07年高考数学(理科)试卷及答案(湖南卷)
2007年高考真题试卷(全国卷Ⅰ)数学(理科)参考答案

2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D(11)C(12)A二、填空题:(13)36(14)3()x x ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭ 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯ 240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥,故SA AD ⊥,由AD BC ==,SA =AO 1SO =,SD =.SAB △的面积112S AB ==连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = , 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C ,(001)S ,,,(0CB =,0SA CB =,所以SA BC ⊥. (Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =. cos 11OG DS OG DSα==,sin 11β= 所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数, 所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=, 所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+ 21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,221132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a -是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -≤,也即430k k b a -< 当1n k =+时,13423k k k b b b ++=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(32)2)23k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年高考理科数学试题及参考答案(湖南卷)

第三单元“关注经济生活”,引导学生在 理解身边的经济生活的同时,学会用法律来维 护个人经济生活中的正当权益。 第四单元“做负责任的公民”,是把学生 对个人生命的理解融入到现代社会生活之中, 感受个人在社会生活中的责任,增强责任意识, 学会在积极完善自我的同时,对社会负责,提 高个人对社会的认同。 第五单元“生活在法律的保护中”,引导 学生在初识法律、不违法犯罪的基础上,初步 理解现代法律之于个人生活的意义,学会运用 法律来保护自我,增进对法律的理性认同。
第二单元 在成长的道路上 本单元主题“在成长的道路上”,旨在 帮助中学生正确认识挫折和逆境,锻炼学生 坚强的意志品质,提高化解矛盾、应对挫折 的能力,引导中学生养成积极达观、勇敢向 上的意志品质。 第一节 感受成长 第二节 直面挫折 第三节 立志与成功
第三单元 相处之道 与家长、老师、同学的交往乃是中学生活 的主要内容,为此,我们设计了“相处之 道”,意在使学生通过体验、了解与自己生 活中最切近的人的交往,来理解、领会与人 相处的道理,学习、掌握在不断拓展的生活 中与人交往的艺术。 第一节 亲子之间 第二节 师生之间 第三节 与友同行
法律伴我们健康成长 勿以恶小而为之 做守法护法的好公民
6.教材的前后连接
本册教材紧扣不断拓展的学生生活为主 线,从学生身边的家庭、学校、班级生活, 逐步扩展到社会公共生活。
1.本册教材基本主题
本册教材以“让青春充满活力”、“做
八 年 级 上 册
教 材 解 读
负责任的公民”为基本生活主题,引导学生
其次,进一步引导中学生从关注周围的生 命世界开始,去感悟生命,理解生命的价值, 提高学生的生命意识。 然后,把学生的视野引向社会,从对与个 人密切相关的经济生活入手,拓展学生的社会 生活视野。
2007年高考理科数学试题及参考答案(湖南卷)

俯视图侧视图正视图3342007年普通高等学校招生全国统一考试(湖南卷)数学((理科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合33{|0},{|||},""""122x P x Q x x m P m Q x =≤=-≤∈∈-那么是的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.公差不为0的等差数列{}n a 中,2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a =,则20062008b b =( )A .4B .8C .16D .363. 若纯虚数z 满足2(2i)4(1i)z b -=-+(其中i 是虚数单位,b 是实数),则b =( )A .2-B .2C .-4D .44.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 123B. 363C. 273D. 65.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则OM ·ON =( ) A .- 1 B .- 1 C . - 2 D .2 6.设0(sin cos )a x x dx π=+⎰,则二项式61()a x x-,展开式中含2x 项的系数是( )A. 192-B. 192C. -6D. 6 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )8.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x ,若A B C D12012x x <<<<,则ba的取值范围是( ) A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--第Ⅱ卷(非选择题)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9. 右图是2008年北京奥运会上,七位评委为某奥运项目打出 的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为 .10.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为_______.11. 在如下程序框图中,已知:0()x f x xe =,则输出的是_________ _.12. 设椭圆()222210x y a b a b+=>>的两个焦点分别为12,F F ,点P 在椭圆上,且120PF PF ⋅= ,123tan 3PF F ∠=,则该椭圆的离心率为 .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.设R 为l 上任意一点,则RP 的最小值 .14. (不等式选讲选做题)若关于x 的不等式1x x a +-<(a ∈R )的解集为∅,则a 的取值范围是 .15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c ,若cos cos A bB a= 且sin cos C A = (Ⅰ)求角A 、B 、C 的大小;(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离.7 98 4 4 6 4 7 9 3否 是开始 输入f 0 (x ) 0=i )()(1'x f x f i i -= 结束1+=i i i =2009输出 f i (x )17. (本小题满分13分)在2008年北京奥运会某项目的选拔比赛中, A 、B 两个代表队进行对抗赛, 每队三名队员, A 队队员是123,A A A 、、B 队队员是123,B B B 、、按以往多次比赛的统计, 对阵队员之间胜负概率如下表, 现按表中对阵方式出场进行三场比赛, 每场胜队得1分,负队得0分, 设A 队、B 队最后所得总分分别为ξ、η, 且3ξη+=.(Ⅰ)求A 队得分为1分的概率;(Ⅱ)求ξ的分布列;并用统计学的知识说明哪个队实力较强.18. (本小题满分13分)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,左右顶点分别为A C 、,上顶点为B ,过C B F ,,三点作圆P ,其中圆心P 的坐标为()n m ,.(Ⅰ)当0m n +≤时,椭圆的离心率的取值范围. (Ⅱ)直线AB 能否和圆P 相切?证明你的结论.19. (本小题满分13分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (III )求二面角B -A 1P -F 的余弦值. 20. (本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4, 公差为2的等差数列.(Ⅰ)求证:数列{}n a 是等比数列;(Ⅱ) 若()n n n b a f a =⋅,当2k =时,求数列{}n b 的前n 项和n S ;(III )若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由. 21. (本小题满分14分)已知函数F (x )=|2x -t |-x 3+x +1(x ∈R ,t 为常数,t ∈R ).对阵队员A 队队员胜 A 队队员负 1A 对1B 23 132A 对2B 25 353A 对3B 37 35(Ⅰ)写出此函数F (x )在R 上的单调区间;(Ⅱ)若方程F (x )-k =0恰有两解,求实数k 的值.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分. 文科共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2007年普通高等学校招生考试湖南理

2007年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)全解全析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数22i 1+i ⎛⎫⎪⎝⎭等于( )A .4iB .4i -C .2iD .2i -【答案】C【解析】2222i 4i 42i.1+i (1+i)2i -⎛⎫=== ⎪⎝⎭ 2.不等式201x x -+≤的解集是( ) A .(1)(12]-∞--,,B .[12]-,C .(1)[2)-∞-+∞,, D .(12]-,【答案】D 【解析】由201x x -+≤得(2)(1)010x x x -+⎧⎨+≠⎩≤,所以解集为(12]-,.3.设M N ,是两个集合,则“M N ≠∅”是“MN ≠∅”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【解析】由韦恩图知MN ≠∅⇒/MN ≠∅;反之,M N ≠∅.M N ⇒≠∅4.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b【答案】A【解析】222()()()(||||)f x x x x x =+-=-+-+a b a b a b a b a b ,若函数()f x的图象是一条直线,即其二次项系数为0, ∴a b =0, ⇒⊥a b.5.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( ) A .0.025B .0.050C .0.950D .0.975【答案】C【解析】ξ服从标准正态分布(01)N ,,(|| 1.96)( 1.96 1.96)P P ξξ⇒<=-<<= (1.96)( 1.96)12( 1.96)120.0250.950.ΦΦΦ--=--=-⨯=6.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .1 【答案】B.【解析】由图像易知交点共有3个。
2007年普通高等学校招生全国统一考试理科数学试卷及答案-湖南卷

密★启用前2007 年一般高等学校招生全国一致考试(湖南卷)数学(理工农医类)本卷分第Ⅰ卷()和第Ⅱ卷(非)两部分,分150 分.考用120 分 .参照公式 :假如事件、互斥,那么假如事件、互相独立,那么假如事件在一次中生的概率是,那么次独立重复中恰巧生次的概率是球的体公式 ,球的表面公式,此中表示球的半径一、:本大共 10 小,每小 5 分,共 50 分.在每小出的四个中,只有一是切合目要求的.1.复数等于()A .B .C.D.2.不等式的解集是()A .B. C. D.3.是两个会合,“”是“”的()A .充足不用要条件B .必需不充足条件C.充足必需条件 D .既不充足又不用要条件4.是非零向量,若函数的象是一条直,必有()A .B .C. D .5.随机量听从准正散布,已知,=()A . 0.025B. 0.050C. 0.950D. 0.9756.函数的象和函数的象的交点个数是()A . 4B .3C. 2 D .17.以下四个命中,不正确的是()...A.若函数在,B.函数的不点是和C.若函数,足,D.8.棱 1 的正方体的8 个点都在球的表面上,分是棱,的中点,直被球截得的段()A .B.C.D.9.分是()的左、右焦点,若在其右准上存在使段的中垂点,离心率的取范是()A .B.C.D.10.会合,都是的含两个元素的子集,且足:随意的,(,),都有(表示两个数中的小者),的最大是()A.10 B .11C. 12 D .13二、填空:本大共 5 小,每小 5 分,共 25 分.把答案填在横上.11.心且与直相切的的方程是.12.在中,角所的分,若,b=,,,.13.函数在区上的最小是.14.会合,,,(1)的取范是;(2)若,且的最大9,的是.15.将三角中的奇数成1,偶数成 0,获得如 1 所示的 0-1 三角数表.从上往下数,第 1 次全行的数都 1 的是第 1 行,第 2 次全行的数都 1 的是第 3 行,⋯,第次全行的数都 1 的是第行;第61 行中 1 的个数是.第 1 行11第 2 行101第 3 行1111第 4 行 1 0001第 5 行 1 10011⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1三、解答:本大共 6 小,共75 分.解答写出文字明、明程或演算步.16.(本小分12 分)已知函数,.(I )是函数象的一条称,求的.(II )求函数的增区.17.(本小分12 分)某地域下人免供给会和算机培,以提升低人的再就能力,每名下人能够参加一培、参加两培或不参加培,已知参加会培的有60% ,参加算机培的有75% ,假每一个人培目的是互相独立的,且各人的互相之没有影响.(I )任 1 名下人,求人参加培的概率;(II )任 3 名下人, 3 人中参加培的人数,求的散布列和希望.18.(本小分12 分)如2,分是矩形的的中点,是上的一点,将,分沿翻折成,,并,使得平面平面,,且.,如 3.A DFEGB C23(I )明:平面平面;(II )当,,,求直和平面所成的角.19.(本小分12 分)如 4,某地了开旅行源,欲修筑一条接景点和居民区的公路,点所在的山坡面与山脚所在水平面所成的二面角(),且,点到平面的距离( km ).沿山脚原有一段笔挺的公路可供利用.从点到山脚修路的造价万元 /km,原有公路改建用万元 /km .当山坡上公路度 km(),其造价万元.已知,,,.(I )在上求一点,使沿折修筑公路的造价最小;(II )于( I )中获得的点,在上求一点,使沿折修筑公路的造价最小.( III )在上能否存在两个不一样的点,,使沿折修筑公路的造价小于(II )中获得的最小造价,明你的.20.(本小分12 分)已知双曲的左、右焦点分,,点的直与双曲订交于两点.(I )若点足(此中坐原点),求点的迹方程;(II )在上能否存在定点,使· 常数?若存在,求出点的坐;若不存在,明原因.21.(本小分13 分)已知()是曲上的点,,是数列的前和,且足,,⋯.(I )明:数列()是常数数列;(II )确立的取会合,使,数列是增数列;(III )明:当,弦()的斜率随增.2007 年一般高等学校招生全国一致考试(湖南卷)数学(理工农医类)参照答案一、:本大共10 小,每小有一是切合目要求的.1.C2.D3. B4.A5.C 5 分,共6. B50 分.在每小出的四个中,只7.C 8.D9.D10.B二、填空:本大共 5 小,每小 5 分,共25 分.把答案填在横上.11.12.13.14.( 1)( 2)15., 32三、解答:本大共 6 小,共75 分.解答写出文字明、明程或演算步.16.解:( I )由知.因是函数象的一条称,因此,即().因此.当偶数,,当奇数,.(II ).当,即(),函数是增函数,故函数的增区是().17.解:任选 1 名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与互相独立,且,.(I )解法一:任选 1 名下岗人员,该人没有参加过培训的概率是因此该人参加过培训的概率是.解法二:任选 1 名下岗人员,该人只参加过一项培训的概率是该人参加过两项培训的概率是.因此该人参加过培训的概率是.(II )由于每一个人的选择是互相独立的,因此 3 人中参加过培训的人数听从二项散布,,,即的散布列是01230.0010.0270. 2430.729的希望是.(或的希望是)18.解:解法一:(I)由于平面平面,平面平面,,平面,因此平面,又平面,因此平面平面.(II )过点作于点,连接.由( I)的结论可知,平面,因此是和平面所成的角.由于平面平面,平面平面,,平面,因此平面,故.由于,,因此可在上取一点,使,又由于,因此四边形是矩形.由题设,,,则.因此,,,.由于平面,,因此平面,进而.故,.又,由得.故.即直线与平面所成的角是.解法二:( I )由于平面平面,平面平面,,平面,因此平面,进而.又,因此平面.由于平面,因此平面平面.(I I )由( I )可知,平面.故能够为原点,分别以直线为轴、轴、轴成立空间直角坐标系(如图),由题设,,,则,,,有关各点的坐标分别是,,,.因此,.设是平面的一个法向量,由得故可取.过点作平面于点,由于,因此,于是点在轴上.由于,因此,.设(),由,解得,因此.设和平面所成的角是,则.故直线与平面所成的角是.19.解:( I )如图,,,,由三垂线定理逆定理知,,因此是山坡与所成二面角的平面角,则,A .设,.则O.E D记总造价为万元,据题设有B当,即时,总造价最小.(I I )设,,总造价为万元,依据题设有.则,由,得.当时,,在内是减函数;当时,,在内是增函数.故当,即( km)时总造价最小,且最小总造价为万元.(I II )解法一:不存在这样的点,.事实上,在上任取不一样的两点,.为使总造价最小,明显不可以位于与之间.故可设位于与之间,且 =,,,总造价为万元,则.近似于( I)、( II )议论知,,,当且仅当,同时成即刻,上述两个不等式等同时成立,此时,,获得最小值,点分别与点重合,因此不存在这样的点,使沿折线修筑公路的总造价小于( II )中获得的最小总造价.解法二:同解法一得.当且仅当且,即同时成即刻,获得最小值,以上同解法一.20.解:由条件知,,设,.解法一:( I )设,则则,,,由得即于是的中点坐标为.当不与轴垂直时,,即.又由于两点在双曲线上,因此,,两式相减得,即.将代入上式,化简得.当与轴垂直时,,求得,也知足上述方程.因此点的轨迹方程是.(I I )假定在轴上存在定点,使为常数.当不与轴垂直时,设直线的方程是.代入有.则是上述方程的两个实根,因此,,于是.由于是与没关的常数,因此,即,此时=.当与轴垂直时,点的坐标可分别设为,,此时.故在轴上存在定点,使为常数.解法二:( I )同解法一的(I)有当不与轴垂直时,设直线的方程是.代入有.P H是上述方程的两个根,因此..由①②③得.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯④.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⑤当,,由④⑤得,,将其代入⑤有.整理得.当,点的坐,足上述方程.当与垂直,,求得,也足上述方程.故点的迹方程是.(II )假在上存在定点点,使常数,当不与垂直,由( I)有,.以上同解法一的( II ).21.解:( I )当,由已知得.因,因此.⋯⋯⋯⋯⋯⋯⋯①于是.⋯⋯⋯⋯⋯⋯⋯⋯②由②-①得.⋯⋯⋯⋯⋯⋯⋯⋯③于是.⋯⋯⋯⋯⋯⋯⋯⋯④由④-③得,⋯⋯⋯⋯⋯⋯⋯⋯⑤因此,即数列是常数数列.(II )由①有,因此.由③有,,因此,.而⑤表示:数列和分是以,首, 6 公差的等差数列,因此,,,数列是增数列且随意的成立.且.即所求的取会合是.(III )解法一:弦的斜率任取,函数,,,当,,在上增函数,当,,在上减函数,因此,,进而,因此在和上都是增函数.由( II )知,,数列增,取,因,因此.取,因,因此.因此,即弦的斜率随增.解法二:函数,同解法一得,在和上都是增函数,因此,.故,即弦的斜率随增.。
2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)求值sin210°=()A.B.﹣C.D.﹣2.(5分)函数y=|sinx|的一个单调增区间是()A.B.C.D.3.(5分)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i4.(5分)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln25.(5分)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣6.(5分)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)7.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.8.(5分)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.9.(5分)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣310.(5分)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种11.(5分)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.12.(5分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1+2x2)(x﹣)8的展开式中常数项为.14.(5分)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.15.(5分)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.16.(5分)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y (1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.18.(12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).19.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.20.(12分)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.21.(12分)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;,其中n为正整数.(2)设,求证b n<b n+122.(12分)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅱ)求值sin210°=()A.B.﹣C.D.﹣【分析】通过诱导公式得sin 210°=﹣sin(210°﹣180°)=﹣sin30°得出答案.【解答】解:∵sin 210°=﹣sin(210°﹣180°)=﹣sin30°=﹣故答案为D2.(5分)(2007•全国卷Ⅱ)函数y=|sinx|的一个单调增区间是()A.B.C.D.【分析】画出y=|sinx|的图象即可得到答案.【解答】解:根据y=|sinx|的图象,如图,函数y=|sinx|的一个单调增区间是,故选C.3.(5分)(2007•全国卷Ⅱ)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i【分析】将复数z设a+bi,(a,b∈R),代入复数方程,利用复数相等的条件解出复数z.【解答】解:设复数z=a+bi,(a,b∈R)满足=i,∴1+2i=ai﹣b,,∴z=2﹣i,故选C.4.(5分)(2007•全国卷Ⅱ)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln2【分析】根据lnx是以e>1为底的单调递增的对数函数,且e>2,可知0<ln2<1,ln(ln2)<0,故可得答案.【解答】解:∵0<ln2<1,∴ln(ln2)<0,(ln2)2<ln2,而ln=ln2<ln2,∴最大的数是ln2,故选D.5.(5分)(2007•全国卷Ⅱ)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣【分析】本题要求字母系数,办法是把表示出来,表示时所用的基底要和题目中所给的一致,即用和表示,画图观察,从要求向量的起点出发,沿着三角形的边走到终点,把求出的结果和给的条件比较,写出λ.【解答】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.6.(5分)(2007•全国卷Ⅱ)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【分析】首先不等式的分母可化为(x+2)(x﹣2),不等式的分子和分母共由3个一次因式构成.要使得原不等式大于0,可等同于3个因式的乘积大于0,再可根据串线法直接求解.【解答】解:依题意,原不等式可化为等同于(x+2)(x﹣1)(x﹣2)>0,可根据串线法直接解得﹣2<x<1或x>2,故答案应选B.7.(5分)(2007•全国卷Ⅱ)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【分析】根据正三棱柱及线面角的定义知,取A1C1的中点D1,∠B1AD1是所求的角,再由已知求出正弦值.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.8.(5分)(2007•全国卷Ⅱ)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.【分析】根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.【解答】解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.9.(5分)(2007•全国卷Ⅱ)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣3【分析】平移向量=(h,k)就是将函数的图象向右平移h个单位,再向上平移k个单位.【解答】解:把函数y=e x的图象按向量=(2,3)平移,即向右平移2个单位,再向上平移3个单位,平移后得到y=f(x)的图象,∴f(x)=e x﹣2+3,故选C.10.(5分)(2009•湖北)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【分析】分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,首先从5人中抽出两人在星期五参加活动,有C52种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有A32种情况,则由分步计数原理,可得不同的选派方法共有C52A32=60种,故选B.11.(5分)(2007•全国卷Ⅱ)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.【分析】由题设条件设|AF2|=1,|AF1|=3,双曲线中2a=|AF1|﹣|AF2|=2,,由此可以求出双曲线的离心率.【解答】解:设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,设|AF2|=t,|AF1|=3t,(t>0)双曲线中2a=|AF1|﹣|AF2|=2t,t,∴离心率,故选B.12.(5分)(2007•全国卷Ⅱ)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9【分析】先设A(x1,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,再依据=0,判断点F是△ABC重心,进而可求x1+x2+x3的值.最后根据抛物线的定义求得答案.【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1∵=,∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅱ)(1+2x2)(x﹣)8的展开式中常数项为﹣42.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4214.(5分)(2007•全国卷Ⅱ)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.【分析】根据ξ服从正态分布N(1,),得到正态分布图象的对称轴为x=1,根据在(0,1)内取值的概率为0.4,根据根据随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,得到随机变量ξ在(0,2)内取值的概率.【解答】解:∵测量结果ξ服从正态分布N(1,),∴正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,∴随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,∴随机变量ξ在(0,2)内取值的概率为0.8.故答案为:0.815.(5分)(2007•全国卷Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为2+4cm2.【分析】本题考查的知识点是棱柱的体积与表面积计算,由一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,我们根据球的直径等于棱柱的对角线长,我们可以求出棱柱的各棱的长度,进而得到其表面积.【解答】解:由一个正四棱柱的各个顶点在一个直径为2cm的球面上.正四棱柱的对角线的长为球的直径,现正四棱柱底面边长为1cm,设正四棱柱的高为h,∴2R=2=,解得h=,那么该棱柱的表面积为2+4cm2.故答案为:2+416.(5分)(2007•全国卷Ⅱ)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.【分析】由通项公式知该数列是等差数列,先求出首项和公差,然后求出其前n 项和,由此能得到的值.【解答】解:∵数列的通项a n=﹣5n+2,∴a1=﹣3,a2=﹣8,d=﹣5.∴其前n项和为S n,则=﹣.故答案为:﹣.三、解答题(共6小题,满分70分)17.(10分)(2007•全国卷Ⅱ)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y(1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.【分析】(1)由内角A=,边BC=2,设内角B=x,周长为y,我们结合三角形的性质,△ABC的内角和A+B+C=π,△ABC的周长y=AB+BC+AC,我们可以结合正弦定理求出函数的解析式,及自变量的取值范围.(2)要求三角函数的最值,我们要利用辅助角公式,将函数的解析式,化为正弦型函数的形式,再根据正弦型函数的最值的求法进行求解.【解答】解:(1)△ABC的内角和A+B+C=π,由得.应用正弦定理,知,.因为y=AB+BC+AC,所以,(2)∵=,所以,当,即时,y取得最大值.18.(12分)(2007•全国卷Ⅱ)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).【分析】(1)有放回地抽取产品二次,每次随机抽取1件,取出的2件产品中至多有1件是二等品包括无二等品和恰有一件是二等品两种情况,设出概率,列出等式,解出结果.(2)由上面可以知道其中二等品有100×0.2=20件取出的2件产品中至少有一件二等品的对立事件是没有二等品,用组合数列出结果.【解答】解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”.则A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)=P(A0)+P(A1)=(1﹣p)2+C21p(1﹣p)=1﹣p2于是0.96=1﹣p2.解得p1=0.2,p2=﹣0.2(舍去).(2)记B0表示事件“取出的2件产品中无二等品”,则.若该批产品共100件,由(1)知其中二等品有100×0.2=20件,故.19.(12分)(2007•全国卷Ⅱ)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.【分析】法一:(1)作FG∥DC交SD于点G,则G为SD的中点.要证EF∥平面SAD,只需证明EF平行平面SAD内的直线AG即可.(2)取AG中点H,连接DH,说明∠DMH为二面角A﹣EF﹣D的平面角,解三角形求二面角A﹣EF﹣D的大小.法二:建立空间直角坐标系,平面SAD即可证明(1);(2)求出向量和,利用,即可解答本题.【解答】解:法一:(1)作FG∥DC交SD于点G,则G为SD的中点.连接,又,故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD.所以EF∥平面SAD.(2)不妨设DC=2,则SD=4,DG=2,△ADG为等腰直角三角形.取AG中点H,连接DH,则DH⊥AG.又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A,所以DH⊥面AEF.取EF中点M,连接MH,则HM⊥EF.连接DM,则DM⊥EF.故∠DMH为二面角A﹣EF﹣D的平面角.所以二面角A﹣EF﹣D的大小为.法二:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.20.(12分)(2007•全国卷Ⅱ)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.【分析】首先分析到题目(1)中圆是圆心在原点的标准方程,由切线可直接求得半径,即得到圆的方程.对于(2)根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围.【解答】解:(1)依题设,圆O的半径r等于原点O到直线的距离,即.得圆O的方程为x2+y2=4.(2)不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(﹣2,0),B(2,0).设P(x,y),由|PA|,|PO|,|PB|成等比数列,得,两边平方,可得(x2+y2+4)2﹣16x2=(x2+y2)2,化简整理可得,x2﹣y2=2.=x2﹣4+y2=2(y2﹣1).由于点P在圆O内,故由此得y2<1.所以的取值范围为[﹣2,0).21.(12分)(2007•全国卷Ⅱ)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;(2)设,求证b n<b n+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故b n>0.那么,b n+12﹣bn2=an+12(3﹣2a n+1)﹣a n2(3﹣2a n)=由此可知b n<b n+1,n为正整数.方法二:由题设条件知,所以.由此可知b n<b n+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故b n>0.那么,b n+12﹣bn2=a n+12(3﹣2a n+1)﹣a n2(3﹣2a n)==又由(1)知a n>0且a n≠1,故b n+12﹣bn2>0,因此b n<b n+1,n为正整数.方法二:由(1)可知,因为,所以.由a n≠1可得,即两边开平方得.即b n<b n+1,n为正整数.22.(12分)(2007•全国卷Ⅱ)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)【分析】(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可;(2)设切线过点(a,b),则存在t使b=(3t2﹣1)a﹣2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证.【解答】解:(1)求函数f(x)的导函数;f'(x)=3x2﹣1.曲线y=f(x)在点M(t,f(t))处的切线方程为:y﹣f(t)=f'(t)(x﹣t),即y=(3t2﹣1)x﹣2t3;(2)如果有一条切线过点(a,b),则存在t,使b=(3t2﹣1)a﹣2t3.于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,则g'(t)=6t2﹣6at=6t(t﹣a).当t变化时,g(t),g'(t)变化情况如下表:)由g(t)的单调性,当极大值a+b<0或极小值b﹣f(a)>0时,方程g(t)=0最多有一个实数根;当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根;当b﹣f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根.综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则即﹣a<b<f(a).。
2007年高考理科数学试题及参考答案(湖南卷)

第1题影响钢筋混凝土梁正截面破坏形式的因素中,影响最大的因素是()。
(1分)第2题建筑物高度相同、面积相同时,耗热量比值最小的平面形式是()。
(1分)第31题【案例题1】(20分)某广场地下车库工程,建筑面积18000平方米。
建设单位和某施工单位根据《建设工程施工合同(示范文本)》(GF-1999-0201)签订了施工承包合同,合同工期140d。
工程实施过程中发生了下列事件:事件一:施工单位将施工作业划分为A、B、C、D四个施工过程,分别由指定的专业班组进行施工,每天一班工作制,组织无节奏流水施工,流水施工参数见下表:事件二:项目经理部根据有关规定,针对水平混凝士构件模板(架)体系,编制了模板(架)工程专项施工方案,经施工项目负责人批准后开始实施,仅安排施工项目技术负责人进行现场监督。
事件三:在施工过程中,该工程所在地连续下了6d特大暴雨(超过了当地近10年来该季节的最大降雨量),洪水泛滥,给建设单位和施工单位造成了较大的经济损失。
施工单位认为这些损失是由于特大暴雨(不可抗力事件)所造成的,提出下列索赔要求(以下索赔数据与实际情况相符):(1)工程清理、恢复费用18万元;(2)施工机械设备重新购置和修理费用29万元;(3)人员伤亡善后费用62万元;(4)工期顺延6d。
问题1.事件一中,列式计算A、B、C、D四个施工过程之间的流水步距分别是多少天?2.事件一中,列式计算流水施工的计划工期是多少天?能否满足合同工期要求?3.事件二中,指出专项施工方案实施中有哪些不妥之处?说明理由。
4.事件三中,分别指出施工单位的索赔要求是否成立?说明理由。
第32题【案例题2】(20分)工单位承建两栋15层的框架结构工程。
合同约定:①钢筋由建设单位供应;②工程质量保修按《建设工程质量管理条例》(国务院第279号令)执行。
开工前施工单位编制了单位工程施工组织设计,并通过审批。
施工过程中,发生下列事件:事件一:建设单位按照施工单位提出的某批次钢筋使用计划按时组织钢筋进场。
2007年高考理科数学试题及参考答案(湖南卷)

表观密度和毛体积密度试验:将待测试样用4.75mm方孔筛或5mm的圆孔筛过筛,用四分法缩分成需要的质量,留两份待用。
将待测试样浸泡水中一段时间后漂洗干净。
取一份放在盛水器中注入清水高出试样至少20mm搅动石料排气泡,室温浸水24h。
将吊篮浸入水槽中控制水温15-25度,天平调平。
将试样转入吊篮称取集料水中质量mw。
将试样用毛巾擦干表面的水。
称取集料的质量为饱和面干质量mf。
将试样放入烘箱中烘干至恒重,冷却称重ma。
结果计算ra=ma/ma-mwrb=ma/ma-mw水泥混凝土用粗集料针片状颗粒含量试验(规准仪法)将待测风干试样采用四分法缩分成规定的检测数量称重m0。
采用标准筛将试样划分不同粒级。
首先目测将不可能是针状或片状的颗粒挑出,对有怀疑的逐一对应于规准仪相应位置进行鉴定,凡长度大于针状水准仪上相应间距的为针状,颗粒厚度小于片状规准仪相应孔宽的为片状颗粒,结束后称出各粒级挑出的针状和片状总质量m1。
沥青混合料针片状颗粒含量试验(游标卡尺法)采用随机取样方式采集待测试样。
待测试样国4.75mm标准筛称至少800试样。
先目测挑出接近立方体的颗粒剩余的用卡尺作鉴别。
观察待测颗粒找出一相对平整且面积较大的面作为基准面然后用卡尺逐一测量集料颗粒的厚度和长度。
长度与厚度之比大于或等于3的颗粒挑出判定为针状或片状颗粒称出总质量。
压碎试验水泥混凝土压碎试验:用10mm和20mm圆孔筛剔除10以下和20以上的颗粒用针片状规准仪挑出针状和片状颗粒备三份每份3kg待用。
将圆筒置于底盘上取份试样分两层装入筒中,每装完一层在底盘上垫一根10mm圆钢筋,按住圆筒左右颠击25下在第二层装好后要求试样装填高度从底盘量起在100mm左右。
将试样顶面整平压上加压盖放到压力机上施加荷载,3-5分内均匀加荷200kn。
倒出试样称实验时总质量然后用2.5mm圆孔筛过筛,筛除被压碎颗粒称留在筛上的质量。
沥青混合料压碎试验:风干试样用13.2mm和16mm标准筛过筛取3kg待用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(湖南卷)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数22i 1+i ⎛⎫⎪⎝⎭等于( )A .4iB .4i -C .2iD .2i - 2.不等式201x x -+≤的解集是( ) A .(1)(12]-∞--,,B .[12]-,C .(1)[2)-∞-+∞,, D .(12]-,3.设M N ,是两个集合,则“MN =∅”是“MN ≠∅”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有A .⊥a bB .∥a bC .||||=a bD .||||≠a b5.设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=A .0.025B .0.050C .0.950D .0.9756.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是A .4B .3C .2D .1 7.下列四个命题中,不正确...的是( ) A .若函数()f x 在0x x =处连续,则0lim ()lim ()x x x x f x f x +-=→→B .函数22()4x f x x +=-的不连续点是2x =和2x =- C .若函数()f x ,()g x 满足lim[()()]0x f x g x ∞-=→,则lim ()lim ()x x f x g x ∞∞=→→D.112x =→ 8.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A.2 B .1 C.12+ D9.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )A.0⎛ ⎝⎦ B.0⎛ ⎝⎦ C.1⎫⎪⎪⎣⎭ D.1⎫⎪⎪⎣⎭10.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( )A .10B .11C .12D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上。
11.圆心为(11),且与直线4x y +=相切的圆的方程是 。
12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,,c =,则B = 。
13.函数3()12f x x x =-在区间[33]-,上的最小值是 。
14.设集合()⎭⎬⎫⎩⎨⎧-≥=221,x y y x A ,(){}b x y y x B +-≤=,,A B =∅,(1)b 的取值范围是 ; (2)若()x y AB ∈,,且2x y +的最大值为9,则b 的值是 。
15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 。
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+。
(I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值; (II )求函数()()()h x f x g x =+的单调递增区间。
17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响。
(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望。
18.(本小题满分12分)如图2,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <。
连结2BG ,如图3。
(I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角。
19.(本小题满分12分)如图4,某地为了开发旅游资源,欲修建一条连接风景点P 和居民区O 的公路,点P 所在的山坡面与山脚所在水平面α所成的二面角为θ(090θ<<),且2sin 5θ=,点P 到平面α的距离0.4PH =(km )沿山脚原有一段笔直的公路AB 可供利用。
从点O 到山脚修路的造价为a 万元/km ,原有公路改建费用为2a万元/km .当山坡上公路长度为l km (12l ≤≤)时,其造价为2(1)l a +万元。
已知OA AB ⊥,PB AB ⊥,1.5(km)AB =,3(km)OA =。
(I )在AB 上求一点D ,使沿折线PDAO 修建公路的总造价最小;(II ) 对于(I )中得到的点D ,在DA 上求一点E ,使沿折线PDEO 修建公路的总造价最小;(III )在AB 上是否存在两个不同的点D ',E ',使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价,证明你的结论。
20.(本小题满分12分)已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点。
(I )若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程;(II )在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由。
21.(本小题满分13分)已知()n n n A a b ,(n ∈N*)是曲线xy e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,…。
(I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≤)是常数数列; (II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N*)的斜率随n 单调递增。
2007年普通高等学校招生全国统一考试(湖南卷)数 学(理工农医类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上。
11.22(1)(1)2x y -+-= 12.5π6 13.16- 14.(1)[1)+∞,(2)9215.21n-,32三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)解:(I )由题设知1π()[1cos(2)]26f x x =++ 因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z )。
所以0011π()1sin 21sin(π)226g x x k =+=+- 当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭, 当k 为奇数时,01π15()1sin 12644g x =+=+= (II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦1π3113cos 2sin 2sin 22622222x x x x ⎛⎫⎡⎤⎛⎫=+++=++ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭ 1π3sin 2232x ⎛⎫=++ ⎪⎝⎭ 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时, 函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数, 故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ) 17.(本小题满分12分)解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =.(I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是21110.10.9P P =-=-= 解法二:任选1名下岗人员,该人只参加过一项培训的概率是3()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是4()0.60.750.45P P A B ==⨯= 所以该人参加过培训的概率是5340.450.450.9P P P =+=+=(II )因为每个人的选择是相互独立的,所以3人中参加过培训的人数ξ服从二项分布(30.9)B ,,33()0.90.1k k k P k C ξ-==⨯⨯,0123k =,,,,即ξ的分布列是 ξ 0 1 2 3 P0.0010.0270. 2430.729ξ的期望是10.02720.24330.729 2.7E ξ=⨯+⨯+⨯=(或ξ的期望是30.9 2.7E ξ=⨯=) 18.(本小题满分12分)解:解法一:(I)因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,AD AB ⊥,AD ⊂平面ABCD ,所以AD ⊥平面1G AB ,又AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG(II )过点B 作1BH AG ⊥于点H ,连结2G H 由(I )的结论可知,BH ⊥平面12G ADG ,所以2BG H ∠是2BG 和平面12G ADG 所成的角 因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,故1G E EF ⊥因为12G G AD <,AD EF =,所以可在EF 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EOG 是矩形由题设12AB =,25BC =,8EG =,则17GF =所以218G O G E ==,217G F =,2217815OF =-=,1210G G EO ==因为AD ⊥平面1G AB ,12G G AD ∥,所以12G G ⊥平面1G AB ,从而121G G G B ⊥故222222221126810200BG BE EG G G =++=++=,2102BG =又2216810AG =+=,由11BH AG G E AB =得81248105BH ⨯==故22481122sin 525102BH BG H BG ∠==⨯=即直线2BG 与平面12G ADG 所成的角是122arcsin 25解法二:(I )因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,从而1G E AD ⊥.又AB AD ⊥,所以AD ⊥平面1G AB .因为AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG . (II )由(I )可知,1G E ⊥平面ABCD .故可以E 为原点,分别以直线1EB EF EG ,, 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题设12AB =,25BC =,8EG =,则6EB =,25EF =,18EG =,相关各点的坐标分别是(600)A -,,, (6250)D -,,,1(008)G ,,,(600)B ,, 所以(0250)AD =,,,1(608)AG =,,设()n x y z =,,是平面12G ADG 的一个法向量,由100n AD n AG ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =-,, 过点2G 作2G O ⊥平面ABCD 于点O ,因为22G C G D =,所以OC OD =,于是点O 在y 轴上因为12G G AD ∥,所以12G G EF ∥,218G O G E ==设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =,所以2(0108)(600)(6108)BG =-=-,,,,,, 设2BG 和平面12G ADG 所成的角是θ,则22222224|sin 25643BG n BG nθ===++ 故直线2BG 与平面12G ADG 所成的角是arcsin19.(本小题满分12分)解:(I )如图,PH α⊥,HB α⊂,PB AB ⊥,由三垂线定理逆定理知,AB HB ⊥,所以PBH ∠是 山坡与α所成二面角的平面角,则PBH θ∠=,1sin PHPB θ== 设(km)BD x =,0 1.5x ≤≤.则 2221PD x PB x +=+[12]∈,记总造价为1()f x 万元, 据题设有2211111()(1)(3)224f x PD AD AO a x x a =+++=-++ 21433416x a a ⎛⎫⎛=-++ ⎪ ⎝⎭⎝当14x =,即1(km)4BD =时,总造价1()f x 最小 (II )设(km)AE y =,504y ≤≤,总造价为2()f y 万元,根据题设有 222131()13224f y PD y y a ⎡⎤⎛⎫=+++-- ⎪⎢⎥⎝⎭⎣⎦2433216y y a a ⎫=++⎪⎭则()22123f y a y ⎛⎫'⎪=-⎪+⎭,由2()0f y '=,得1y = 当(01)y ∈,时,2()0f y '<,2()f y 在(01),内是减函数;当514y ⎛⎫∈ ⎪⎝⎭,时,2()0f y '>,2()f y 在514⎛⎫ ⎪⎝⎭,内是增函数故当1y =,即1AE =(km )时总造价2()f y 最小,且最小总造价为6716a 万元 (III )解法一:不存在这样的点D ',E '事实上,在AB 上任取不同的两点D ',E '为使总造价最小,E 显然不能位于D ' 与B 之间,故可设E '位于D '与A 之间,且BD '=1(km)x ,1(km)AE y '=,12302x y +≤≤,总造价为S 万元,则211111224x y S x a ⎛⎫=-+ ⎪⎝⎭.类似于(I )、(II )讨论知,2111216x x --≥1322y ≥,当且仅当114x =,11y =同时成立时,上述两个不等式等号同时成立,此时1(km)4BD '=,1(km)AE =,S 取得最小值6716a ,点D E '',分别与点D E ,重合,所以不存在这样的点 D E '',,使沿折线PD E O ''修建公路的总造价小于(II )中得到的最小总造价.解法二:同解法一得211111224x y S x a ⎛⎫=-++ ⎪⎝⎭))2111114334416x a y y a a ⎛⎫⎡⎤=-+++ ⎪⎢⎥⎣⎦⎝⎭143416a a ⨯+≥ 6716a =当且仅当114x =且11)y y ,即11114x y ==,同时成立时,S 取得最小值6716a ,以上同解法一。