高中物理电磁感应知识点详解和练习
高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
新教材人教版高中物理必修第三册 第十三章电磁感应与电磁波初步 知识点考点总结及配套练习 含解析

第十三章电磁感应与电磁波初步1、磁场磁感线一认识磁场的性质1.对磁场性质的理解:基本性质对放入其中的磁体或电流产生力的作用客观性质磁场虽然不是由分子、原子组成的,但是它和常见的桌子、房屋、水和空气一样,是一种客观存在的物质特殊性质磁场和常见的由分子、原子组成的物质不同,它是以一种场的形式存在的形象性磁体之间、磁体与电流间,电流与电流间通过磁场发生作用,如同用弹簧连接的小球,靠弹簧发生相互作用一样2.电场与磁场的比较:比较项目电场磁场不同点产生电荷周围磁体、电流、运动电荷周围基本性质对放入其中的电荷有电场力的作用对放入其中的磁极、电流有磁场力的作用作用特点对放入其中的磁体无力的作用对放入其中的静止电荷无力的作用相同点磁场和电场一样,都是不依赖于人的意志而客观存在的特殊物质,都具有能量【思考·讨论】图一中异名磁极相互吸引,同名磁极相互排斥,图二中一段直导线悬挂在蹄形磁铁的两极间,通以电流,导线就会移动;图三中两条通过同向电流的导线相互吸引,通过反向电流的导线相互排斥,这些相互作用是怎样实现的?提示:磁体的周围和电流的周围都存在着磁场,磁体和磁体之间、磁体和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。
【典例示范】下列关于磁场的说法中,正确的是( )A.只有①磁铁周围才存在磁场B.磁场是为了解释磁极间的相互作用而人为规定的C.磁场只有②在磁极与磁极、磁极和通电导线发生作用时才产生D.磁极与磁极之间、磁极与通电导线之间、通电导线与通电导线之间都是通过磁场发生相互作用的【审题关键】序号信息提取①电流周围也有磁场②电流和电流之间发生作用时也有【解析】选D。
磁场存在于磁体周围和电流周围,故A错误;磁场是实际存在的,不是假想的,磁感线是假想的,故B错误;磁场存在于磁体和电流周围,即使没有发生作用,磁场仍然是存在的,故C错误;磁极与磁极,磁极与电流、电流与电流之间都是通过磁场发生相互作用的,故D正确。
高中物理电磁感应定律知识点加例题

私塾国际学府学科教师辅导教案【例2】面积为S的矩形线框abcd,处在磁感应强度为B的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsinθ减小到零,再由零增大到负向BScosθ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScosθ-BSsinθ=-BS(cosθ+sinθ)【答案】-BS(cosθ+sinθ)【点拨】磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量.二、感应电流方向的判定感应电流方向的判定方法:方法一:右手定则(部分导体切割磁感线)方法二:楞次定律【例4】某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( )A.a→○G→bB.先a→○G→b,后b→○G→aC.先b→○G→aD.先b→○G→a,后a→○G→b三、楞次定律推论的应用在实际问题的分析中,楞次定律的应用可拓展为以下四个方面①阻碍原磁通量的变化,即“增反减同”;②阻碍相对运动,即“来拒去留”;③使线圈面积有扩大或缩小的趋势,即“大小小大”;④阻碍导体中原来的电流发生变化,即“自感现象”.【例5】两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环.当A以如9-1-7所示的方向,绕中心转动的角速度发生变化时,B中产生如图所示的感应电流,则( BC )A.A可能带正电且转速减小B.A可能带正电且转速增大C.A可能带负电且转速减小D.A可能带负电且转速增大【解析】若A带正电, 则穿过B的磁通量垂直纸面向里,只有磁通量增大时,B中才会产生逆时针方向的感应有尽电流,故A的转速应增大,选项B 正确A错误.若A带负电,同理可推断选项C正确D错误.【例7】电阻R、电容器C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图9-1-8所示.现使磁铁开始自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是( D )A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电当地入海河段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为导体)流过.设落潮时,海水自西向东流,流速为2 m/s.下列说确的是() A.电压表记录的电压为5 mVB.电压表记录的电压为9 mVC.岸的电势较高D.岸的电势较高3、在如图9-2-1所示的电路中,线圈L的自感系数足够大,其直流电阻忽略不计,A,B是两个相同的灯泡,下列说法中正确的是() A.S闭合后,A,B同时发光且亮度不变B.S闭合后,A立即发光,然后又逐渐熄灭C.S断开的瞬间,A,B同时熄灭D.S断开的瞬间,A再次发光,然后又逐渐熄灭4、如图9-2-9所示的电路中,三个相同的灯泡a、b、c和电感L1、L2与直流电源连接,电感的电阻忽略不计.开关S从闭合状态突然断开时,下列判断正确的有()A.a先变亮,然后逐渐变暗B.b先变亮,然后逐渐变暗C.c先变亮,然后逐渐变暗D.b、c都逐渐变暗。
高中物理电磁感应现象习题知识点及练习题及答案解析

高中物理电磁感应现象习题知识点及练习题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。
gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。
当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;(2)金属棒pq运动到时,金属棒gh的速度大小;(3)金属棒gh产生的最大热量。
【答案】(1) (2) (3)【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;解:(1)金属棒pq下滑过程中,根据机械能守恒有:在圆弧底端有根据牛顿第三定律,对圆弧底端的压力有联立解得(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有对于金属棒pq有对于金属棒gh有联立解得(3)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为该过程金属棒gh产生的热量为金属棒pq到达cd、导轨后,金属棒pq加速运动,金属棒gh减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq与gh产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v,此时两金属棒均做匀速运动,根据动量守恒定律有金属棒pq从到达cd、导轨道电流第二次减小为零的过程,回路产生的热量为该过程金属棒gh产生的热量为联立解得2.如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r,现从静止释放杆ab,测得最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨距为L = 2m,重力加速度g取l0m/s2,轨道足够长且电阻不计.求:(1)杆ab下滑过程中流过R的感应电流的方向及R=0时最大感应电动势E的大小;(2)金属杆的质量m和阻值r;(3)当R=4Ω时,求回路瞬时电功率每增加2W的过程中合外力对杆做的功W.【答案】(1)电流方向从M流到P,E=4V (2)m=0.8kg,r=2Ω (3)W=1.2J【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R的电流方向从M流到P据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
高中物理重点——电磁感应知识点及练习

高中物理重点——电磁感应知识点及练习一、电磁感应基本概念1. 电磁感应的基本原理2. 法拉第电磁感应定律3. 洛伦兹力的概念练习题:1. 一根长度为20 cm 的导线以10 m/s 的速度进入一个磁感应强度为0.5 T 的匀强磁场中,导线的两端产生的感应电动势为多少?答案:1 V2. 一个载流导体绕着垂直于磁场方向的轴旋转,导体两端产生的感应电动势的大小为导体长度乘以什么?答案:磁感应强度3. 当磁通量密度变化率为200 T/s 时,一个线圈内部产生的感应电动势为20 V,此时线圈中的匝数为多少?答案:100二、法拉第电磁感应定律应用1. 电动势的方向和大小2. 电磁感应的应用:感应电流和感应电磁铁3. 磁场中的动生电现象:电磁感应现象和劳埃德力练习题:1. 一个长度为25 cm 的导体被放置在一个磁感应强度为0.2 T 的匀强磁场中,且在导体的两端施加一共 2 A 的电流,求该导体受到的安培力大小为多少?答案:0.25 N2. 在一个长度为10 cm 的导体内部施加一个0.5 T 的磁场,导体稳定地保持在匀强磁场中,当导体的长度与磁场的夹角为30 度时,导体内部的自感系数为多少?答案:0.00125 H3. 一个宽度为10 cm,长度为20 cm,大约0.5 毫米厚的铜片在磁感应强度为0.1 T 的恒定磁场中以 5 m/s 的速度向下运动,求铜片两端感应的电动势大小为多少?答案:1 V三、电磁感应现象与电磁波1. 电磁波的基本特征和传播方式2. 波长和频率的关系及其应用3. 电磁波的反射、折射和衍射现象练习题:1. 某广播电台的发射频率为100 MHz,求其波长的大小为多少?答案:3 m2. 一台微波炉的工作频率为2.45 GHz,求其波长的大小为多少?答案:0.12 m3. 一个频率为500 MHz 的电磁波垂直入射到一种材质中,该材质的折射率为 1.5,求折射后的电磁波的频率为多少?答案:333.3 MHz总结:电磁感应是高中物理中的重要知识点,包括电磁感应的基本概念、法拉第电磁感应定律应用以及电磁感应现象与电磁波等内容。
高考物理:《电磁感应》知识点及典型例题

高考物理:《电磁感应》知识点及典型例题一、电磁感应现象当穿过闭合回路的磁通量发生变化时,在闭合回路中产生感应电流的现象叫电磁感应现象.由可知有三种情况可以使闭合电路中产生感应电流:1. 闭合电路的一部分导体在磁场中做切割磁感线的运动,实际上此时闭合电路的面积发生变化,引起闭合回路中磁通量的变化;2. 闭合电路所在处磁场的磁感应强度发生变化,引起闭合回路中磁通量变化;3. 闭合电路垂直于磁感线的面积发生变化,引起闭合回路中的磁通量变化.注意,若电路不闭合,则在电路两端产生感应电动势,而电路中没有感应电流.二、法拉第电磁感应定律感应电动势的大小跟穿过这一回路的磁通量的变化率成正比:,这里注意区分磁通量、磁通量的变化量、磁通量的变化率。
公式计算出来的是在时间内的平均感应电动势,而瞬时感应电动势要取时的极限值.或用公式E=BLv来求。
三、楞次定律1. 内容:感应电流的磁场总是阻碍引起感应电流的磁通量的变化.应用楞次定律实际上就是寻求电磁感应中的因果关系:因——穿过闭合电路的磁通量发生变化,果——产生感应电流,方法是由因求果.2. 解决问题的步骤:①弄清原磁场的方向以及原磁场磁通量的变化;②判断感应电流的磁场方向:当磁通量增加时,感应电流的磁场与原磁场方向相反,当磁通量减小时,感应电流的磁场与原磁场方向相同;③用安培定则判断出感应电流的方向.3. 阻碍意义的推广:(1)阻碍原磁场的变化。
“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓,原磁场的变化趋势不会改变,不会发生逆转.(2)阻碍的是原磁场的变化,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)“阻碍”的具体应用为:研究磁场的关系时遵循“增反减同”原则;研究相互作用力的效果时遵循“来拒去留”原则.(5)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.4. 电势高低的判断①分清内外电路:产生感应电动势的那部分导体为内电路,其余部分为外电路.②判定电势的高低:在内电路中,感应电流从电源的负极流向电源的正极;在外电路中,感应电流从电源的正极流向负极.四、自感现象自感现象是指当线圈自身电流发生变化时,在线圈中引起的电磁感应现象,当线圈中的电流增加时,自感电流的方向与原电流方向相反;当线圈中电流减小时,自感电流的方向与原电流的方向相同.自感电动势的大小与电流的变化率成正比.自感系数L由线圈自身的性质决定,与线圈的长短、粗细、匝数、有无铁芯有关.自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零.自感现象只有在通过电路的电流发生变化时才会产生.在判断电路性质时,一般分析方法是:当流过线圈L的电流突然增大瞬间,我们可以把L看成一个阻值很大的电阻;当流经L的电流突然减小的瞬间,我们可以把L看作一个电源,它提供一个跟原电流同向的电流.图2电路中,当S断开时,我们只看到A灯闪亮了一下后熄灭,那么S断开时图1电路中有没有自感电流?能否看到明显的自感现象,不仅仅取决于自感电动势的大小,还取决于电路的结构.在图2电路中,我们预先在电路设计时取线圈的阻值远小于灯A的阻值,使S断开前,并联电路中的电流IL>>IR ,S断开瞬间,虽然L中电流在减小,但这一电流全部流过A灯,仍比S断开前A灯的电流大得多,且延滞了一段时间,所以我们看到A灯闪亮一下后熄灭,对图1的电路,S断开瞬间也有自感电流,但它比断开前流过两灯的电流还小,就不会出现闪亮一下的现象.五、电磁感应中的几类典型问题例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
高考物理中电磁感应的考点和解题技巧有哪些

高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应一、知识网络二、画龙点睛概念1、磁通量设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S,如图所示。
(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S 的乘积,叫做穿过这个面的磁通量,简称磁通。
(2)公式:Φ=BS当平面与磁场方向不垂直时,如图所示。
Φ=BS⊥=BScosθ(3)物理意义物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。
所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。
(4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。
1Wb=1T·1m2=1V·s。
(5) 磁通密度:B=ΦS⊥磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通密度。
2、电磁感应现象(1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。
(2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。
(3)产生电磁感应现象的条件①产生感应电流条件的两种不同表述a.闭合电路中的一部分导体与磁场发生相对运动b.穿过闭合电路的磁场发生变化②两种表述的比较和统一a.两种情况产生感应电流的根本原因不同闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。
穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。
b.两种表述的统一两种表述可统一为穿过闭合电路的磁通量发生变化。
③产生电磁感应现象的条件不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。
条件:a.闭合电路;b.磁通量变化3、电磁感应现象中能量的转化能的转化守恒定律是自然界普遍规律,同样也适用于电磁感应现象。
3、感应电动势(1)定义:在电磁感应现象中产生的电动势,叫做感应电动势。
从低电势位置指向高电势位置。
(2)产生感应电动势的条件:穿过回路的磁通量发生变化。
(3)物理意义:感应电动势是反映电磁感应现象本质的物理量。
(4)方向规定:内电路中的感应电流方向,为感应电动势方向。
1、法拉第电磁感应定律(1) 磁通量变化率:单位时间内磁通量的变化量,即ΔΦΔt反映磁通量变化的快慢。
(2)法拉第电磁感应定律①内容:电路中感应电动势的大小,跟穿过这一电路的磁通量变化率成正比。
这就是法拉第电磁感应定律。
②公式:设t1时刻磁通量为Φ1,t2时刻磁通量为Φ2。
在Δt=t2-t1时间内规律磁通量变化量ΔΦ=Φ2-Φ1。
Δt 内磁通量的变化率为ΔΦΔt。
设感应电动势为E ,则有E =k ΔΦΔt其中k 为比例常数。
在国际单位制中,上式中各量的单位都已确定:E 的单位是伏特(V ),Φ的单位是韦伯(Wb ),t 的单位是秒(s )。
同学们可以自己证明1V =1Wb/s ,上式中的k =1,所以E =ΔΦΔt设闭合电路是一个n 匝线圈,可以看作是由n 个单匝线圈串联而成,因此整个线圈中的感应电动势是单匝线圈的n 倍,即E =n ΔΦΔt磁通量改变的方式:①线圈跟磁体之间发生相对运动,这种改变方式是S 不变而相当于B 发生变化;②线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数;③线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动,其实质也是B 不变而S 增大或减小;④线圈所围面积不变,磁感应强度也不变,但二者之间夹角发生变化,如匀强磁场中转动的矩形线圈就是典型例子.3.关于磁通量变化在匀强磁场中,磁通量Φ=B ∙S ∙sin α(α是B 与S 的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S 、α不变,B 改变,这时ΔΦ=ΔB ∙S sin α②B 、α不变,S 改变,这时ΔΦ=ΔS ∙B sin α③B 、S 不变,α改变,这时ΔΦ=BS (sin α2-sin α1)当B 、S 、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。
在非匀强磁场中,磁通量变化比较复杂。
有几种情况需要特别注意:①如图所示,矩形线圈沿a →b →c 在条形磁铁附近移动,试判断穿过线圈的磁通量如何变化?如果线圈M 沿条形磁铁轴线向右移动,穿过该线圈的磁通量如何变化?(穿过上边线圈的磁通量由方向向上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到零,再变为方向向上增大)②如图所示,环形导线a 中有顺时针方向的电流,a 环外有两个同心导线圈b 、c ,与环形导线a 在同一平面内。
当a中的电流增大时,穿过线圈b 、c 的磁通量各如何变化?在相同时间内哪一个变化更大?(b 、c 线圈所围面积内的磁通量有向里的也有向外的,但向里的更多,所以总磁通量向里,a 中的电流增大时,总磁通量也向里增大。
由于穿过b 线圈向外的磁通量比穿过c 线圈的少, ab c b c所以穿过b 线圈的磁通量更大,变化也更大。
)③如图所示,虚线圆a 内有垂直于纸面向里的匀强磁场,虚线圆a 外是无磁场空间。
环外有两个同心导线圈b 、c ,与虚线圆a 在同一平面内。
当虚线圆a 中的磁通量增大时,穿过线圈b 、c 的磁通量各如何变化?在相同时间内哪一个变化更大?(与②的情况不同,b 、c 线圈所围面积内都只有向里的磁通量,且大小相同。
因此穿过它们的磁通量和磁通量变化都始终是相同的。
)2、导体做切割磁感线运动时的感应电动势(1)导体切割磁感线的速度方向与磁场方向垂直如图所示,闭合线圈中一部分导体ab 处于匀强磁场中,磁感应强度是B ,ab 以速度v 匀速切割磁力线,求产生的感应电动势。
在Δt 时间内,线框的面积变化量:ΔS =Lv Δt穿过闭合电路的的磁通量的变化量:ΔΦ=B ΔS代入公式E =t∆φ∆中,得到 E =BLv(2)导体切割磁感线的速度方向与磁场方向有一个夹角θ当导体运动方向与磁感线方向有一个夹角θ时,可以把速度分解为两个分量:垂直于磁感线的分量v ⊥=vsinθ和平行于磁感线的分量v ∥=vcosθ。
后者不切割磁感线,不产生感应电动势。
前者切割磁感线,产生感应电动势。
感应电动势的表达式为:E =BLv ⊥=BLvsinθ例题:如图所示固定于水平面上的金属框cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动。
此时abed 构成一个边长L 的正方形,棒电阻r ,其余电阻不计。
开始时磁感应强度为B 。
(1)若以t =0时起,磁感应强度均匀增加,每秒增加量为k ,同时保持棒静止,求棒中的感应电流I ;(2)在上述情况中,棒始终保持静止,当t =t 1时需加垂直于棒的水平外力F =?(3)若从t =0时起,磁感应强度逐渐减小,当棒以恒定速度v 向右匀速运动,可使棒中不产生感应电流,则磁感应强度怎样随时间变化?解析:(1)E =2B L t∆⋅∆=kL 2 I =E r=2kL r ,逆时针方向。
(2)F 外=BIL =(B +kt)2kL r ·L ,方向向右。
(3)没有感应电流,故ΔΦ=0,则有B 0L 2=BL(L +v t)所以B =20B L L vt+ 例题: 如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。
求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力的大小F ; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。
解:这是一道基本练习题,要注意计算中所用的边长是L 1还是L 2 ,还应该思考一下这些物理量与速度v 之间有什么关系。
⑴v R v L B F BIL F R E I v BL E ∝=∴===22222,,, ⑵22222v R v L B Fv P ∝== ⑶v R v L L B FL W ∝==12221 ⑷v W Q ∝= ⑸ Rt R E t I q ∆Φ==⋅=与v 无关特别要注意电热Q 和电荷q 的区别,其中Rq ∆Φ=与速度无关!例题:如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。
磁感应强度为B 的匀强磁场方向垂直于纸面向外。
金属棒ab 的质量为m ,与导轨接触良好,不计摩擦。
从静止释放后ab 保持水平而下滑。
试求ab 下滑的最大速度v m 解:释放瞬间ab 只受重力,开始向下加速运动。
随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小。
当F 增大到F=mg 时,加速度变为零,这时ab 达到最大速度。
由mg R v L B F m ==22,可得22LB mgR v m = 这道题也是一个典型的习题。
要注意该过程中的功能关系:重力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。
达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。
这时重力的功率等于电功率也等于热功率。
进一步讨论:如果在该图上端电阻的右边串联接一只电键,让ab 下落一段距离后再闭合电键,那么闭合电键后ab 的运动情况又将如何?(无论何时闭合电键,ab 可能先加速后匀速,也可能先减速后匀速,还可能闭合电键后就开始匀速运动,但最终稳定后的速度总是一样的)。
(3)说明①根据E =t∆φ∆求出的一般是Δt 时间内的平均感应电动势。
只有当Δt →0时,求出的才是瞬时感应电动势。
②根据E =BLv ⊥=BL vsinθ,如果用平均量代入,求出的平均感应电动势。
用对应的瞬时量代入,求出的是瞬时感应电动势。
③在B 、L 、v 中如果有任意两个量平行,都不会切割磁感线,感应电动势都等于零。
3、楞次定律──感应电流的方向(1)楞次定律①内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
这就是楞次定律。
②“阻碍”和“变化”的含义感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。
因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。
磁通量变化 感应电流感应电流的磁场发生电磁感应现象的这部分电路就相当于电源,在电源的内部,电流的方向是从低电势流向高电势。
产生 产生阻碍(2)利用楞次定律判定感应电流方向的一般步骤是:①明确闭合回路中引起感应电流的原磁场方向;②确定原磁场穿过闭合回路中的磁通量如何变化(是增大还是减小);③根据楞次定律确定感应电流的磁场方向.注意“阻碍”不是阻止,阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.④利用安培定则确定感应电流方向.例题:如图所示,有两个同心导体圆环。