等效平衡专题教案

合集下载

等效平衡教案

等效平衡教案

等效平衡教案
高三专题复习《等效平衡》教案
 教学目标
 知识目标:使学生了解等效平衡的定义,理解常见的平衡等效类型,掌握分析平衡问题的几种方法。

 能力目标:通过对等效平衡的概念和类型的分析,培养学生的分析问题、归纳规律和应用规律的能力。

 情感目标:利用例题练习题的逐层递进,使学生获得解决问题后的成就感 一、教学方法
 讨论法、启发法
 二、教学重点
 常见的平衡等效类型、平衡状态比较的几种方法
 三、教学准备
 多媒体课件教鞭(或激光棒)
 四、教学过程
 引入:在前面我们复习了化学反应速率、化学平衡状态和影响化学平衡的条件,我们知道了如何利用正逆反应速率是否相等来判断可逆反应是否达到平衡状态,知道了改变影响平衡的一个条件,平衡移动的方向以及移动后相关量的变化。

今天我们来探讨对于同一可逆反应的几种平衡状态之间的比较。

 示例:T、V相等2SO2+O22SO。

高三化学等效平衡教案设计

高三化学等效平衡教案设计
α3
(1)在相同温度和压强下,比较下列关系(填<、>、=)
①c1c2;p1p2;α1+α21;a+b92.4。②c2c3;p2p3;α2α3;2bc。
(2)在相同温度和容积下,比较下列关系(填<、>、=)
①c1c2;p1p2;α1+α21;a+b92.4。②2c2c3;2p2p3;α2α3;2bc。
2A(g) + B(g) 3C(g) + D(s),达到平衡时,C的浓度为1.2 mol·L-1。
若维持容器的体积和温度不变,反应从逆反应开始,按不同配比作为起始物质,达到平衡时,C的浓度仍是1.2 mol·L-1,则C的起始物质的量应满足的条件是。
等效平衡
学习目标
1.等效平衡的定义、一边倒的思想进行求算
2.不同条件下转化率、热量、浓度的分析
3.利用等效平衡思想、构造容器思想进行解题
重点难点
重点:转化率、平衡移动、等效平衡的定义、一边倒的思想进行求算、构造容器思想
难点:利用构造容器思想进行解题
1.按不同方式投入反应物,进行甲、乙、丙三组实验,测得反应达到平衡时的有关数据如下
2., A是由导热材料制成的密闭容器,B是一耐化学腐蚀且易于传热的透明气囊。关闭K2,将各1molNO2通过K1、K3分别充入真空A. B中,反应起始时A. B的体积相同均为aL(忽略导管中的气体体积)。若打开K2,平衡后B容器的体积缩至0.4aL,则打开K2之前,气球B体积为___L。
3.在一个1 L的密闭容器中,加入2 mol A和1 mol B,发生下列反应:
(已知N2(g)+3H2(g) 2NH3(g) △H =-92.4kJ·mol-1)
容器

乙丙Leabharlann 反应物投入量1mol N2、3mol H2

等效平衡 专题(知识点+经典例题讲评)

等效平衡 专题(知识点+经典例题讲评)

分等效平衡专题(知识点+经典例题讲评)等效平衡专题【教学目标】1.理解等效平衡的定义;2.熟悉等效平衡的条件;3.学以致用。

【重点难点】等效平衡的判断。

【知识点+例题讲评】一、什么是等效平衡在一定条件下,对一可逆反应,起始时加入物质的物质的量不同,而达到化学平衡时,同种物质的含量相同,这两个平衡叫做等效平衡。

具体分析如下:1、一定条件指一定的温度、压强、体积以及反应前后气体总体积是否变化。

关于等效平衡的条件有以下几种情况:(1)AV^O,恒温恒容,极值等量即等效。

(2)AV^O,恒温恒压,极值等比即等效。

(3)AV=0,恒温恒容或恒温恒压,极值等比即等效。

AV工0是指反应前后气体总体积发生变化的反应。

AV=0是指反应前后气体总体积不发生变化的反应。

2、含量相同指质量分数相同、物质的量分数相同、体积分数相同。

百分含量,将质量分数、物质的量分数、体积分数换算为百分数。

3、等效指效果相同,起始时加入物质的物质的量不同,而达到化学平衡时,同种物质的含量相同。

具体有下面三种情况:①两平衡中同种物质百分含量相同、物质的量相同、物质的量浓度相同。

②两平衡中同种物质百分含量相同、物质的量浓度相同,物质的量与反应物同比例。

③两平衡中同种物质百分含量相同,物质的量、物质的量浓度分别与反应物同比例。

4、等效平衡研究的对象:有气体参加的可逆反应。

二、等效平衡举例1、A V M0,恒温恒容,极值等量即等效。

2SO2(g)+O2(g)2SO3(g)①2mol1mol0②002mol将②中2molSO3按计量系数折算成反应物SO2和O2,SO2为2mol,O2为lmol,和①中2molSO2、lmol02完全相同,相当于①和②的起始用量相同,两个反应达到平衡后必定是等效平衡。

或将①中2molSO2、分等效平衡专题(知识点+经典例题讲评)1molO2按计量系数折算为生成物S03,也是2mol,相当于①和②的起始用量也相同,两个反应达到平衡后必定是等效平衡。

等效平衡教案

等效平衡教案

等效平衡教案嘿,大家好呀!今天咱来聊聊等效平衡这个有意思的玩意儿。

你说这等效平衡像不像搭积木呀?不同的积木块可以搭出同样形状的建筑。

在化学里呢,就是不同的起始条件,最后能达到相同的平衡状态。

咱先来说说恒温恒容的情况。

这就好比是在一个固定大小的盒子里摆弄东西。

比如说有个反应,咱从这边开始放一堆反应物,从那边开始放另外一堆反应物,嘿,最后都能达到一样的平衡。

这多神奇呀!你想想,就好像你不管从哪条路走,最后都能到同一个目的地。

再说说恒温恒压,这就像是在一个可以伸缩的袋子里玩。

不管你开始放多少东西进去,袋子会根据情况自己调整。

就好比你不管带多少行李去旅行,你的背包总能装得下,神奇吧!那怎么才能搞清楚这些等效平衡呢?这可得有点小窍门。

咱得仔细分析反应的特点呀,反应物和生成物的关系呀。

就跟你解谜题一样,得一点点找线索。

比如说,有些反应前后气体分子数不变,那可就有讲究了。

你从这边放一点,从那边放很多,最后可能还是一样的效果。

这就像你不管是走大道还是抄小路,都能按时到学校一样。

还有啊,有时候得学会转化。

把一些复杂的情况变得简单点,就像把一团乱麻理清楚。

你说这等效平衡是不是很有意思呀?它让我们看到化学世界里的一种奇妙规律。

就好像生活中有些事情,看起来不一样,但本质上可能是一样的。

咱学习等效平衡,不只是为了应付考试,更是为了理解这个奇妙的化学世界呀!它让我们知道,在看似混乱的反应中,其实有着规律可循。

所以呀,大家可别小看了这等效平衡,它里面的学问大着呢!好好去探索吧,你会发现更多的惊喜哦!这就是我对等效平衡的看法啦,你们觉得呢?。

高中化学等效平衡教案

高中化学等效平衡教案

高中化学等效平衡教案
主题:等效平衡
教学目标:
1. 了解等效平衡的定义和原理;
2. 掌握等效平衡的计算方法;
3. 能够应用等效平衡解决化学计算问题。

教学重点:
1. 等效平衡的概念和定义;
2. 等效平衡的计算方法;
3. 化学计算问题中等效平衡的应用。

教学难点:
1. 等效平衡的原理理解;
2. 等效平衡的实际应用。

教学手段:
1. 多媒体课件;
2. 化学实验;
3. 互动讨论。

教学流程:
一、导入(5分钟)
1. 展示反应方程式2HCl + Na2CO3 → 2NaCl + H2O + CO2;
2. 提问:在这个反应中,HCl和Na2CO3的化学计量比分别是多少?
二、学习等效平衡(15分钟)
1. 解释等效平衡的概念和定义;
2. 讲解如何通过反应方程式得到等效平衡;
3. 举例说明等效平衡的计算方法。

三、实验操作(20分钟)
1. 进行一次模拟反应实验,观察反应过程;
2. 记录反应物质量和反应物质量之比;
3. 计算实验中的等效平衡。

四、应用练习(15分钟)
1. 给学生一组化学计算题目,要求用等效平衡解答;
2. 班内同学互相交流计算思路和结果。

五、总结(5分钟)
1. 教师总结等效平衡的重点和难点;
2. 给学生布置相关作业。

六、作业(自习)
1. 完成教师布置的作业;
2. 复习等效平衡相关知识。

教学反馈:
1. 收集学生对等效平衡的理解和应用情况;
2. 根据学生反馈调整教学内容和方法。

等效平衡问题学案定

等效平衡问题学案定

等效平衡学案教学目标:理解等效平衡含义、分析判断等效平衡状态 一、概念1、定义:在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,量分数等)均相同,这样的化学平衡互称等效平衡(包括“全等等效和相似等效”)。

2、概念的理解:(1)只要是等效平衡,平衡时同一物质的百分含量(体积分数、物质的量分数等)一定相同 (2)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。

(3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,二、判断等效平衡的方法(分类)1、 恒温、恒容条件下,对于反应前后气体分子数不同的可逆反应,转换后(按计量系数,换算成方程式同一边的物质),反应物或生成物的物质的量与原平衡相同,则两平衡等效,且平衡后同种物质的量相同。

(全等平衡)练习:2、恒温、恒容条件下,对于反应前后气体分子数不变的可逆反应,转换后(按计量系数,换算成方程式同一边的物质),反应物或生成物的物质的量的比例与原平衡相同,则两平衡等效,且平衡后同种物质的物质的量成倍数倍数关系。

练习:在一个固定容积的密闭容器中,保持一定的温度进行以下反应:H 2+Br 22HBr例:N 3H 2NH ABCD2 +2A1mol 3mol 0mol B0mol 0mol 2molC0.5mol 1.5mol 1mol Da b c3(均为等效平衡)有一体积不变的密闭容器中加入2molA 、1molB ,发生如下反应:2A(g)+B(g) 3C(g)+D(g)达到平衡状态时,C 的浓度为Wmol/L 。

若维持反应的温度和容器的体积不变,按下列四种方式改变起始物质的量,达到平衡后,C 的浓度仍为Wmol/L的是()A: 4molA +2molB B: 2molA+1molB+3molC+1molD C: 3molC+1molD + 1molB D: 3molC+1molD例:CO(g)H 0mol CO ++2O(g)A 2mol 2mol 0mol B 0mol 0mol 4mol 4mol C1mol 1mol 1mol 1mol D 4mol 4mol 2mol 2mol E X mol Y molZ mol M mol2(g)H 2(g) (ABCD 均为等效平衡)已知加入1mol H2和2mol Br2时,达到平衡后生成a mol HBr(见下表已知项),在相同条件下,且保持平衡时各组分的体积分数不变,对下列编号①~③的状态,填写下表中的空白。

高二化学教案-【化学】2.3.3《等效平衡》教案(苏教版选修4) 最新

高二化学教案-【化学】2.3.3《等效平衡》教案(苏教版选修4) 最新

第三单元第三课时等效平衡教学目标1.知识目标:建立等效平衡的观点,理解等效平衡的特征。

2.能力目标:培养学生分析、归纳与综合计算能力。

3.情感目标:结合平衡是相对的、有条件的、动态的等特点对学生进行辩证唯物主义教育,培养学生严谨的学习态度和思维习惯。

重点和难点等效平衡的建立和特征教学过程【引言】:1L容器800℃时可逆反应CO(g) + HO(g) CO2(g) + H2(g)途径1:起始0.01mol 0.01mol 0 0平衡0.005mol 0.005mol 0.005mol 0.005mol途径2:起始0 0 0.01mol 0.01mol平衡0.005mol 0.005mol 0.005mol 0.005mol 上述两种途径,同一可逆反应;外界条件相同;通过不同的途径(正向和逆向);平衡时同种物质的物质的量相等(同种物质的含量相等)-----效果相同的平衡(等效平衡)一、等效平衡当外界条件(恒温恒容或恒温恒压)一定时, 同一可逆反应无论从正反应开始还是从逆反应开始,平衡时平衡混合物中任何相同组分的分数(体积、物质的量)均相等,这样的化学平衡互称为等效平衡。

二、建立等效平衡的条件1.在恒温恒容条件下,只改变起始时加入物质的物质的量,通过可逆反应的化学计量数比换算成同一半边的物质的物质的量,与原平衡相等,则两平衡等效。

___________________N2+3H22NH3则①②③的量相当。

例1: 某温度下,在1L的密闭容器中加入1mol N2、3mol H2,使反应N2+3H2 2NH3达到平衡,测得平衡混合气中N2、H2、NH3分别为0.6 mol、1.8 mol、0.8 mol,如果温度不变,只改变初始加入的物质的量而要求达到平衡时N2、H2、NH3的物质的量仍分别为0.6 mol、1.8mol、0.8 mol,则N2、H2、NH3的加入量用X、Y、Z表示时应满足的条件:(1)若X=0,Y=0,则Z=___________。

等效平衡说课稿

等效平衡说课稿

等效平衡说课稿一、教学目标本节课的教学目标是培养学生对等效平衡的理解和应用能力。

具体目标包括:1. 知识目标:掌握等效平衡的概念和基本原理,理解等效平衡在电路中的应用。

2. 能力目标:能够通过等效电阻的计算和电路图的简化,解决与等效平衡相关的问题。

3. 情感目标:培养学生的合作意识和实践动手能力,激发学生对电路原理的兴趣。

二、教学重点和难点1. 教学重点:等效平衡的概念和基本原理,等效电阻的计算方法。

2. 教学难点:电路图的简化和等效电阻的计算过程。

三、教学过程1. 导入(5分钟)通过引入一个简单的电路问题,激发学生对等效平衡的思考,如:在一个电路中,如何找到一个等效电阻,使得整个电路中的电流和电压不发生变化?2. 概念讲解(15分钟)通过投影幻灯片,向学生介绍等效平衡的概念和基本原理。

解释等效平衡的意义和应用,并与实际生活中的例子进行对比,帮助学生更好地理解。

3. 计算方法(20分钟)通过示例演示和解析,教授等效电阻的计算方法。

分别介绍串联电阻和并联电阻的计算公式,并通过实际电路图的简化,引导学生掌握计算过程和技巧。

4. 练习与讨论(25分钟)让学生分组进行练习,并提供一些电路图和问题,要求学生通过计算等效电阻和简化电路图,解决相应的问题。

鼓励学生积极讨论和合作,加深对等效平衡的理解。

5. 拓展应用(15分钟)引导学生思考等效平衡在实际电路中的应用,如何通过等效电阻的计算和电路图的简化,解决更复杂的电路问题。

通过展示一些实际应用案例,拓宽学生的思维和应用能力。

6. 总结与反思(10分钟)对本节课的内容进行总结,并向学生提问一些问题,检查他们对等效平衡的理解程度。

鼓励学生提出自己的疑惑和思考,帮助他们进一步巩固所学知识。

四、教学手段和教学资源1. 教学手段:投影仪、幻灯片、白板、黑板、计算器等。

2. 教学资源:教材、练习题、电路图、实际应用案例等。

五、教学评价与反馈1. 教学评价:通过观察学生的课堂表现、练习题的完成情况和课堂讨论的质量,评价学生对等效平衡的理解和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复习预习1、化学平衡移动原理的内容是什么2、影响平衡移动的外界因素有哪些二、知识讲解考点1等效平衡定义对同一可逆反应,在一定条件下(常见的为恒温恒容或恒温恒压),起始投料方式不同(从正、逆或中间等方向开始),若达到的化学平衡同种物质的百分含量均相同,这样的平衡状态互称为等效平衡。

考点2等效平衡的常见分类和状态以如下反应为例:mA(g)+nB(g)pC(g)+qD(g)(1)如果m+n≠p+q①恒温恒容:使用极限转化分析法,一边倒后相同起始物质的物质的量相等。

达到平衡后各物质浓度相等,百分含量相等,体积没变化,压强没有变化,达到平衡后正逆反应速率相同。

唯一不同的是根据投料方式的不同会导致反应热不同。

②恒温恒压:一边倒后相同起始物质的物质的量之比相等。

达到平衡后各物质浓度相等,百分含量相等,体积可有变化,压强没有变化,达到平衡后正逆反应速率相同。

根据投料的量和方式的不同会导致反应热不同。

(2)如果m+n = p+q③一边倒后相同起始物质的物质的量之比相等。

恒温恒压的话,达到平衡后体积未必相等;恒温恒容的话,除了体积相等,达到平衡后各物质浓度、压强、正逆反应速率都可能不同。

两种情况下反应热根据投料的量和方式的不同而不同。

比较见下表1.等效平衡解题建模过程对于反应N 2(g)+3H 2(g)2NH 3(g),按照①、②、③的投料方式进行反应,(1)恒温恒容下,则所能达到等效平衡的状态为:①=②≠③。

③为①或②、④进行加压后的情况,对于这种△vg<0的情况,压强增大,平衡向正方向 移动, N 2转化率升高。

(2③。

2(g)(3基于上面几种类型的建模过程,对照表1三、例题精析【例题1】3和2PCl 1.0molP Cl 3和0.4mol【答案】C【解析】此题属于恒温恒容,△Vg ﹤0。

移走后,相当于一开始就是1.0mol PCl 3和0.5mol Cl 2在反应。

若平衡不移动,PCl 5为0.2 mol 。

若用虚拟隔板将体积压缩为一半,则移走前后互为等效平衡。

实际情况是要把隔板抽掉,压强变小,平衡左移,选C。

【例题2】【题干】温度为T时,向2.0L恒容密闭容器中充入1.0 molPCl 5,反应PCl5(g)PCl3(g)+Cl2下列说法正确的是A.反应在前50 s的平均速率为v(PCl3)=0.0032 mol•L-1•s-1B.保持其他条件不变,若升高温度,平衡时,c(PCl3)=0.11 mol•L-1,则反应为放热反应C.相同温度下,起始时向容器中充入1.0molPCl5、0.20molPCl3和0.20molCl2,达到平衡前v(正)>v(逆)D.相同温度下,起始时向容器中充入 2.0molPCl3、2.0molCl2,达到平衡时,PCl3的转化率小于80%【答案】C【解析】此反应初始平衡状态用三行式分析如下:PCl 5(g)PCl3(g)+Cl2(g)C0(mol/L) 0.5 0 0C变(mol/L) 0.1 0.1 0.1C平(mol/L) 0.4 0.1 0.1A、由表中数据可知50s内,△n(PCl3)=0.16mol,根据v=△nV△t计算v(PCl3);B、由表中数据可知,平衡时n(PCl3)=0.2mol,保持其他条件不变,升高温度,平衡时,c(PCl3)=0.11 mol/L,则n′(PCl3)=0.22mol,根据平衡时n(PCl3),判断平衡移动方向,升高温度平衡向吸热反应方向移动;C.先求得平衡常数K=(0.1)2/0.4=0.025,再求相同温度下,更换投料方式后的浓度商Qc=(0.1)2/0.5=0.02, Qc﹤K,相当于在原来的平衡基础上增大了反应物的浓度(原平衡状态即为参照系),正逆反应速率均增大,要达到新的平衡分子应减小,分母应增大,平衡向正反应方向移动,达到平衡前v(正)>v(逆)。

D.本题原平衡中PCl5的转化率为20%,采用一边倒的极限转化分析,若投料方式从逆向开始,则转化率为80%。

先建立原容器体积的两倍的模型,可得等效平衡的参照系,再把容器压缩为原容器,则平衡向逆反应方向移动,PCl3的转化率应大于80%。

【例题3】【题干】向体积不变的密闭容器中充入2 mol N2和6 mol H2,一定条件下发生反应:N2(g)+3H 2(g)2NH3(g),平衡时混合气体共7 mol。

令a、b、c分别代表N2、H2、NH3起始加入的物质的量,维持温度不变,使达到平衡时各成分的百分含量不变。

则:(1)若a=0,b=0,则c=;(2)若a=0.7,b=2.1,则:①c=②这时反应向进行;③若要维持反应开始时即向该反应方向进行,c的取值范围是;(3)欲使起始反应维持向正方向进行,则b的取值范围是。

【答案】⑴c=4;(2) ① c=2.6,②起始量5.4mol(0.7mol+2.1mol+2.6mol) ﹤7mol,向生成气体更多物质的量的逆向进行。

③为了维持反应开始向逆向进行,c:1<c≤4。

(3)b:4.5<b≤6。

【解析】根据题意,可以列三行式求得达到平衡时平衡时各成分的物质的量,设平衡时N2转化了x mol,N 2(g)+3H2(g)2NH3(g)n0 (mol) 2 6 0n变(mol)x 3x 2xn平(mol)2-x 6-3x 2x依题意:(2-x)+(6-3x)+2x=7,x=0.5。

该题属于恒温恒容,△Vg≠0,一边倒后跟起始投料量完全一致时才能够达到等效平衡。

可利用极限转化(极转)的思维进行分析。

N 2 + 3H22NH3n(原始投料/mol) 2 6 0n(其他投料/mol) a b cn(等效平衡投料/mol)a+c/2=2 b+3c/2=6 0n(平衡投料/mol) 1.5 4.5 1n(逆向投料/mol) 0 0 4解得(1)c=4;(2) ① c=2.6,②起始量5.4mol(0.7mol+2.1mol+2.6mol) ﹤7mol,向生成气体更多物质的量的逆向进行。

③为了维持反应开始向逆向进行,c:1<c≤4。

(3)b:4.5<b≤6。

四、课堂运用【基础】1.在一密闭的容器中充入2 mol A和1 mol B发生反应:2A(g)+B(g)→xC(g),达到平衡后,C的体积分数为w%;若维持容器的容积和温度不变,按起始物质的量A:0.6mol、B:0.3 mol、C:1.4 mol充入容器,达到平衡后,C的体积分数仍为w%,则x的值为( )A、只能为2B、只能为3C、可能为2,也可能为3D、无法确定【答案】C【解析】包括两种情况。

若x等于3,则这一反应是一个前后气体体积不变的类型,因此只要满足第二种投料方式中按化学计量数换算成平衡式左右两边同一边物质的物质的量之比与第一种投料方式相等即可达到等效平衡。

若x不等于3,则须满足第二种投料方式中通过可逆反应的化学计量数比换算成平衡式左右两边同一边物质的物质的量与第一种投料方式完全相等,才能使两平衡等效。

2.一定温度下,在恒容密闭容器中发生如下反应:2A(g)+B(g)3C(g),若反应开始时充入2 mol A和2 mol B,达平衡后A的体积分数为a%。

其他条件不变时,若按下列四种配比作为起始物质,平衡后A的体积分数小于a%的是( )A、2 mol CB、2 mol A和1 mol BC、1 mol B和1 mol CD、2 mol A、3 mol B和3 mol C【答案】C【解析】由于压强改变对平衡移动无影响,故平衡后A的体积分数只与起始加入的A、B物质的量之比有关。

假设反应都向逆反应进行到底,按四种配比加入起始物质,可等效转换成起始加入A、B的物质的量之比为:A.n(A)∶n(B)=2∶1 B.n(A)∶n(B)=2∶1C.n(A)∶n(B)=1∶2 D.n(A)∶n(B)=1∶1平衡后A的体积分数为a%时,起始加入的A、B物质的量之比为1∶1。

若平衡后A的体积分数小于a%,则起始加入A、B的物质的量之比应小于1∶1。

3.已知:H2(g)+I2(g)2HI(g) ΔH<0。

有相同容积的定容密闭容器甲和乙,甲中加入H2和I2各0.1 mol,乙中加入HI 0.2 mol,相同温度下分别达到平衡。

欲使甲中HI的平衡浓度大于乙中HI的平衡浓度,应采取的措施是( )A、甲、乙提高相同温度B、甲中加入0.1 mol He,乙不变C、甲降低温度,乙不变D、甲增加0.1 mol H2,乙增加0.1 mol I2【答案】C【解析】0.2 mol HI相当于H2、I2各0.1 mol,所以甲、乙在题述情况下达到的平衡是等效的。

A项,甲、乙提高相同温度,仍等效;B项,甲中加入0.1 mol He对反应无影响;C 项,甲降低温度,平衡右移,HI的浓度增大;D项,甲增加0.1 mol H2,乙增加0.1 mol I2,平衡都向右移动,HI的浓度都增大。

【巩固】1. 已知2SO 2 (g) + O2 (g) 2SO3 (g);ΔH=-197 kJ·mol-1。

向同温、同体积的三个密闭容器中分别充入气体:(甲) 2 mol SO2和1 mol O2;(乙) 1 mol SO2和0.5 mol O2;(丙) 2 mol SO3。

恒温、恒容下反应达平衡时,下列关系一定正确的是()A.容器内压强P:P甲=P丙 > 2P乙B.SO3的质量m:m甲=m丙 > 2m乙C.c(SO2)与c(O2)之比k:k甲=k丙 > k乙D.反应放出或吸收热量的数值Q:Q甲=Q丙 > 2Q乙【答案】B【解析】恒温恒容,△Vg≠0,投料要一边倒后相等才是等效平衡,甲、丙属于此类,只是能量变化完全相反。

隐含的关系为 lQ甲l+lQ丙l=197,转化率不一定为50%,所以Q甲不一定等于Q丙,D错,而平衡时m甲=m丙是正确的。

把甲装置用虚拟隔板均分两部分,其中一部分可作为参照系,之与乙的投料方式互为等效平衡,可见乙容器的真实状态是体积增大,压强变小,平衡向生成更多的气体即逆向移动。

如果平衡不移动则SO3的质量:m甲=2m乙,实际m甲>2m乙,B对;若不移动压强:P甲=2P乙,实际P甲<2P乙,A错; c(SO2)与c(O2)之比k:因为投料比和变化都正好成比例,所以不管什么反应状态下,都有k甲=k丙=k乙,C错。

2. 有甲、乙两个完全相同的容器,发生反应A(g) + 2B(g)= 2C(g),向甲容器中加入1molA(g)和4molB(g),在一定条件下达到平衡时的热效应(吸热或放热)为Q,在相同条件下向乙容器中加入2molC(g) 和2molB(g),达到平衡时的热效应(放热或吸热)为4Q。

则甲容器中B 的转化率为。

相关文档
最新文档