(北师大版)必修五:1.3等差数列-课件
高中数学必修五-等差数列

等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
北师大版高中数学必修《等差数列》PPT模版教学2

若数列an已知首项 a1 且满足 an-an-1=d(n∈ N*,n≥2,d 为常数)或 an+1-an=d(n∈N*,d 为常 数),则数列an为等差数列.
可见,等差数列的意义用符号语言表示, 即a1=a,an=an-1+d(n≥2),其本质是等差数 列的递推公式.
北师大版高中数学必修《等差数列》P PT模版 教学2
你知道吗?
例如:判断下列数列是否为等差数列,如果不
是,请说明理由.
(1)
1,
1 3
,
1 3
,
1,
5 3
;
(2)1, 2, 3, 4, 5;
(3)6,6,6,6,6;
(4)0,1,3,5,7;
[点评] 等差数列的定义要求从第2项起,每项与其前一项 的差等于同一个常数,本题易把第(4)问中的数列判断成 是等差数列.
24
424
an 2 3n 1 an 3 2n 1
an an
1896 4n 1 1 1 n 1
24
北师大版高中数学必修《等差数列》P PT模版 教学2
北师大版高中数学必修《等差数列》P PT模版 教学2
an 2 3n 1 an 3 2n 1
an an
1896 4n 1 1 1 n 1
北师大版高中数学必修《等差数列》P PT模版下表所示:
年份
第1年年底 第2年年底 第3年年底 第4年年底
绿化覆盖率
22.2
23.8
25.4
27.0
(单位:%)
如果以后几年继续依此速度发展绿化,那么到第几年
年年底该区绿化覆盖率可超过35.0%?
北师大版高中数学必修《等差数列》P PT模版 教学2
最新审定北师大版数学必修五:1.2《等差数列(第1课时)》ppt(优秀课件)

[解析] (1)∵an+1-an=[3-2(n+1)]-(3-2n)=-2, 是 常数, ∴数列{an}是等差数列. (2)∵an+1-an=[(n+1)2-(n+1)]-(n2-n)=2n,不是常 数, ∴数列{an}不是等差数列.
♥ [方法总结] (1)判断一个数列是等差数列的基本方法是紧扣定义:an+1 -an=d(d为常数),也可以用an+1-an=an-an-1(n≥2)进行判断. ♥ (2)要证明一个数列不是等差数列,只需举一个反例进行否定,也可证明 an+1-an或an-an-1(n>1)不是一个常数,而是一个与n有关的变数.
最新审定北师大版数学必修五优秀课件
第一章
§2
第1课时
等差数列
等差数列的概念及通项公式
1
课前自主预习
2
课堂典例讲练
4
本节思维导图
3
易混易错点睛
5
课 时 作 业
课前自主预习
♥ 奥运会是举世瞩目、振奋人心的体育盛会.第一届现代奥运会于1896年 在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数 照算.学了本节知识后,你将知道举行奥运会的年份 1896,1900,1904,…,构成一个等差数列,你运用等差数列的知识,能 判断2008年的北京奥运会是第几届吗?你能写出举行前30届奥运会的所 有年份吗?2050应该举行奥运会吗?
1.等差数列 一般地,如果一个数列从第 2 项起,每一项与前一项的
差 是___________ 同一个常数 ,我们称这样的数列为等差数列. ________
2.等差中项 如果在 a 与 b 中间插入一个数 A,使 a,A,b 成等差数
a与b的等差中项 . 列,那么 A 叫做________________
《等差数列》公开课教学PPT课件【高中数学必修5(北师大版)】

由题意可知,本题是要回答是否存在正整数n,使得-401=-54(n-1)成立解之得n=100,即-401是这个数列的第100项。
课时小结
①等差数列定义。[21 世纪教育网
即 an an1 d (n≥2) ②等差数列通项公式 an a1 (n 1)d (n≥1) 推导出公式: an am (n m)d
②
1 ; 2 ; 3 ; 4 ,1,;
③
5555
新课学习
对于数列① an n (1≤n≤6); an an1 1(2≤n≤6)
对于数列② an 12 -2n(n≥1)
an an1 2 (n≥2)21 世纪教育网
对于数列③ an
Байду номын сангаас
n 5
(n≥1)
an
an1
1 5
(n≥2)
共同特点:从第 2 项起,第一项与它的前一项的差都等于同一个常数。
n 5
(n≥1)
由上述关系还可得: am a1 (m 1)d
即: a1 am (m 1)d
则: an a1 (n 1)d = am (m 1)d (n 1)d am (n m)d
如: a5 a4 d a3 2d a2 3d a1 4d
新课学习
例1: (1)求等差数列8,5,2…的第20项 (2)-401是不是等差数列-5,-9,-13…的项?如果是, 是第几项?
再见
新课学习
解:(1)由 a1 8, d 5 8 2 5 3 n=20,得 a20 8 (20 1) (3) 49 (2)由 a1 5, d 9 (5) 4 得数列通项公式为: an 5 4(n 1)
等差数列的定义与通项公式(北师大版,优秀获奖课件)

为同一常数,能否说明此数列为等差数列? 不能
补充2:公差d一定是由 后 项减 前 项所得, 且公差是 唯一 的常数。
补充3:判断、证明一个数列是否为等差数列的方
法:
即an an1 d (n 2)或an1 an d (n 1)
补充4:设等差数列{an}的公差为d,当d>0, d<0,d=0时,数列{an}的特点: d>0时,{an}是递增数列; d<0时,{an}是递减数列; d=0时,{an}是常数列.
公差是d,那么这个数列的通项公式是:
a1 ,
an a1 (n 1)d
1、已知等差数列的首项a1与公差d ,可求得 其任何一项; 2、在等差数列的通项公式中,a1,d,n,an 四个量中知三求一。
说明:由此可以看到:已知等差数列的两项就 可以确定这个数列.
在如下的两个数之间,插入一个什么数后这三个数 就会成为一个等差数列:
小结
1. {an}为等差数列 an= a1+(n-1) d
2
an+1- an=d
an+1=an+d
2. a、b、c成等差数列 ac b 3.更一般的情形,an=
b为a、c 的等差中项AA
an am am+(n - m) d ,d= nm
am+an=ap+aq
2b= a+c
5 D. 11
2. 在数列{an}中a1=1,an= an+1+4,则a10= -35 .
2 2 300< 83+5×(n-1)<500 44 n 84 提示: 5 5
n=45,46,…,84
2021高考数学一轮复习第6章数列第2节等差数列及其前n项和课件文北师大版

又
1 a1
=1,因此数列
1
an
是首项为1,公差为2的等差数列,所以
a1n=1+2(n-1)=2n-1,
所以an=2n1-1.]
39
2.在数列{an}中,a1=2,an是1与anan+1的等差中项. 求证:数列an-1 1是等差数列,并求{an}的通项公式.
40
[证明] 由题意知2an=1+anan+1, ∴an+11-1-an-1 1 =aan-n+11--1aan+n-1-11 =an+1·ana-n-ana+n1+-1 an+1=2ana-n-ana+n1+-1 an=1. 又a1=2,a1-1 1=1, ∴数列an-1 1是首项为1,公差为1的等差数列.
[答案](1)× (2)√ (3)√ (4)×
12
二、教材改编
1.等差数列11,8,5,…中,-49是它的( )
A.第19项
B.第20项
C.第21项
D.第22项
C [由题意知an=11+(n-1)×(-3)=-3n+14,令-3n+14 =-49得n=21,故选C.]
13
2.在等差数列{an}中a1=14.5,d=0.7,an=32,则Sn=( )
等差中项 2an-1=an+an-2(n≥3,n∈N*)成立⇔{an}是 法 等差数列
适合题型
解答题中 证明问题
30
通项公式 an=pn+q(p,q为常数)对任意的正整数n都成 选择、填
法 立⇔{an}是等差数列
空题中的
前n项和公 验证Sn=An2+Bn(A,B是常数)对任意的正整 判定问题
式法 数n都成立⇔{an}是等差数列
4
课前自主回顾
5
1.等差数列的有关概念
高中数学北师大版必修五1.2.1【教学课件】《等差数列 》

阅读教材 P10~P11 例 1 以上部分,完成下列问题。 等差数列的概念
从第 2 项起,每一项与它前一项的 差 等于 同一个常数 ,这 文字语 样的数列就叫做等差数列.称这个常数为等差数列的公差 , 言 通常用字母 d 表示 符号语 若 an-an-1=d(n≥2) ,则数列{an}为等差数列 言
北京师范大学出版社 | 必修五
第一单元 · 数列
等差数列
北京师范大学出版社 | 必修五
新课导入
1.复习数列的概念以及通项公式 2.观察几个数列如: 数列 1,2,3,4,5,…, 数列 0,0,0,0,0,…, 数列 0,2,4,6,8,10,…等。
北京师范大学出版社 | 必修五
探索新知
1. 等差数列的概念
例3: 已知等差数列{a },a =1,d= 2 ,求通项 a n n 1
根据等差数列的通项公式直接写出通项即可。 解:
an =1+(n-1)× 2
= 2n- 2+1。
北京师范大学出版社 | 必修五
方法小结:
1.总结回顾这节课都学习了哪些知识?要注意的是什么?都用 到了哪些数学思想方法?你在这节课里最大的收获是什么? 2.本节学习的重点内容是等差数列的定义及通项公式,等差数 列的基本性质是“等差”。这是我们研究有关等差数列的主要 出发点,是判断、证明一个数列是否为等差数列和解决其他问 题的一种基本方法,要注意这里的“等差”是对任意相邻两项 来说的。
当 当 当
d>0
d<0 d=0
时,{an}为 递增数列 ,如图甲所示。 时,{an}为 递减数列 ,如图乙所示。 时,{an}为
解:
北京师范大学出版社 | 必修五
变式训练2
已知数列的通项公式an=6n-1,问这个数列是等差数列吗?若是等差数 列,其首项与公差分别是多少? 解:
北师大版高中数学必修5:等差数列的前n项和_课件2(2)

方法三:由S17=S9,得a10+a11+…+a17=0, 而a10+a17=a11+a16=a12+a15=a13+a14, 故a13+a14=0. ∵d=-2<0,a1>0,∴a13>0,a14<0, 故n=13时,Sn有最大值169.
方法四:由 d=-2,知 Sn 对应的二次函数图像开口向
假设在这堆钢管旁边倒放着同样一堆钢管.
这样,每层的钢管数都等于 4+9,共有 6 层.从而原来 一堆钢管的总数为6×42+9=39.
一般地,如何求等差数列{an}的前 n 项和 Sn?
1.等差数列的前n项和公式
已知量 首项、末项与项数 (1)设数列{an}的首项 a1,公差 d.
则aa1200= =aa11+ +91d9= d=305, 0, ∴ad1==212, . ∴通项公式 an=a1+(n-1)d=10+2n.
(2)由 Sn=na1+nn- 2 1d 以及 a1=12,d=2,Sn=242, 得方程 242=12n+nn- 2 1×2, 即 n2+11n-242=0,得 n=11,或 n=-22, ∵n∈N+,∴n=11.
方法二:∵S6=S5+a6=15, ∴15=6a12+a6,即 3(a1+10)=15. ∴a1=-5,d=a6-5 a1=3. ∴a8=a6+2d=16. (2)方法一:a2+a4=a1+d+a1+3d=458, 所以 a1+2d=254. 所以 S5=5a1+12×5×(5-1)d=5a1+2×5d =5(a1+2d)=5×254=24.
[时求题,a后n,a感1=最悟后S]1,验已求证知得a1前a是1,n否项再符和由合Snna求≥n,2通时若项,符aan合n,=则先Sn统-由一Snn=用-11 一个解析式表示.若不符合,则通项公式应用分 段式表示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由题意得, a6=a1+5d>0
a7=a1+6d<0
应 用 延 2. 已知等差数列 {an} 的首项为 30 ,这个数列从 第12项起为负数,求公差d的范围。 伸 解:a12=30+11d<0 a11=30+10d≥0 ∴ -3≤d<-30/11 即公差d的范围为:-3≤d<-30/11
∴-23/5<d<-23/6 ∵d∈Z ∴d=-4
等 差 数 列 的 定 义
一般地,如果一个数列从第二项起,每
一项与它的前一项的差等于同一个常数,那
么这个数列就叫做等差数列,这个常数叫做 等差数列的公差。公差通常用字母d表示。
d:
等 差 数 列 的 公 差
1.an-an-1=d (n≥2)(数学表达式)
2.常数 如2,3,5,9,11就不是 等差数列
an=a1+(n-1)d
返 回
10 9 8 7 6 5 4
3 2 1 0
●
(1)数列:-2,0,2,4,6,8,10,…
●
●
等差数列的图象1
●
●
1
●
●
2
3
4
5
6
7
8
9
10
等 差 数 列 的 图 象 2
10 9 8 7 6 5 4
3 2 1 0
(2)数列:7,4,1,-2,…
●
●
●
1
2
3
4
●
5
6
7
2)已知a1=3,an=21,d=2,求n 3)已知a1=12,a6=27,求d 解:a6=a1+5d,即27=12+5d d=3 4)已知d=-1/3,a7=8,求a1 解:a7=a1+6d 8=a1+6×(1/3) ∴a1=10
课堂练习二
2 a3 5 d 求 1 已知等差数列 an中,
等差数列
(第一课时)
数列的定义 给出数列的方法
你还记得吗?
请看以下几例: 1) 4,5,6,7,8,9,10,· · · · · · 2) 3,0,-3,-6,-9,-12,· · · · · ·
3) 1/10,2/10,3/10,4/10,5/10· · · · · ·
4) 3,3,3,3,3,3,3,· · · · · ·
法一 a1 2d 法二
a7
5 a1 1
a7 a1 6d 13
a7 a3 4d 13
2 考虑等差数列an 中an 与 ak 关系
an a1 n 1d
ak a1 k 1d
an ak n k d
例1. 1)等差数列8,5,2,······ 的第20项是几? 2 ) -401 是不是等差数列 -5,-9,-13······ 的项?如果 是,是第几项? 等
∴ a1=1, d=2
∴a6=a1+5d=1+5×2=11 a8=a1+7d=1+7×2=15
2.在等差数列{an}中,已知a3=9,a9=3,求a12
答案:a12=0
本节小结
你都掌握 了吗?
1.等差数列的定义
2.等差数列的通项公式 及其应用
1.一个首项为 23,公差为整数的等差数列,如果前六 项均为正数,第七项起为负数,则它的公差是多少?
8
9
10
10 9 等8
(1)数列:4,4,4,4,4,4,4,…
差 数 列 的 图 象 3
7 6 5 4
3 2 1 0 1 2 3 4 5 6 7 8 9 10
● ● ● ● ● ● ● ● ● ●
在等差数列{an}中, 1)已知a1=2,d=3,n=10,求an
课 堂 练 习 一
解:a10=a1+9d=2+9×3=29 解:21=3+(n-1)×2 n=10
3.d的范围 d∈R
如果等差数列{an}的首项是 ,公差是 d,那么根据等差数列的定义得到: a
1
等 差 数 列 的 通 项 公 式
a2-a1=d
a3-a2=d a4-a3=d
a2=a1+d a3=a1+2d a4=a1+3d
an-an-1=d
an-a1=(n-1)d 由此得到
an=a1+(n-1)d
差 解: 1)由题意得,a1=8,d=-3 数 ∴a20=a1+19d=8+19×(-3)=-49 列 2)由题意得,a1=-5,d=-4,an=-401 的 应 an=a1+(n-1)d 用 -401=-5+(n-1)×(-4) ∴n=100 ∴-401是这个数列的第100项。
3)-20是不是等差数列0,-3.5,-7· · · 的 项?如果是,是第几项?如果不是, 说明理由。 解:a1=0,d=-3.5 -20=0+(n-1)×(-3.5) n=47/7 ∴-20不是这个数列中的项。
例 2. 在 等 差 数 列 { an} 中 , 已 知 a5=10,a12=31,求首项a1与公差d。
等 差 数 列 的 应 用
解:由题意,a5=a1+4d a12=a1+11d 即 10=a1+4d 31=a1+11d 解之得 a1=-2 d=3
若让求a7,怎样求?
1. 在等差数列{ an }中,已知 a2=3,a4=7,求a6、a8 课 堂 练 习 三 解:由题意得,a1+d=3, a1+3d=7