新人教版八年级下册数学第十七章 勾股定理教案

合集下载

人教版数学八年级下册17.1《勾股定理》教学设计

人教版数学八年级下册17.1《勾股定理》教学设计

人教版数学八年级下册17.1《勾股定理》教学设计一. 教材分析《勾股定理》是初中数学的重要内容,也是中学数学中最为基本的定理之一。

人教版数学八年级下册17.1节主要介绍了勾股定理的证明和应用。

通过本节课的学习,学生能够理解勾股定理的含义,学会运用勾股定理解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角函数等知识,具备了一定的逻辑思维能力和空间想象能力。

但部分学生对理论证明的过程可能感到困惑,对实际应用的掌握程度也有所不同。

三. 教学目标1.知识与技能:让学生掌握勾股定理的证明和应用,能够运用勾股定理解决实际问题。

2.过程与方法:通过观察、操作、探究、合作等方法,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.重难点:勾股定理的证明和应用。

2.难点:对勾股定理证明过程中的一些关键步骤的理解和运用。

五. 教学方法1.情境教学法:通过生活中的实例,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:分组讨论,共同完成任务,培养学生的团队合作精神。

4.实践操作法:让学生动手操作,加深对知识的理解和记忆。

六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、直尺等。

2.学具:笔记本、文具、三角板、直尺等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生观察并思考这些三角形中是否存在某种特殊的关系。

2.呈现(15分钟)介绍勾股定理的定义和表述,展示勾股定理的证明过程,如Pythagorean theorem的证明。

引导学生理解并掌握勾股定理。

3.操练(15分钟)分组讨论,每组选取一个实际问题,运用勾股定理进行解答。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)针对学生的解答,进行讲解和点评,强调勾股定理在实际问题中的应用。

人教版八年级数学下册教案:17.1勾股定理

人教版八年级数学下册教案:17.1勾股定理
在总结回顾环节,学生们对勾股定理的知识点掌握得还不错,但仍有一些疑问。这说明我在课堂上的讲解可能还需要更加细致和深入。在今后的教学中,我会更加关注学生的反馈,及时调整教学方法和节奏。
人教版八年级数学下册教案:17.1勾股定理
一、教学内容
人教版八年级数学下册教案:17.1勾股定理。本节课主要围绕勾股定理展开,内容包括:
1.勾股定理的概念:了解直角三角形的特性,理解勾股定理的含义。
2.勾股定理的证明:掌握用面积法、相似三角形法等多种方法证明勾股定理。
3.勾股定理的应用:学会运用勾股定理解决实际问题,如求直角三角形的斜边长、确定直角三角形的形状等。
举例:在讲解勾股定理的应用时,重点强调如何将实际问题转化为数学模型,如计算建筑物的高度、距离等。
2.教学难点
-理解勾股定理的证明过程:尤其是面积法和相似三角形法中的每一步推理,学生需要理解几何图形之间的关系和变换。
-在实际问题中灵活运用勾股定理:学生往往在将实际问题抽象为数学问题时遇到困难,需要教师引导如何提取关键信息。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念:即直角三角形中,斜边的平方等于两个直角边的平方和。
-掌握勾股定理的证明方法:如面积法、相似三角形法等,理解不同证明方法背后的数学原理。
-学会运用勾股定理解决实际问题:包括求斜边长、判断直角三角形等,以及在实际情境中发现勾股定理的应用。
-理解勾股数的概念和性质:识别勾股数,了解其整数和平方数特性。
2.能够运用勾股定理解决实际问题,提升学生数学运算和数据分析能力。
3.通过勾股定理的探究,激发学生数学探究兴趣,培养数学抽象和建模素养。
4.引导学生运用勾股定理发现生活中的数学美,提高数学审美和跨学科整合能力。

第十七章勾股定理(教案)-2024学年人教版八年级数学下册

第十七章勾股定理(教案)-2024学年人教版八年级数学下册
c.解决与勾股定理相关的实际问题
3.勾股数及其性质
a.勾股数的定义
b.勾股数的特点
c.勾股数的应用
4.勾股定理在生活中的应用实例
a.建筑领域
b.艺术设计
c.自然科学等其他领域的应用
5.练习与拓展
a.勾股定理相关练习题
b.拓展勾股定理的相关知识,如勾股数在其他数学领域的应用等
c.创设实际情境,让学生运用勾股定理解决实际问题,提高学生的实际操作能力。
2.教学难点
a.勾股定理的数学证明:对于八年级学生来说,理解并掌握勾股定理的数学证明是难点。教师需要运用直观、生动的教学方法,如动画演示、实际操作等,帮助学生理解证明过程。
b.勾股定理在实际问题中的应用:学生在运用勾股定理解决实际问题时,往往会遇到难以确定直角三角形的情况,需要教师引导学生学会识别直角三角形,并正确应用勾股定理。
1.教学重点示例:
在讲解勾股定理的概念及其证明时,教师可以通过动画演示、实际操作等方式,引导学生观察直角三角形的特性,得出勾股定理的表述。并通过数学证明,让学生理解勾股定理的严谨性。
2.教学难点示例:
在解决实际问题中,教师可以给出以下例子:一根旗杆斜靠在墙上,旗杆与地面的夹角为30°,旗杆与墙面的距离为3米,求旗杆的长度。学生需要识别出这是一个直角三角形问题,并运用勾股定理求解。在这个过程中,教师需要引导学生正确识别直角三角形,并给出具体的解题步骤。
4.培养学生的数学建模素养,通过勾股定理在生活中的应用实例,引导学生发现生活中的数学规律,学会构建简单的数学模型。
5.培养学生的数学抽象与数学关联素养,使学生能够从具体问题中抽象出勾股定理的数学本质,理解数学知识之间的内在联系,提高数学知识的系统性和综合性。
三、教学难点与重点

人教版八年级数学下册第十七章勾股定理单元教学设计

人教版八年级数学下册第十七章勾股定理单元教学设计
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入地理解直角三角形的特点及其应用。然而,由于勾股定理涉及几何与代数的综合运用,学生在理解上可能存在一定困难。因此,在教学过程中,要注意以下几点:
1.关注学生对勾股定理概念的理解,引导他们从几何角度和代数角度去认识、理解勾股定理。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个与勾股定理相关的实际问题导入新课,激发学生的兴趣和思考。
-提问:同学们,你们知道如何测量学校旗杆的高度吗?
-引导学生思考:如果我们知道旗杆底部到某一点的距离和该点到旗杆顶部的垂直距离,能否计算出旗杆的高度?
-揭示:今天我们就来学习一个与直角三角形有关的定理,它可以帮助我们解决这类问题,这就是勾股定理。
-通过课堂提问、课后作业、小测验等方式,了解学生的学习进度和掌握程度;
-给予学生积极的评价,鼓励他们克服困难,不断提高。
6.结合实际情境,开展课外实践活动,让学生在实际操作中感受勾股定理的魅力。
-例如,组织学生测量学校内的直角三角形物体,如楼梯、窗户等,将所学知识应用于实际,提高他们的数学应用能力。
1.勾股定理的理解与运用:学生需从几何和代数两个角度理解勾股定理,并将其应用于解决实际问题。
2.证明方法的掌握:学生需要掌握几何法、代数法等多种证明勾股定理的方法,提高逻辑思维和创新能力。
3.空间想象能力的培养:通过丰富的实例和操作活动,帮助学生建立直角三角形的空间概念。
教学设想:
1.采用情境导入法,以实际问题引入勾股定理,激发学生的学习兴趣和探究欲望。
人教版八年级数学下册第十七章勾股定理单元教学设计
一、教学目标
(一)知识与技能

人教版八年级数学下册17.1.2勾股定理的应用(教案)

人教版八年级数学下册17.1.2勾股定理的应用(教案)
实践活动环节,学生分组讨论和实验操作的过程较为顺利,大家积极参与,课堂氛围活跃。但同时我也发现,部分小组在操作过程中出现了计算错误,这说明学生在数学运算方面仍需加强。因此,我计划在接下来的教学中,加强对学生数学运算能力的训练。
关于学生小组讨论环节,我发现学生在讨论过程中能够提出自己的观点,并进行有效交流。但在引导与启发方面,我觉得自己还可以做得更好。未来,我将更多地运用开放性问题,激发学生的思考,帮助他们发现问题、分析问题和解决问题。
人教版八年级数学下册17.1.2勾股定理的应用(教案)
一、教学内容
人教版八年级数学下册17.1.2勾股定理的应用。本节课主要内容包括:
1.理解并掌握勾股定理的应用场景,如直角三角形中,了解斜边与两个直角边的关系。
2.学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个三角形是否为直角三角形等。
5.培养学生数学运算的核心素养,让学生熟练掌握勾股定理,并能灵活运用到各种计算和证明过程中,提高运算的准确性和速度。
三、教学难点与重点
1.教学重点
-核心内容:勾股定理及其在直角三角形中的应用。
-重点讲解:
-勾股定理的表述:直角三角形中,斜边的平方等于两个直角边的平方和。
-勾股定理的证明:通过几何图形或代数方法,证明勾股定理的正确性。
其次,理论讲解环节,我尽量用简洁明了的语言解释勾股定理的概念和证明过程。从学生的反应来看,大部分同学能够跟上我的讲解,但仍有少数同学在理解上存在困难。针对这个问题,我考虑在今后的教学中,可以通过增加互动提问环节,让学生在课堂上及时反馈疑问,以便我更好地关注到每个学生的学习情况。
在案例分析环节,我选取了建筑物直角三角形结构作为例子,旨在让学生了解勾股定理在实际问题中的应用。从学生的讨论来看,这个案例取得了较好的效果。但在今后的教学中,可以尝试引入更多类型的案例,让学生从不同角度理解勾股定理的应用。

人教版八年级数学下册第十七章勾股定理勾股定理的证明教学设计

人教版八年级数学下册第十七章勾股定理勾股定理的证明教学设计
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表达式及其适用条件。
2.运用勾股定理解决实际问题,特别是计算直角三角形斜边长度。
3.理解并掌握勾股定理的证明过程,提高逻辑思维能力。
4.培养学生运用勾股定理发现和解决实际问题的能力。
(二)教学设想
1.创设情境,导入新课
通过呈现生活中的直角三角形实例,如楼梯、墙壁等,引导学生观察、思考,激发学生的好奇心和求知欲,为新课的学习做好铺垫。
(二)过程与方法
1.通过对勾股定理的探究,培养学生提出问题、分析问题、解决问题的能力。
2.通过小组合作、讨论交流,培养学生团队协作精神和沟通能力。
3.引导学生运用多种方法证明勾股定理,培养学生的发散思维和创新能力。
4.设计实际情境,让学生在实际问题中运用勾股定理,提高学生的应用能力。
(三)情感态度与价值观
3.教师强调勾股定理在实际问题中的应用价值,鼓励学生在生活中发现数学的美。
4.教师布置课后作业,要求学生运用勾股定理解决实际问题,巩固课堂所学布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.请同学们运用勾股定理,计算以下直角三角形的斜边长度:
1.引入勾股定理的概念,引导学生了解勾股定理的背景和意义。
2.通过实例演示,让学生直观地感受勾股定理的应用。
3.采用多种方法证明勾股定理,如几何法、代数法等,培养学生的逻辑思维和创新能力。
4.设计丰富的练习题,巩固学生对勾股定理的理解和应用。
5.结合生活实际,让学生在实际情境中运用勾股定理,提高学生的应用能力。
某建筑工地需要测量一块直角三角形的斜边长度,已知两条直角边的长度分别为10米和24米。由于工地条件有限,无法直接测量斜边长度。请问:如何利用勾股定理计算斜边长度?

人教版数学八下17.1《勾股定理》教案3篇

人教版数学八下17.1《勾股定理》教案3篇

初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学第十七章勾股定理集体备课(教案)17.1 勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、教学重点、难点1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么。

四、合作探究:方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 AB4×21ab +(b -a )2=c 2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

方法2:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×21ab +c 2 右边S=(a+b )2 左边和右边面积相等,即 4×21ab +c 2=(a+b )2 化简可证。

五、课堂小结六、作业 P28页习题第1题七、教学反思17.1 勾股定理(二)一、教学目标1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类讨论思想。

二、重点、难点1.重点:勾股定理的简单计算。

2.难点:勾股定理的灵活运用。

三、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。

学习勾股定理重在应用。

四、合作探究问题(1)在长方形ABCD 中AB 、BC 、AC 大小关系(2)一个门框的尺寸如图1所示.①若有一块长3米,宽米的薄木板,问怎样从门框通过 ②若薄木板长3米,宽米呢③若薄木板长3米,宽米呢为什么b b b b cccc aa a a bbb b a ac c a aBC1m2A例:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为米.①求梯子的底端B距墙角O多少米②如果梯的顶端A沿墙下滑米至C.算一算,底端滑动的距离近似值(结果保留两位小数).O五、课堂小结六、作业P28页习题第2、5题七、教学反思17.1 勾股定理(三)一、教学目标1.会用勾股定理解决较综合的问题。

2.树立数形结合的思想。

二、重点、难点1.重点:勾股定理的综合应用。

2.难点:勾股定理的综合应用。

三、课堂引入复习勾股定理的内容。

本节课探究勾股定理的综合应用。

四、合作探究:分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

如图,已知OA=OB,(1)说出数轴上点A所表示的数。

图(2)在数轴上作出8对应的点AO 1B -43变式训练:在数轴上画出表示22,13--的点。

五、课堂小结六、作业 P28页习题第6题七、教学反思17.2 勾股定理的逆定理(一)一、教学目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2.探究勾股定理的逆定理的证明方法。

3.理解原命题、逆命题、逆定理的概念及关系。

二、重点、难点1.重点:掌握勾股定理的逆定理及证明。

2.难点:勾股定理的逆定理的证明。

三、课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形⑵怎样判定一个三角形是直角三角形和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

四、合作交流:1、如图,若△ABC 的三边长a 、b 、c 满足222c b a=+,试证明△ABC 是直角三角形,请简要地写出证明过程.分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A 1B 1=c ,则通过三边对应相等的两个三角形全等可证。

⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。

充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

证明略。

2、.此定理与勾股定理之间有怎样的关系 (1)什么叫互为逆命题。

(2)什么叫互为逆定理。

(3)任何一个命题都有 _____,但任何一个定理未必都有 __ 3.说出下列命题的逆命题。

这些命题的逆命题成立吗 (1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

解略。

例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ;五、课堂小结六、作业 P34页习题第1题七、教学反思17.2 勾股定理的逆定理(二)一、教学目标1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

二、重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题。

2.难点:灵活应用勾股定理及逆定理解决实际问题。

三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

四、自学展示:已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。

求:四边形ABCD 的面积。

归纳:求不规则图形的面积时,要把不规则图形分析:⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB(ASA );⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC 中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ;⑷利用梯形面积公式可解,或利用三角形的面积。

五、合作探究例2 “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗 分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×=18,PQ=16×=24, QR=30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR=90°;⑸∠PRS=∠QPR-∠QPS=45°。

六、课堂小结让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

七、作业 P34页习题第3题EAB CD E八、教学反思第17章 勾股定理复习(一)教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形. 重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用. 一、复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有: 这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理. 2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS ”证明两个三角形全等,证明定理成立. 3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示n (n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边. 二、合作交流:例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .例3:.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4:.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m21EDCBAABCD E四、学习检测:1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521C .3,4,5D .4,721,8212.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍 B .2倍 C .3倍 D .4倍3.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cmD .1360cm4.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗若是,哪个角是直角5.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm6.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为 . 7.等边△ABC 的高为3cm ,以AB 为边的正方形面积为 .8.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是 。

相关文档
最新文档