影响α-螺旋形成的因素:
第5章 蛋白质的三维结构
α-螺旋是一种稳定的二级结构,因为螺旋内的所有肽键均参与 形成链内氢键,以下几种因素可能破坏α-螺旋:

⑴相邻带有相同电荷的氨基酸残基之间的强静电斥力。如:Lys、 Asp、Glu; ⑵相邻的大的侧链基团之间的空间阻碍。如Val、Ile、Thr; ⑶脯氨酸(Pro),由于其具有环状结构,形成的肽键不能作为氢 键供体,是α-螺旋构象最大破坏者; ⑷ 甘氨酸(Gly),由于其侧链基团是H原子,不能象其他侧链基 团那样制约二面角,也可能成为α-螺旋的不稳定因素。


第5章 蛋白质的三维结构
② -折叠 -pleated sheet:
第5章 蛋白质的三维结构
反平行β-折叠片
Antiparallel -sheet

β-折叠是另一种重复性二级结构单元。
相邻的β-折叠的多肽链(平行或反平行)形成了
β-折叠片。

β-折叠片中相邻肽链的肽键之间形成的氢键垂直

第5章 蛋白质的三维结构
2、蛋白质的二级结构
蛋白质的二级结构(Secondary structure) 是指蛋白质多肽链主链原子局部的空间 结构,但不包括与其他肽段的相互关系 及侧链构象的内容。 二级结构主要由蛋白质折叠产生的氢键 来维系。

第5章蛋白质化学-蛋白质的三维结构ppt课件

第5章蛋白质化学-蛋白质的三维结构ppt课件
二个或二个以上具有独立的三级结构的多肽 链(亚基),彼此借次级键相连,形成一定的空间结 构,称为四级结构。
具有独立三级结构的多肽链单位,称为亚基 或亚单位(subunit),亚基可以相同,亦可以不同。 四级结构的实质是亚基在空间排列的方式。
(二)亚基的缔合
血红蛋白(Hb)是四个亚基缔合而成,聚合动力:疏 水作用(主要),二硫键,离子键,氢键等。
纤维状蛋白质是结构蛋白,含大量的α-螺旋, β-折叠片,整个分子呈纤维状,广泛分布于脊椎和 无脊椎动物体内,起支架和保护作用。角蛋白来 源于外胚层细胞,包括皮肤以及皮肤的衍生物:发, 毛,鳞,羽,翮,甲,蹄,角,爪,啄等.角蛋白可分为α-角 蛋白和β- 角蛋白。
α-角蛋白,如毛发中主要蛋白质。β-角蛋白, 如丝心蛋白。
结构域间的裂缝,常是酶的活性部位,也是反应物的 出入口
三、蛋白质三级结构
(一).三级结构的特点 (二). 肌红蛋白(Mb)的构象 (三). 一级结构与三级结构的关系 (四).维持三级结构的作用力
(一)三级结构的特点
一条多肽链中所有原子在三维空间的整 体排 布,称为三级结构,是包括主、侧链在内的空间 排列。大多数蛋白质的三级结构为 球状或近似球 状。在三级结构中,大多数的亲水的R侧基分布 于球形结构的表面,而疏水的R侧基分布于球形 结构的内部,形成疏水的核心。
三级结构形成后,生物学活性必需基团靠近,形成活 性中心或部位,即蛋白质分子表面形成了某些发挥生物学 功能的特定区域。
(三) 一 级 结 构 与 三 级 结 构 的 关 系
四、寡聚蛋白的四级结构
(一)寡聚蛋白的概念 (二)亚基的聚合 (三)亚基的空间排布 (四)血红蛋白(Hb)的构象
(一) 寡聚蛋白的概念
主要的化学键 包括:疏水键、 离子键、氢键 和 范德华力等。

食品化学05第五章 蛋白质详解

食品化学05第五章 蛋白质详解
3. 蛋白质的分类 The classification of protein
按蛋白质的溶 解度分----考 虑蛋白质的营 养特性时采用
清蛋白(溶于水、稀盐、稀酸、稀碱) 球蛋白(不溶于水、溶于稀盐、稀酸、稀碱) 谷蛋白(不溶于水、盐、溶于稀酸、稀碱) 醇溶蛋白(溶于70-80%乙醇、稀酸、稀碱)
6
2
一. 概述 Introduction
2. 蛋白质的元素组成The elements of protein
C:50-55% H:6-7% O:20-23% S:0-4% N:12-19% 微量元素:P、Fe、Zn、Cu、I 等。
蛋白质完全水解的产物是a-氨基酸,它的侧链结构和性质
各不相同,大多数蛋白质由20种不同的氨基酸组成。蛋白质分
11
二 氨基酸的一般性质
当G两e性n离e子r被al酸P滴r定operties当o两f 性A离m子i被n碱o滴A定c时id,s—
时, —COO-基变成去质

NH3+基变成去质子化,当—
3子酸化碱,性当—质COO-和—
NH3+ 和—NH2浓度相等时
COOH的浓度相等时的 氨pH基被酸称的为等pK电a1点((即p解I 离of amino
3. 蛋白质的分类 The classification of protein
按分子形状 分----考虑蛋 白质的质构 特点时采用
球蛋白:以球状或椭圆状态才能在的 蛋白质,这些形状是由多肽链自身折 叠而造成的。
纤维状蛋白:棒状分子,他们含有相 互缠绕的多肽链。
5
一. 概述 Introduction
Lys,Arg,His
带负电荷侧链氨基酸: Asp,Glu
9
二 氨基酸的一般性质 General Properties of Amino Acids

最新考研生化第5、6章 蛋白质的空间结构PPT课件

最新考研生化第5、6章  蛋白质的空间结构PPT课件

5、念珠菌性阴道炎(霉菌性阴道炎):
外阴阴道假丝酵母菌病:传染途径:主要为内源性感染,也
可通过直接传染,间接传染(口腔、肠道、阴道),长期应用抗生 素,改变了阴道内的微生物之间的相互制约关系,使念珠菌得以繁 殖而引起感染等。临床表现:外阴瘙痒、灼痛、尿频、尿痛、性交 痛、白带呈白色豆渣样,有的还有糜烂面及溃疡。相关检查:常规 妇检,查明病因化验:分泌物常规、念珠菌培养、BV、衣原体、 支原体培养等。治疗:消除诱因,药物治疗(根据化验结果对症用 药,消炎)全身用药,局部用药结合物理治疗。
d、无规卷曲(random coil)
3
• 肽链内形成氢键,氢键的取向几乎与轴
平行,第一个氨基酸残基的酰胺基团的
-CO基与第四个氨基酸残基酰胺基团的-
NH基形成氢键。
7
• 蛋白质分子多为右手-螺旋。
• -折叠结构的氢键主 要是由两条肽链之间 形成的;也可以在同 一肽链的不同部分之 间形成。几乎所有肽 键都参与链内氢键的 交联,氢键与链的长 轴接近垂直。
6、细菌性阴道病(BV):
病因:BV是一种混合性细菌感染,主要有加德纳氏菌,各种
厌氧菌、及支原体引起的混合感染。临床表现:阴道分泌物增多、
有臭味、外阴瘙痒、烧灼感等。相关检查:常规妇检,查明病因化
验:分泌物常规、BV、衣原体、支原体培养、B超等。治疗:对症
治疗,改变阴道内环境,提高疗效,药物治疗(根据化验结果对症
-折叠有两种类型。一种为平行式,即所有肽链的N-端
都在同一边。另一种为反平行式,即相邻两条肽链的方
向相反。
8
• 在-转角部分,由四个氨基酸残基组成;
• 弯曲处的第一个氨基酸残基的 -C=O 和第四个残基的 –N-H 之间形成氢键,形成一个不很稳定的环状结构。

生物化学 第5章 蛋白质结构与功能

生物化学 第5章 蛋白质结构与功能

第五章蛋白质结构和功能的关系一、、肌红蛋白的结构与功能:1、肌红蛋白的三级结构哺乳动物肌肉中储氧的蛋白质。

由一条多肽链(珠蛋白,153个aa残基)和一个血红素辅基组成。

亚铁离子形成六个配位健,四个与N原子,一个与组氨酸,一个与氧配位。

球状分子,单结构域。

8段直的α-螺旋组成,分别命名为A、B、C…H,拐弯处是由1~8个氨基酸组成的松散肽段(无规卷曲)。

4个Pro残基各自处在一个拐弯处,另外4个是Ser、Thr、Asn、Ile。

血红素辅基血红素辅基,扁平状,结合在肌红蛋白表面的一个洞穴内。

CO 中毒CO 与肌红蛋白有更高的亲和性2、肌红蛋白的氧合曲线OMb 解离平衡常数:][]][[22MbO K =][2PO Mb K ∙=][2MbO 氧饱和度:[]2MbO Y =][][2Mb MbO +PO 2Y =2PO K +Y=0.5时,肌红蛋白的一半被饱和,PO 2=K =P 50=2.8t torr(托)解离常数K 也称为P 50,即肌红蛋白一半被饱和时的氧压。

3、Hill 曲线和Hill 系数YY K PO YK PO Y log log 1log 122-=-=-Hill曲线Log[Y/(1-Y)]=0时的斜率称Hill 系数(n H )肌红蛋白的n H =1二血红蛋白的结构与功能蛋白的结构与功能1、血红蛋白的结构:成人成人:HbA:α2β298%,a亚基(141),β亚基(146)HbA2:α2δ22%胎儿:HbFα2γ2早期胚胎:α2ε2▲接近于球体,4个亚基分别在四面体的四个角上,每个亚基上有一个血红素辅基。

▲α、β链的三级结构与肌红蛋白的很相似,一级结构具有同源性。

氧合造成盐桥断裂42、血红蛋白的氧合曲线四个亚基之间具有正协同效应因此它的氧合曲四个亚基之间具有正协同效应,因此,它的氧合曲线是S 型曲线。

Hill 曲线和Hill 系数。

协同效应可增加血红蛋白在肌肉中的卸氧量,使它能有效地输送氧气。

第五章-核磁共振方法解析蛋白质结构

第五章-核磁共振方法解析蛋白质结构

核磁共振的原理
• 自旋量子数(I)
原子序数和原子质量都为偶数:I=0(12C,
16O)
原子序数为奇数,原子质量为偶数: I=整数(14N, 2H, 10B)
原子质量为奇数: I=半整数(1H,
13C, 15N, 31P)
• 自旋状态(M)
M =I,(I-1),(I-2),…,-I
对于1H,
13C, 15N, 31P
2.
3.
耦合常数
• 自旋耦合
共价键(1-4个键)相连核之间的特性张量的相互作用
1
H
C
1
H
1
H
13
three-bond one-bond
• 自旋裂分
由于被测核与相邻核自旋耦合引起的谱线裂分, 裂分的 大小称为耦合常数 bb S ba S I aa
J (Hz)
I
ab
I
S
• • • • •
耦合常数不随磁场的变化而变化 两核耦合引起对方谱线裂分的大小相等 相距越远、所隔键数越多,耦合越弱 重原子比轻原子耦合强 耦合常数的大小与耦合核的二面角有关
核磁共振谱仪的组成
•Magnet
•Probe
•Console •Computer
对磁体的要求
• 高磁场强度
• 高稳定性
• 高均匀性
高磁场强度:高分辨率高灵敏度
• 信噪比的完全方程
Oestradiol-acetate
900 MHz
1450
1400
1350
1300
1250
1200
1150
1100
• • • • • •
NOE—5Å 化学位移—二级结构 偶极常数—二面角 氢氘交换—氢键 顺磁驰豫增强(PRE)—远距离(30Å) 残余偶极耦合(RDC)—空间定向

5第五章 蛋白质的三维结构

5第五章  蛋白质的三维结构

第5章蛋白质的三维结构§1.8 蛋白质的三维结构蛋白质三维结构由氨基酸序列决定,且符合热力学能量最低要求,与溶剂和环境有关。

①主链基团之间形成氢键。

②暴露在溶剂中(水)的疏水基团最少。

③多肽链与环境水(必须水)形成氢键。

(一)研究蛋白质构象的方法(1)X-射线衍射法:是目前最明确揭示蛋白质大多数原子空间位置的方法,为研究蛋白质三维结构最主要的方法。

步骤为:蛋白质分离、提纯→单晶培养→晶体学初步鉴定→衍生数据收集→结晶解析→结构精修→结构表达。

(2)其他方法:NMR、紫外差光谱、荧光和荧光偏振、圆二色性、二维结晶三维重构。

(二)稳定蛋白质三维结构的作用力(1)弱相互作用(或称非共价键,或次级键)1. 氢键2. 疏水作用(熵效应)3. 范德华力4. 离子键(盐键)(2)共价二硫键(三)酰胺平面和二面角(1)酰胺平面(肽平面):肽键上的四个原子和相连的Cα1和Cα2所在的平面。

(2)两面角:每个氨基酸有三个键参与多肽主链,一个肽键具有双键性质不易旋转,另两个键一个为Cα1与羰基形成的单键,可自由旋转,角度称为ψ,另一个为NH与Cα2形成的单键也可自由旋转,角度称为φ,ψ和φ称为二面角或构象角,原则上可取-1800~+1800之间任意值(实际受立体化学和热力学因素所限制),肽链构象可用两面角ψ和φ来描述,由ψ和φ值可确定多肽主链构象。

(四)二级结构多肽链折叠的规则方式,是能量平衡和熵效应的结果。

主链折叠由氢键维持(主要),疏水基团在分子内,亲水基团在分子表面。

常见的二级结构元件:α-螺旋,β-折叠片,β-转角和无规卷曲。

(1)α-helix:蛋白质含量最丰富的二级结构。

肽链主链围绕中心轴盘绕成螺旋状紧密卷曲的棒状结构,称为α-螺旋。

1.两面角ψ和φ分别在-570和-470附近(φ:从Cα向N看,顺时针旋转为正,逆时针为负;ψ:从Cα向羰基看,顺时针为正,逆时针为负。

)2.每圈螺旋含约3.6个氨基酸残基,由H键封闭的环中原子数为13,此种α-螺旋又称3.613-螺旋,每周螺距为0.54nm,R基均在螺旋外侧。

生物化学(第三版) 第五章 蛋白质的三维结构课后习题详细解答 复习重点

生物化学(第三版) 第五章  蛋白质的三维结构课后习题详细解答 复习重点

第五章蛋白质的三维结构提要每一种蛋白质至少都有一种构像在生理条件下是稳定的,并具有生物活性,这种构像称为蛋白质的天然构像。

研究蛋白质构像的主要方法是X射线晶体结构分析。

此外紫外差光谱、荧光和荧光偏振、圆二色性、核磁共振和重氢交换等被用于研究溶液中的蛋白质构像。

稳定蛋白质构像的作用有氢键、范德华力、疏水相互作用和离子键。

此外二硫键在稳定某些蛋白质的构像种也起重要作用。

多肽链折叠成特定的构像受到空间上的许多限制。

就其主链而言,由于肽链是由多个相邻的肽平面构成的,主链上只有α-碳的二平面角Φ和Ψ能自由旋转,但也受到很大限制。

某些Φ和Ψ值是立体化学所允许的,其他值则不被允许。

并因此提出了拉氏构像,它表明蛋白质主链构象在图上所占的位置是很有限的(7.7%-20.3%)。

蛋白质主链的折叠形成由氢键维系的重复性结构称为二级结构。

最常见的二级结构元件有α螺旋、β转角等。

α螺旋是蛋白质中最典型、含量最丰富的二级结构。

α螺旋结构中每个肽平面上的羰氧和酰氨氢都参与氢键的形成,因此这种构象是相当稳定的。

氢键大体上与螺旋轴平行,每圈螺旋占3.6个氨基酸残基,每个残基绕轴旋转100°,螺距为0.54nm。

α-角蛋白是毛、发、甲、蹄中的纤维状蛋白质,它几乎完全由α螺旋构成的多肽链构成。

β折叠片中肽链主链处于较伸展的曲折(锯齿)形式,肽链之间或一条肽链的肽段之间借助氢键彼此连接成片状结构,故称为β折叠片,每条肽链或肽段称为β折叠股或β股。

肽链的走向可以有平行和反平行两种形式。

平行折叠片构象的伸展程度略小于反平行折叠片,它们的重复周期分别为0.65nm和0.70nm。

大多数β折叠股和β折叠片都有右手扭曲的倾向,以缓解侧链之间的空间应力(steric strain)。

蚕丝心蛋白几乎完全由扭曲的反平行β折叠片构成。

胶原蛋白是动物结缔组织中最丰富的结构蛋白,有若干原胶原分子组成。

原胶原是一种右手超螺旋结构,称三股螺旋。

弹性蛋白是结缔组织中另一主要的结构蛋白质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)批量结晶法(Batch crystallization)
通过在待测结晶蛋白质溶液的体积、浓度 和组成固定的条件下,直接将不同量的饱 和沉淀剂加入未饱和的蛋白质溶液以产生 一个浓度梯度而使蛋白质在不同的过饱和 溶液中结晶。
人类第一张X光照片
图片出处:
伦琴妻子之手
1896年1月23日伦 琴将这一重大发现在维 尔兹堡物理医学会上报 告。Kolliker教授提议 将该射线命名为“伦琴 射线”,但伦琴却说: “我还没有彻底解释这 种射线的发生现象,还 是称它为X射线最恰 当。”
威廉·康拉德·伦琴 Wilhelm Conrad Röntgen
A
一般由高速电子撞击金属产生。如图所示,是一种产生X 射线的真空管,K是发射电子的热阴极,A是由钼、钨或 铜等金属制成的阳极。两极之间加有数万伏特的高电压, 使电子流加速,向阳极A撞击而产生X射线。
X射线衍射
1912年Max von Laue发现X射线具有衍 射的现象。(1914年的诺贝尔物理学奖)
1901年第一届诺贝尔物理学奖评选时, 29封推荐信中就有17封集中推荐他。伦 琴最终获得了第一次诺贝尔物理学奖金
图片出处
诺贝尔物理奖奖章
X射线本质
X射线是一种短波长(0.005~10nm)、 高能量(2.5×105 ~1.2×102eV)的电磁波。 它是原子内层电子在高速运动电子流冲 击下,产生跃迁而发射的电磁辐射。
图片出处:
图片出处:
肌红蛋白的三维结构模型
图片出处: http:// archive/Kendrew62.html
肌红蛋白的三维结构
图片出处:
1959年佩鲁茨 (Perute)完成血 红蛋白0.55分辨 率的晶体结构
图片出处: (1962)
图片出处
血红蛋白的四级结构 模型
血红蛋白分子就是由二个由141个氨基酸残基组成的α亚基和二个由146个氨基酸 残基组成的β亚基按特定的接触和排列组成的一个球状蛋白质分子,每个亚基中 各有一个含亚铁离子的血红素辅基。四个亚基间靠氢键和八个盐键维系着血红蛋 白分子严密的空间构象。
衍射图形能给出样品内部结构的许多资料,如原子间的 距离、键角,分子的立体结构、绝对构型、原子和分子 的堆积、有序或无序的排列等。
X射线通过红宝石晶体(a)和硅单晶体(b)所拍摄的劳厄斑
图片出处:
因在用X射线研究晶体结构方面所作出的杰出贡 献 ,亨利·布拉格(William Henry Bragg)和劳伦 斯·布拉格(William Lawrence Bragg)父子分享了 1915年的诺贝尔物理学奖。
由于测定出蛋白质的精细结构,两位英国科 学家M.F.佩鲁茨和J.C.肯德鲁获得1962年的诺 贝尔化学奖。
图片出处:
1997年,核小体八组蛋白结构
2004年,菠菜捕光复合物LHC-II
2005年,线粒体膜蛋白复合物2精细结构
X射线衍射测定蛋白和核酸精细结构,为新药设计提供了全新方向
中国科学家研制抗癌新药首获瑞典爱明诺夫奖
蛋白质结晶原理
与小分子结晶一样,蛋白质在溶液中处于 过饱和状态时,分子间可以规则的方式堆 积起来形成晶体析出
蛋白质晶体生长的影响因素
物理因素:温度、重力、压力、震动、时间、电场磁场、 介质的电解质性质和粘度、均相或非均相成核等
化学因素:pH值、沉淀剂类型和浓度、添加剂、离子种 类、离子强度、过饱和度、氧化还原环境、蛋白质浓度等
技术和计算机模拟
蛋白质三维结构解析过程
第一节 X-射线衍射测定蛋白质结构
1895年11月8日 ,德国物 理学家,50岁的伦琴在 自己的实验室中偶然发 现 一种从阴极射线管
中辐射出的新型射线, 由于对管子发出的“东 西”性质不确定,伦琴 就把这种射线命名为 “X射线” 。
图片出处:
伦琴实验室
图片出处:
图片出处:
劳厄的实验装置
X-射线晶体结构分析基本原理
X射线衍射分析所依赖的基本原理是X射线衍射现象
X射线衍射现象利用X射线的波长和晶体中原子的大小及 原子间距同数量级的特性来分析晶体结构。
当X射线入射到样品晶体分子上时,分子上的每个原子使 X射线发生散射,这些散射波之间相互叠加形成衍射图形。
20世纪90年代解析一个蛋白质结构通常可以获得博士学位;
今天,一个博士研究生也许就可解析多个蛋白质结构,但如 果没有深入研究其结构与功能的关系,往往不能毕业。
X射线衍射用于蛋白质结构的测定
1954年伯纳尔(Bernal)获得第一张胃蛋白 酶晶体X衍射图片。
1957年肯特罗(Kendrew)完成肌红蛋白 的0.6 nm分辨率的蛋白质晶体结构
施一公抗癌抗乙肝病毒新药Birinapant,进入临床二期
蛋白质X射线晶体结构测定程序
1、样品制备 2、蛋白质结晶和晶体生长 3、衍射数据收集和处理 4、位相求解 5、模型建立和修正
1、样品制备
大量表达、分离和纯化目标蛋白
一般要求纯度大于97%, 浓度达到5mg/ml以上。
2、蛋白质结晶和晶体生长
测定蛋白质结构的意义
• 人体基因数目仅比低等生物线虫多两倍。 如此少的基因是如何创造出人体如此复杂 的生命活动?
• 人体基因的主要功能是通过蛋白质来实现 的,蛋白质扮演着构筑生命大厦的主要角 色。人体中大约有10万种蛋白质。
蛋白质三维结构解析方法
❖X-射线晶体衍射法:85.3% ❖核磁共振波谱:14.7% ❖电镜三维重构、各种光谱技术、显微
生化因素:蛋白质纯度、配合体、抑制剂、化学修饰、遗 传修饰、蛋白质的聚集状态、蛋白质水解、蛋白质自身的 对称性、蛋白质的稳定性和等电点等
蛋白质结晶方法
(1)批量结晶法(Batch crystallization) (2)透析法( Dialysis ) (3) 液相扩散法(Liquid diffusion) (4) 气相扩散法(Vapour diffusion) (5) 蛋白质结晶新方法
亨利·布拉格(Henry Bragg)
劳伦斯·布拉格( Lawrence Bragg)
图片出处
图片出处
蛋白质结构解析的发展
20世纪60年代解析一个蛋白质结构可以获 得诺贝尔奖;
20世纪70年代解析一个蛋白质结构则可成 为轰动世 SARS
20世纪80年代解析一个蛋白质结构则可申请到教授的职位;
相关文档
最新文档