八年级数学上册(人教版)配套教学学案13.2第1课时画轴对称图形
13.2画轴对称图教学设计2023—2024学年人教版数学八年级上册

3.随堂测试:通过随堂测试,检验学生对轴对称图形定义、性质和画法的掌握程度,及时发现并解决学生的知识盲点。
4.课后作业:评价学生对轴对称图形知识的应用能力,如通过撰写报告或短文,检验学生对轴对称图形的理解和掌握。
教学过程设计
1.导入新课(5分钟)
目标:引起学生对轴对称图形的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道什么是轴对称图形吗?它与我们的生活有什么关系?”
展示一些关于轴对称图形的图片或视频片段,让学生初步感受轴对称图形的魅力或特点。
简短介绍轴对称图形的定义和重要性,为接下来的学习打下基础。
2.轴对称图形基础知识讲解(10分钟)
5.教师评价与反馈:针对学生的课堂表现、小组讨论成果、随堂测试和课后作业,给予学生及时、具体的评价和反馈,帮助学生改进学习方法和提高学习效果。
6.学生互评与反馈:鼓励学生之间进行互评和反馈,促进学生之间的交流和合作,提高学生的学习动力和参与度。
7.家长参与:邀请家长参与学生的学习过程,通过家校合作,共同关注学生的学习进步和问题,形成良好的学习氛围。
(4)应用轴对称图形的性质解决实际问题:学生可能难以将轴对称图形的性质与实际问题相结合,不明确如何将实际问题转化为数学问题,并运用轴对称图形的性质进行解决。
针对以上重点和难点,教师在教学过程中应着重讲解和强调,通过举例、动画演示、实际操作等方式,帮助学生理解和掌握轴对称图形的概念和性质,并引导学生运用所学知识解决实际问题。同时,教师应采取有效的教学方法,如分组讨论、师生互动等,引导学生主动探索和思考,从而突破本节课的难点。
2.轴对称图形的画法
人教版八年级数学上册13.2.1《画轴对称图形》教案

人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
2024年人教版八年级数学上册教案及教学反思全册第13章 轴对称 画轴对称图形(第1课时)教案

第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计

人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计一. 教材分析人教版八年级数学上册第十三章《轴对称》是学生在学习了平面几何基本概念和性质的基础上进行的一章内容。
本章主要让学生掌握轴对称图形的概念,性质,以及如何画出各种轴对称图形。
13.2节《画轴对称图形》是本章的第二节内容,主要让学生学会如何通过对称轴画出各种轴对称图形,培养学生的动手操作能力和空间想象能力。
二. 学情分析学生在之前的学习中已经掌握了平面几何的基本概念和性质,对一些基本的几何图形有了一定的了解。
但学生在画图方面可能还有一定的困难,特别是在画对称轴和轴对称图形时。
因此,在教学过程中,教师需要耐心引导学生,让学生逐步掌握画图的方法。
三. 教学目标1.让学生理解轴对称图形的概念,并能找出生活中的轴对称图形。
2.让学生掌握画轴对称图形的方法,提高学生的动手操作能力和空间想象能力。
3.培养学生观察、思考、交流的能力,提高学生的合作意识。
四. 教学重难点1.重点:让学生掌握轴对称图形的概念,以及画轴对称图形的方法。
2.难点:如何引导学生找出生活中的轴对称图形,以及如何让学生独立画出各种轴对称图形。
五. 教学方法采用“引导法”、“实例法”、“合作学习法”等教学方法。
教师通过引导,让学生主动探索轴对称图形的性质,找出生活中的轴对称图形。
同时,采用合作学习的方式,让学生在小组内交流讨论,共同完成画轴对称图形的任务。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备几何画图工具,如直尺、圆规等。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形实例,如剪纸、图片等,引导学生观察并思考:这些图形有什么共同特点?让学生初步感受轴对称图形的性质。
2.呈现(10分钟)教师通过课件呈现轴对称图形的定义,让学生明确轴对称图形的概念。
同时,教师通过讲解,让学生了解轴对称图形的性质,如对称轴的性质,对称点的性质等。
人教版八年级上册数学 13.2 第1课时 画轴对称图形教案1

13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB =60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A 、B 、C 关于直线l 的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.。
人教版数学八年级上册教学设计《13-2画轴对称图形》(第1课时)

人教版数学八年级上册教学设计《13-2画轴对称图形》(第1课时)一. 教材分析《13-2画轴对称图形》是人教版数学八年级上册的教学内容,本节课主要让学生掌握轴对称图形的概念,学会如何判断一个图形是否为轴对称图形,以及如何找出图形的对称轴。
教材通过丰富的实例,引导学生探索、发现轴对称图形的性质,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析八年级的学生已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但学生在判断轴对称图形时,容易与对称图形混淆。
因此,在教学过程中,教师要注重引导学生区分轴对称图形和对称图形,并通过大量实例让学生加深对轴对称图形的认识。
三. 教学目标1.知识与技能:使学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,能找出图形的对称轴。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、善于思考的精神。
四. 教学重难点1.重点:轴对称图形的概念及判断方法。
2.难点:找出图形的对称轴,以及区分轴对称图形和对称图形。
五. 教学方法采用讲授法、引导发现法、实践操作法、合作交流法等,充分调动学生的主观能动性,让学生在实践中掌握知识,提高能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,准备相关的教学实例和素材。
2.学生准备:预习教材内容,了解轴对称图形的概念,尝试判断一些常见的轴对称图形。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称现象,如剪纸、衣服折叠等,引导学生关注轴对称图形,激发学生的学习兴趣。
同时,提问学生:你们认为什么是轴对称图形?怎样判断一个图形是否为轴对称图形?2.呈现(10分钟)教师通过PPT或黑板,展示一些典型的轴对称图形,如正方形、矩形、圆等,引导学生观察、思考,总结出轴对称图形的特征。
同时,讲解如何找出图形的对称轴。
八年级数学上册-人教版八年级上册数学 13.2 画轴对称图形13.2画轴对称图形同步教案1

数学八年级上(新版)人教新课标13.2画轴对称图形同步教案1 教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.(三)情感与价值观要求1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学方法讲练结合法.教具准备多媒体课件.教学过程Ⅰ.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.(课件演示)取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.Ⅲ.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.(二)回顾本节课内容,然后小结.Ⅳ.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.Ⅴ.课后作业(课件演示)(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.(1)你会得怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?答案:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.(二)自己设计并制作一个花边.(三)收集并欣赏1~2个对称的中国民间剪纸图案,你能找出它的对称轴吗?Ⅵ.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.板书设计备课资料艺术作品中的对称许多著名画家在作品中运用简单的图形创造出了奇妙的韵意.•法国著名画家V.瓦萨雷利于1969年创作了名画《委加.派尔》,画中仅仅用了“圆”形图案,就形成了一幅动态的轴对称图形!在从古至今的艺术创作中,不仅画家大量运用了对称,许多别的艺术家也经常运用对称的手法.如雕刻家威廉斯.多佛1971年在加蓬《非洲人的设计》中创作的“木制卫兵雕像”就是典型的雕刻艺术中的对称.带状装饰图案的做法在实际生活中,艺术家、油漆工在装饰建筑物时,常常用到带状的图案.为此,人们制作了镂花模板(下图).油漆工只需要不断移动镂花模板(可以直接移动,也可以将翻转与移动相结合),就可以完全一条美丽的镶边图案.感兴趣的话自己试一试.。
人教版八年级数学上册同步教案:13.2 画轴对称图形(第1课时)

13.2 画轴对称图形(第1课时)一、内容和内容解析1.内容画一个与原图形成轴对称的图形,并归纳成轴对称的图形和轴对称图形的性质.2.内容解析本节课内容属于“图形的变化”领域,画轴对称图形是继平移变换之后的又一种图形变换,是利用轴对称变换设计图案的基础.它是研究几何问题、发现几何结论的有效工具.画轴对称图形是由一个图形得到它的轴对称图形的过程,可以从图形的位置关系和数量关系两方面进行研究.从图形的形状和大小、点的对称及对应点所连线段与对称轴的关系等方面归纳出轴对称的性质,它是画轴对称图形的依据.画轴对称图形是轴对称性质的运用,由点的对称得到图形的对称,体会由具体到抽象的过程,进一步使学生对图形的认识从静态上升到动态,体会研究图形问题的新角度,欣赏和体验数学美.基于以上分析,可以确定本节课的教学重点是:画轴对称图形.二、目标和目标解析1.目标(1)理解图形轴对称变换的性质;(2)能按要求画出一个平面图形关于某直线对称的图形.2.目标解析达成目标(1)的标志是:学生能通过观察、折叠、描图等方式,了解由一个平面图形可以得到与它关于某直线对称的图形,能归纳出一个图形经过轴对称变换后具有的性质.达成目标(2)的标志是:学生能根据题目要求画出轴对称图形,经历作图的过程,了解作图的一般步骤和依据.三、教学问题诊断分析通过观察、折叠、描图等方式,学生已基本感悟到一个图形经过轴对称变换后所具有的性质,能画出一个平面图形关于一条直线的轴对称图形.但八年级学生正处于形象思维向抽象思维转化的转型期,抽象思维能力不足.因此在教学中可以先由学生观察图形特征,经过分析,再归纳出轴对称的性质.本节课的教学难点是:理解轴对称变换的性质.四、教学过程设计1.探究并归纳轴对称的性质播放多媒体课件,展示生活中与轴对称现象有关的美丽图案.如:剪纸艺术、服饰文化、几何图案、花边艺术等.图1问题1 欣赏图1中美丽图案,并回答问题:(1)这些图案有什么共同特点?(2)能否根据其中的一部分画出整个图案?师生活动:教师展示图片,提出问题,学生思考后、交流.得出:图案都是轴对称图形,这些图案都可以用轴对称的方式得到.教师关注:学生对图案的形成过程的分析是否正确,是否能从不同的角度去思考问题.设计意图:通过让学生观察图形,在欣赏美丽的图案的同时,提出问题,引导学生从图案的特点和形成的角度去观察图案,初步感知轴对称的性质.问题2 在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?师生活动:学生动手画左脚印,教师指导如何快速准确地画出右脚印(如图2),并强调把纸对折后描图.在学生画图中,教师关注:学生如何画左脚印;左脚印画出后,折痕如何选取.设计意图:通过画左脚印,得到相应的右脚印,让学生感受轴对称图形的形成过程,培养学生的动手能力,并让学生明确:折痕所在的直线就是它们的对称轴.追问:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?师生活动:学生动手画图,教师观察、指导,展示学生作品,听取学生的评价.关注:学生首先画出的是一个什么图形;学生能否采用折叠、描图的方式由一个平面图形得到与它关于一条直线对称的图形.设计意图:进一步培养学生画轴对称图形的能力,体验由一个平面图形得到与它关于某条直线对称的图形的过程.展示学生作品,让学生获得成功的体验.问题3 由一个平面图形得到与它成轴对称的另一个图形之间有什么关系?(1)画出的轴对称图形的形状、大小和原图形有什么关系?(2)画出的轴对称图形的点与原图形上的点有什么关系?(3)对应点所连线段与对称轴有什么关系?师生活动:学生通过观察、思考、小组合作探究,归纳以上活动中所得到的图形之间的共同点,教师给予引导、纠正,并给出完整的归纳:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.设计意图:经历了实践、观察、合作探究、归纳等数学活动过程后,引导学生从形状、大小、位置、对应点及对应点与对称轴的关系等方面进行归纳.为画轴对称图形提供理论依据,让学生感悟由特殊到一般的数学思想.2.画轴对称图形问题4如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?例1如图3,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.图3 图4追问(1):三角形关于直线l的对称图形是什么形状?追问(2):三角形的轴对称图形可以由哪几个点确定?追问(3):如何作一个已知点关于直线l的对称点?追问(4):如何验证画出的图形与△ABC关于直线l对称?师生活动:教师通过问题进行引导,学生独立思考后尝试画图(如图4),然后说出自己的画法,并通过折叠的方法加以验证.在学生作图中,教师关注:在三角形上,取的是否是三个顶点;是否掌握了作一个点关于直线的对称点的方法.追问(5):已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.师生活动:学生小组合作探究,师生共同归纳出:几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.设计意图:分步设问,便于引导学生理解作图的过程和方法.通过作图,让学生体验作图的准确性和规范性.经过折叠验证,让学生感悟实践与理论的结合;通过归纳,让学生掌握画轴对称图形的方法和步骤.练习1.如图,把下列图形补成关于直线l对称的图形.2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.设计意图:巩固画轴对称图形的方法和步骤,使学生进一步体会轴对称变换的性质.3.小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些内容?(2)由一个平面图形得到与它成轴对称的另一个图形之间有什么关系?(3)画轴对称图形的一般方法是什么?依据是什么?设计意图:通过小结,引导学生回顾画轴对称图形的步骤和依据,掌握轴对称变换的性质.4.布置作业教科书习题13.2第1题.五、目标检测设计1.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到的是().A.B.C.D.设计意图:考查学生对轴对称性质的理解和运用.2.把图中实线部分补成以虚线l为对称轴的轴对称图形.ll设计意图:考查学生画轴对称图形的能力.3.如图,由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.设计意图:开放性题目考查学生对轴对称性质的理解和构造轴对称图形的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全新修订版教学设计
(学案)
八年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
人教版(RJ)
1 / 4
2 / 413.2 画轴对称图形
第1课时画轴对称图形
一、学习目标
1、认识轴对称图形,探索并了解它的基本性质;
2、能够按要求作出简单平面图形经过一次对称后的图形;
二、温故知新
1、什么是轴对称图形?
2、请画出下列图形的对称轴。
三、自主探究
合作展示
探究(一)自学:认真阅读教材
67页图13.2-1。
1、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?
2、归纳:
(1)由一个平面图形可以得到它关于一条直线
成轴对称的图形,这个图形与原图形的、完全相同;
(2)新图形上的每一点,都是原图形上的某一点关于直线
的点;
(3)连接任意一对对应点的线段被对称轴。
探究(二)
1、请同学们尝试解决以下问题;
如图(1),实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形。
l l 图(1)。