ANSYS几何非线性概述

合集下载

ansys高级非线性分析-第九章几何不稳定性

ansys高级非线性分析-第九章几何不稳定性

失稳准则、米泽斯失稳准则和霍夫失稳准则等。
这些判据可以帮助我们确定结构的临界载荷和失稳模式,从而
03
采取相应的措施来提高结构的稳定性。
几何不稳定性的影响因素
材料性质
材料的弹性模量、泊松比、屈 服强度等都会影响结构的稳定
性。
结构形状和尺寸
结构的形状、尺寸、支承条件 等都会影响其稳定性。
外部载荷
外部载荷的大小、方向和分布 也会影响结构的稳定性。
案例二:高层建筑的几何不稳定性分析
总结词
高层建筑的几何不稳定性分析是确保高层建筑结构安全的重要环节。
详细描述
利用ANSYS的高级非线性分析功能,可以对高层建筑在不同风载、地震等载荷作 用下的结构响应进行模拟,评估其稳定性和安全性,为设计提供依据。
案例三:重型机械的几何不稳定性分析
总结词
重型机械的几何不稳定性分析是确保 重型机械在各种工况下安全运行的关 键。
02
几何不稳定性分析在复杂边界条件、多物理场耦合等方面的研究尚不够深入, 需要进一步拓展研究范围,完善分析方法。
03
随着计算机技术和数值计算方法的不断发展,几何不稳定性分析的计算效率和 精度将得到进一步提高,为工程实际提供更加准确和可靠的理论支持。
THANKS
感谢观看
现象。
在非线性分析中,需要考虑 结构在变形过程中形状和尺 寸的变化,以及由此引起的
力和位移的重新分布。
几何非线性行为通常出现在大 变形、应力刚化、旋转软化和
塑性流动等情况下。
几何不稳定性判据
01
几何不稳定性是指结构在某些条件下失去稳定性,发生屈曲或 失稳的现象。
02
判据是用来判断结构是否稳定的准则,常用的判据包括:欧拉

ANSYS非线性

ANSYS非线性
指定接触和目标面的其它准则:
如果一个凸面与一个平面或凹面进入接触, 平面和凹面应该是目标面.
如果一个面比另一个面更硬, 较硬的面应该是目标面.
如果一个面是高阶, 另一个面是低阶, 低阶面应该是目标面.
如果一个面比另外一个面更大, 较大的面应该是目标面.
当指定柔性体-柔性体接触的接触面和目标面时, 如果一个面网格粗,
刚性表面
变形体
柔性体 -柔性体接触
花键轴过盈配合, 两个零件 都是柔体.


接触协调
实际接触体相互不穿透. 因此, 程序必须在这两个面间建立一种关
系, 防止它们在有限元分析中相互穿过. • 当程序防止相互穿透时, 称之为强制接触协调.
F
当没有强制接触协调时, 发生穿透.
接触面
目标面
F
接触协调 – 罚函数法
图示收敛信息
在图形窗口显示的 是图形化的收敛历 史。显示了时间、
迭代步数与不平衡
量的信息。在求解 过程中这一显示不 断更新。
非线性求解过程
下面列出了完成非线性分析所需的典型步骤:
1. 指定分析类型
2. 指定几何非线性打开或关闭 3. 为载荷步指定“ 时间 ”
4. 设定子步数
5. 施加载荷与边界条件 6. 指定输出控制与监视值 7. 保存数据库 8. 求解载荷步
结果。
输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括: • 力/力矩不平衡量 {R}
FORCE CONVERGENCE VALUE
• 最大的自由度增量 {u}
MAX DOF INC
• 力收敛判据
CRITERION
• 载荷步与子步数
LOAD STEP 1 SUBSTEP 14

ANSYS基础教程,非线性分析

ANSYS基础教程,非线性分析

ANSYS基础教程,非线性分析
由荷载-变形曲线将会发现非线性结构的基本特征:变化的结构刚度。

引起非线性的原因
引起非线性行为的原因很多,这里介绍三种主要原因:
几何非线性
如果结构经受大变形,它变化的几何形状可能会引起结构的非线性响应,例如:随着钓鱼竿钓到鱼,竖向荷载就增加,杆不断弯曲以至于动力臂明显减少,导致杆端显示出较高的荷载下不断增长的刚性。

材料非线性
非线性的应力-应变关系是造成结构的非线性的常见的原因。

许多因素可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应情况下)。

状态非线性
许多普通结构表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。

这些系统的刚度由于系统状态的改变在不同的值之间变化。

状态改变也许
和荷载直接有关(如在电缆情况下),也可能由某种外部原因引起(如冻土中的紊乱力学条件)。

ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。

接触是一种很普遍的非线性行为,是状态变化非线性类型中一个特殊而重要的子集。

ANSYS材料非线性分析

ANSYS材料非线性分析

【分享】ANSYS7.0超弹材料的定义-新的曲线拟合功能--摘自ansys用户专区几何非线性几何非线性不受敛主要原因1.网格质量,特别是warpage2.约束方程,少用刚性连接3.收敛准则,可适当加大容差4.荷载步设置,可适当加大步数最近碰到一个对我来说很意外的问题:如果确实如此希望大家以后小心大家知道定义接触后会自动生成一组实常数,前几天我碰到一个问题,需定义超过10组实常数,接触对很多,好像有20多处,按照常规步骤划分完所有网格,当时因为有一个实常数参数没确定,便预留了最后一组(第10组)实常数里面的参数为空,接下来就定义了所有的接触对,由于所有接触对里的设置一样,ANSYS在我保存db完重新打开后便把我所有的接触对综合成一个了!接下来我就把第十组实常数里面的参数补上了,但在求解时却提示我该实常数同时被两种单元(包括CNTACT单元)同时占用,出现错误!!检查了半天才发现自动生成的接触对实常数把第10组实常数也占用了!我实在没找到什么好的解决办法,只得把接触对删除了重新定义,那可是上百多个面的选取过程,痛苦不堪简直!ANSYS里接触对面的选取时还不能针对Component操作!ANSYS7.0超弹材料的定义-新的曲线拟合功能ANSYS7.0中的超弹材料模拟能力得到了很大的加强,在ANSYS6.1的超弹材料模型的基础上又增加了Gent, Yeoh, Blatz-Ko, and Ogden (Foam)四种超弹性材料模型,使得其超弹模拟能力得到了进一步扩展。

ANSYS7.0中对超弹能力最吸引人的增强还不在于此,而是在于其曲线拟合能力的大幅度扩展,不再像ANSYS6.1以前的版本一样曲线拟合仅仅局限于Mooney-Rivlin模型,而是将其扩展到所有的超弹模型,这样,用户可以利用实验得到的应力应变数据直接让程序自己拟合出任意一种超弹材料模型的参数,大大方便了用户的使用。

以下就ANSYS7.0的超弹拟合功能做一简单介绍。

ANSYS非线性分析:1-非线性分析概述

ANSYS非线性分析:1-非线性分析概述

第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。

混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。

11.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。

一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。

二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。

(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。

Ansys Workbench非线性分析 牛顿辛普森法过程

Ansys Workbench非线性分析 牛顿辛普森法过程
什么是非线性? 17世纪, 罗伯特虎克发现力(F) 和位移(u) 之间存在一个简单的 线性关系, 称为虎克定律: F = Ku – 常数 K为结构的刚度. 线性 结构服从此线性关系. 普通的例子是一个弹簧: F K u F K u 线性结构非常适合基于线性矩阵代数的有限元分析
然而, 相当多的结构在力和位移之间没有线性关系 因为此类结构的 F-u 图不是直线, 这样的结构称为非线性结构 . – 刚度不再是一个常数K; 它成为施加载荷的函数, KT (切 线刚度). 普通的例子是韧性金属的拉伸试验:
载荷位移曲线
Fa Fnr
R
下一次迭代用刚度矩阵
u0 △ u u1
u0: 所设初始位移值
u
位移
KT :切向刚度
u1: 下次迭代位移值
R F a F nr
收敛: Newton-Raphson法需要一个收敛的度量以决定 何时结束迭代。给定节点Fa,节点力Fnr ,在一个体 中,节点载荷必须与节点力平衡
高级接触选项包括: 自动探测尺寸 Auto detection dimension and slider 非对称接触Asymmetric contact 接触结果工具Contact results tool 接触算法contact formulations Pinball 控制
膜片弹簧接触设置
带支撑环的膜片弹簧边界条件及求解设置
3 2 F1 269.991 2981 1 9238 1
膜片弹簧大端载荷-位移曲线
3 2 F1 269.991 2981 1 9238 1
注:膜片弹簧载荷挠度曲线为非线性,是由于大变形引起 的几何非线性,但材料始终发生的是弹性变形,没有发生 塑性变形
回忆材料力学中低碳钢力学性能试验

ANSYS讲义非线性分析

ANSYS讲义非线性分析
F1
t1
t2
时间 t
XJTU
自动时间步(续)
• 自动时间步算法是 非线性求解控制 中包含的多种算法的一种。
(在以后的非线性求解控制中有进一步的讨论。) • 基于前一步的求解历史与问题的本质,自动时间步算法或者增加
或者减小子步的时间步大小。
XJTU
5) 输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括:
子步
时间 ”相关联。
“时间
两个载荷步的求解 ”
XJTU
在非线性求解中的 “ 时间 ”
• 每个载荷步与子步都与 “ 时间 ”相关联。 子步 也叫时间步。
• 在率相关分析(蠕变,粘塑性)与瞬态分析中,“ 时间 ”代表真实 的时间。
• 对于率无关的静态分析,“ 时间 ” 表示加载次序。在静态分析中, “ 时间 ” 可设置为任何适当的值。
最终结果偏离平衡。
u 位移
XJTU
1) Newton-Raphson 法
ANSYS 使用Newton-Raphson平衡迭代法 克服了增量
求解的问题。 在每个载荷增量步结束时,平衡迭代驱 使解回到平衡状态。
载荷
F
4 3 2
1
u 位移
一个载荷增量中全 Newton-Raphson 迭代 求解。(四个迭代步如 图所示)
XJTU
非线性分析的应用(续)
宽翼悬臂梁的侧边扭转失 稳
一个由于几何非线性造 成的结构稳定性问题
XJTU
非线性分析的应用(续)
橡胶底密封 一个包含几何非线 性(大应变与大变 形),材料非线性 (橡胶),及状态 非线性(接触的例 子。
XJTU
非线性分析的应用(续)

ANSYS 第12讲-非线性空间

ANSYS 第12讲-非线性空间


非线性的求解控制都在:Solution>Sol’n Control
May,25,2005
湖南大学·土木·桥梁
12-23
求解策略-自动求解控制

应该说,关于非线性分析的求解控制很多,如何进行选择,这是一个值得仔细分 析的问题。但是,在大多数情况下,我们只需要比较简单的步骤就可以进行非线 性分析。 在默认状态下,自动求解控制处于自动激活状态。 ——提供全面、自动及智能的非线性工具设置,一般能获得有效的收敛解。 ——一般可以解决大部分非线性问题。 ——推荐首先选用该控制选项进行非线性分析,如果收敛,则OK;若收敛速度 较慢、或者不收敛,通过调整求解选项去保证结果收敛。
ANSYS第十二讲
非线性分析
第十二讲:
非线性分析
May,25,2005
湖南大学·土木·桥梁
12-1
内容及目标
学习完本章后,能够使用ANSYS进行一些非线性的结构分析。
Part A. 非线性有限元分析的基本概念 Part B. 非线性分析的前处理 Part C. 非线性分析的求解控制 Part D. 非线性分析的后处理
• • • •
F
..
屈服点
比例极限
U
May,25,2005
湖南大学·土木·桥梁
12-9
非线性分析的建模-塑性理论
• • 两类:增量理论、全量理论 增量理论描述的是应力增量与应变增量的数学关系,是目前常用的一 种塑性分析理论。 增量理论的三个基本组成部分: 1. 屈服准则 2. 流动准则 3. 硬化准则
选择输出结果类型
为动画、结果历史写出更多 的子步结果。
May,25,2005
湖南大学·土木·桥梁
12-27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS几何非线性概述
一、什么是非线性
什么是非线性(non-linear)?按照百度百科的解释,非线性是指变量之间的数学关系不是直线而是曲线、曲面或不确定的属性。

而对于工程结构而言,非线性或者说非线性行为,是指外部荷载引起工程结构刚度显著改变的一种行为。

如果绘制一个非线性结构的荷载-位移曲线,则力与位移的曲线为非线性函数。

ANSYS非线性主要分为以下三大类:
1、几何非线性
大应变、大位移、大旋转
2、材料非线性
塑性、超弹性、粘弹性、蠕变
3、状态改变非线性
接触、单元生死
其中几何非线性和材料非线性是土木工程结构计算中最为常见的两种类型。

二、结构几何非线性概念理解
如果一个结构在受荷的过程经历了大变形,则变化后的几何形状能引起非线性行为。

例如,上述例子,
杆梢在轻微横向作用下是柔软的,
当外部横向荷载加大时,杆的几何形状发生改变
,力矩臂减小,引起杆的刚化响应。

几何非线性主要分为如下三种现象:
1.单元的形状改变(面积、厚度),其单独的单元刚度也将改变
2.单元的取向发生转动,其局部刚度在转化为全局分量时将会发生变化。

3.单元应变产生较大的平面内应力状态引起平面法向刚度的改变。

随着垂直挠度UY 的增加,较大的膜应力SX 将会导致刚化效应。

上述三种情况的关系如下:
应力刚化
三、ANSYS
几何非线性注意事项
1、建模注意事项 (a )单元选择注意事项
在定义单元类型时,应明白如果分析的过程中有几何非线性,应确保所选单元类型支持相应的几何非线性效应。

例如shell63单元支持应力刚化和大挠度,但不支持大应变;而shell181则支持所有的三类几何非线性,可在单元描述的特殊特征列表中找到类似信息。

特别是在选择接触单元的时候应慎重,有的接触单元是没有任何非线性能力,例如CONTAC52.
同时应注意剪切锁定以及体积锁定等不可压缩性所带来的收敛困难。

(b )预见网格扭曲
ANSYS 在第一迭代之前,会检查网格的质量;在大应变分析中,迭代计算过后的网格或许会变得严重扭曲,为防止出现不良形状,可以预见网格扭曲从而修改原始网格。

(c )足够的网格密度
为防止网格离散化错误,必须有足够的网格密度,否则就很容易造成等值线图不连续,同时如果要捕捉弯曲响应,壳和梁单元的网格密度应足够多,计算中不应有角度超过30度的单元。

一分为二,作为 三角形,形状保 持较好。

(d)耦合和约束方程
ANSYS在几何非线性计算过程中,节点坐标系不会因为考虑大转动而修正,耦合和约束方程总是作用在原始方向。

因此在大位移分析中一般要避免耦合和约束方程,连接转动和位移自由度的约束方程是基于线性和小挠度理论,因此在使用耦合和约束方程之前应仔细考虑。

2.求解注意事项
(a)何时应选择大变形?ANSYS如何打开大变形?
大变形效应可以改善求解精度,但相应地,其求解代价也加倍增加。

如果在分析问题的过程中,100%确定大变形效应不重要,这时可只选择小变形分析以使得求解效率最快,但如何对求解的问题有任何疑问,则可以始终采用大变形。

ANSYS中采用Nlgeom命令打开与关闭大变形效应。

(b)加载与边界条件
当考虑结构大变形效应时,载荷在很多情况下方向将保持不变,但是针对于某些特别载荷,当单元经历大转动时,载荷方向跟随单元而改变。

ANSYS可以根据所施加的载荷类型来模拟不同情况。

注意,在大应变分析中,压力施加于更新的面,因此由压力产生的总载将随免得伸长或缩短而变化。

在大变形分析中,一般应避免单点约和单点力,不然很容易造成应力奇异的现象。

(c)求解
求解过程中时间步长应足够小,使得在任何一个子步内,没有超过10度转动的单元。

如果在反复二分之后,模型还不能在全载荷处收敛,原因可能是实际物理上的不稳定(屈曲或者全塑性截面),这时候可以画出载荷—挠度曲线,看切向刚度是否为0。

相关文档
最新文档