专题:直线参数方程中t的意义理解(高中数学精华)

合集下载

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

三 直线的参数方程[对应学生用书P27]1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0.[对应学生用书P27][例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离.[思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程.[解] 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t (t 为参数).因为3×5-4×4+1=0,所以点M 在直线l 上.由1+45t =5,得t =5,即点P 到点M 的距离为5.理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0的距离等于参数t 的绝对值是解决此类问题的关键.1.设直线l 过点A (2,-4),倾斜角为5π6,则直线l 的参数方程为________________.解析:直线l的参数方程为⎩⎪⎨⎪⎧x =2+t cos5π6,y =-4+t sin 5π6(t 为参数),即⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数)2.一直线过P 0(3,4),倾斜角α=π4,求此直线与直线3x +2y =6的交点M 与P 0之间的距离.解:设直线的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =4+22t ,将它代入已知直线3x +2y -6=0, 得3(3+22t )+2(4+22t )=6. 解得t =-1125,∴|MP 0|=|t |=1125.[例2] 已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.[思路点拨] (1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.[解] (1)∵直线l 过点P (1,1),倾斜角为π6,∴直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 为所求.(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A (1+32t 1,1+12t 1),B (1+32t 2,1+12t 2), 以直线l 的参数方程代入圆的方程x 2+y 2=4整理得到t 2+(3+1)t -2=0,① 因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|PA |·|PB |=|t 1t 2|=|-2|=2.求解直线与圆或圆锥曲线有关的弦长时,不必求出交点坐标,根据直线参数方程中参数t 的几何意义即可求得结果,与常规方法相比较,较为简捷.3.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A 、B 两点.(1)求弦长|AB |; (2)求A 、B 两点坐标.解:∵直线l 通过P 0(-4,0),倾斜角α=π6,∴可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2.代入圆方程,得(-4+32t )2+(12t )2=7. 整理得t 2-43t +9=设A 、B 对应的参数分别t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9 ∴|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3.解得t 1=33,t 2=3,代入直线参数方程 ⎩⎪⎨⎪⎧x =-4+32t ,y =12t ,得A 点坐标(12,332),B 点坐标(-52,32).4.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离|PM |; (2)点M 的坐标.解:(1)由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数). *∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点, 根据t 的几何意义,得|PM | =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎪⎫4116,34.[对应学生用书P28]一、选择题1.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t 2,y =2-32t ,M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则t 的几何意义是( )A .有向线段M 0M 的数量B .有向线段MM 0的数量C .|M 0M |D .以上都不是解析:参数方程可化为⎩⎪⎨⎪⎧x =-1+-12-t ,y =2+32-t答案:B2.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( )A .线段B .双曲线的一支C .圆D .射线解析:由y =t 2-1得y +1=t 2,代入x =3t 2+2, 得x -3y -5=0(x ≥2).故选D. 答案:D3.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:因为题目所给方程不是参数方程的标准形式,参数t 不具有几何意义,故不能直接由1-0=1来得距离,应将t =0,t =1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距离公式来求出距离,即-2+-1-2=10.答案:B4.若直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线倾斜角α为( )A.π6 B.π4 C.π3D.π6或5π6解析:直线化为y x=tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4, ∴由|4tan α|tan 2α+1=2⇒tan 2α=13, ∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 答案:D 二、填空题5.直线⎩⎪⎨⎪⎧x =2+22t ,y =-3-22t (t 为参数)上到点M (2,-3)的距离为2且在点M 下方的点的坐标是________.解析:把参数方程化成标准形式为⎩⎪⎨⎪⎧x =2-22-t ,y =-3+22-t ,把-t 看作参数,所求的点在M (2,-3)的下方,所以取-t =-2,即t =2,所以所求点的坐标为(3,-4).答案:(3,-4)6.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1-35t ,y =45t(t 为参数),则直线l 的斜率为______.解析:由参数方程可知,cos θ=-35,sin θ=45.(θ为倾斜角).∴tan θ=-43,即为直线斜率.答案:-437.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =____________;若l 1⊥l 2,则k =________.解析:将l 1,l 2的方程化为普通方程,得l 1:kx +2y -4-k =0,l 2:2x +y -1=0, l 1∥l 2⇒k 2=21≠4+k1⇒k =4.l 1⊥l 2⇒(-2)·(-k2)=-1⇒k =-1.答案:4 -1 三、解答题8.设直线的参数方程为⎩⎪⎨⎪⎧x =5+3t ,y =10-4t(t 为参数).(1)求直线的普通方程;(2)将参数方程的一般形式化为参数方程的标准形式. 解:(1)把t =x -53代入y 的表达式 得y =10-x -3,化简得4x +3y -50=0,所以直线的普通方程为4x +3y -50=0. (2)把参数方程变形为⎩⎪⎨⎪⎧x =5-35-5t ,y =10+45-5t ,令t ′=-5t ,即有⎩⎪⎨⎪⎧x =5-35t ′,y =10+45t ′(t ′为参数)为参数方程的标准形式.9.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t (t 为参数),代入椭圆方程x 24+y 2=1,得⎝ ⎛⎭⎪⎫3+22t 24+⎝ ⎛⎭⎪⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-2652+85=85, 所以弦AB 的长为85.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. 解:(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.。

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

(压轴题)高中数学高中数学选修4-4第二章《参数方程》测试题(包含答案解析)(1)

一、选择题1.在直角坐标系xOy 中,曲线C :22x ty t⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l :230x y -+=的距离的最小值为( )A .23B .223C .233D .22.已知22451x y +=,则25x y +的最大值是( ) A .2 B .1C .3D .93.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 4.曲线的离心率是( )A .B .C .2D .5.已知点()1,2A -,()2,0B ,P 为曲线2334y x =-上任意一点,则AP AB ⋅的取值范围为( ) A .[]1,7B .[]1,7-C .1,33⎡+⎣D .1,323⎡-+⎣6.在直角坐标系xOy 中,直线l 的参数方程为()y 4t?x t t 为参数=⎧⎨=+⎩,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为=424πρθ⎛⎫+ ⎪⎝⎭,则直线l 和曲线C 的公共点有 A .0个B .1个C .2个D .无数个7.已知抛物线的参数方程为2x 4t y 4t ⎧=⎨=⎩,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( )A .22B .42C .8D .48.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t 为参数)与曲线22ρ=相交于B ,C 两点,则BC 的值为( )A .27B .60C .72D .309.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x t y t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A .3232,22⎡⎤-⎢⎥⎣⎦ B .0tan 60x = C .(2,22⎤⎦D .:::2x r r q q q e αα==10.圆ρ=r 与圆ρ=-2rsin (θ+4π)(r >0)的公共弦所在直线的方程为( ) A .2ρ(sin θ+cos θ)=r B .2ρ(sin θ+cos θ)=-rC .2ρ(sin θ+cos θ)=rD .2ρ(sin θ+cos θ)=-r 11.在极坐标系下,已知圆的方程为,则下列各点在圆上的是 ( )A .B .C .D .12.极坐标cos ρθ=和参数方程12x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线二、填空题13.在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(02)且倾斜角为α的直线l 与O 交于A ,B 两点.则α的取值范围为_________14.已知点B 在圆O :2216x y +=上,()2,2,A OM OA OB =+,若存在点N 使得MN 为定长,则点N 的坐标是______. 15.直线1413x ty t=+⎧⎨=--⎩(t 为参数)的斜率为______.16.点(),M x y 是椭圆222312x y +=上的一个动点,则2m x y =+的最大值为______17.设直线315:{45x tl y t=+=(t 为参数),曲线1cos :{sin x C y θθ==(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.18.已知椭圆C 的方程为2212x y +=,若F 为C 的右焦点,B 为C 的上顶点,P 为C 上位于第一象限内的动点,则四边形OBPF 的面积的最大值为__________. 19.曲线1C 的极坐标方程2cos sin ρθθ=,曲线2C 的参数方程为31x ty t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线1C 上的点与曲线2C 上的点最近的距离为__________.20.设(,0)M p 是一定点,01p <<,点(,)A a b 是椭圆2214xy +=上距离M 最近的点,则()==a f p ________.三、解答题21.已知直线5:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(,直线l 与曲线C 的交点为A 、B ,求AB 的值.22.已知直线l的参数方程为12{2x ty ==(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长.23.在平面直角坐标系xOy 中,已知直线l的参数方程:1221x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴非负半轴为极轴(取相同单位长度)建立极坐标系,圆C 的极坐标方程为:2cos 0ρθ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)求圆C 上的点到直线l 的距离的最小值,并求出此时点的坐标. 24.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.A解析:A 【分析】设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭,利用三角函数有界性得到最值.【详解】22451x y +=,则设1cos 2x y αα⎧=⎪⎪⎨⎪=⎪⎩ ,则2cos sin 4x πααα⎛⎫=+=+ ⎪⎝⎭当4πα=,即4x y ⎧=⎪⎪⎨⎪=⎪⎩故选:A 【点睛】本题考查了求最大值,利用参数方程1cos 25x y αα⎧=⎪⎪⎨⎪=⎪⎩是解题的关键. 3.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。

人教版高中数学选修4-4课件:第二讲三直线的参数方程

人教版高中数学选修4-4课件:第二讲三直线的参数方程

解:由题意知 F(1,0),
x=1- 22t,
则直线的参数方程为
(t 为参数),
y=
2 2t
代入抛物线方程得( 22t)2=4(1- 22t), 整理得 t2+4 2t-8=0,由一元二次方程根与系数的 关系可得 t1+t2=-4 2,t1t2=-8,由参数 t 的几何意义 得 |AB|=|t1-t2|= (t1+t2)2-4t1t2= 64=8.
x=3+ 22t,
解:设直线的参数方程为
y=4+
2 2t
(t 为参数),
将它代入已知直线 3x+2y-6=0 得 3(3+ 22t)+ 24+ 22t=6,解得 t=-115 2,
则|MP0|=|t|=115 2.
[迁移探究] (变换条件,改变问法)过抛物线 y2=4x
的焦点 F 作倾斜角为34π的直线,它与抛物线交于 A,B 两点,求这两点之间的距离.
4.设直线 l 过点 A(2,-4),倾斜角为56π,则直线 l 的参数方程是________________.
x=2+tcos56π,
解析:直线
l
的参数方程为 y=-4+tsin
5 (t 6π
为参
x=2- 23t, 数),即y=-4+12t (t 为参数).
x=2- 23t,
答案: y=-4+12t
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”). (1)直线 y=2x+1 的参数方程是xy==2t-t-11,(t 为参 数).( )
x=-1+2t ,
(2)直线的参数方程为 y=2+
23t
(t 为参数),M0(-
1,2)和 M(x,y)是该直线上的定点和动点,则|t|的几何意

直线参数方程中参数t的几何意义及简单应用

直线参数方程中参数t的几何意义及简单应用

直线参数方程中参数t的几何意义及简单应用直线参数方程中的参数t表示直线上任意一点的位置。

具体地,如果直线参数方程为:
x = x1 + at
y = y1 + bt
其中x1、y1、a、b都是已知常数,那么对于任意一个实数t,都可以通过代入上述方程得到直线上的一个点(x,y)。

也就是说,t
代表了直线上的点与起始点(x1,y1)之间的相对位置。

在实际应用中,我们可以根据直线参数方程来求解直线上的点之间的距离、直线的斜率、直线与平面的交点等问题。

例如,若要求直线上点A(x1+at1, y1+bt1)与点B(x1+at2, y1+bt2)之间的距离,可以利用两点间距离公式:
AB = √[(x2-x1) + (y2-y1)]
其中x1 = x1+at1, y1 = y1+bt1, x2 = x1+at2, y2 = y1+bt2。

- 1 -。

专题:直线参数方程中t的意义理解(高中数学精华)

专题:直线参数方程中t的意义理解(高中数学精华)

专题:直线参数方程中的几何意义几点分析与解析一. 知识点概述:★若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为★若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则|MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+;|MP|·|MQ|的几何意义就是:||||||21t t MQ MP ⋅=⋅;|PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ⋅-+=-=-=,即.★若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为:⎪⎪⎩⎪⎪⎨⎧+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或⎪⎪⎩⎪⎪⎨⎧++=+++=+=++=+++=+=)(22)()(2)(22)()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中中点M 的相应参数为t ,而221t t t +=,所以中点坐标也为:⎩⎨⎧+=+=t p y y t p x x 2010) ★若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点,则中点M 的相应参数:221t t t +==0 (因为⎩⎨⎧+=+=tp y y t p x x 200100,而21p p ,均不为0,所以t=0) 体会一:教学中一定要讲清楚直线参数方程的推导过程,并且一定要强调其中参数T 的由来。

【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。

高中数学《参数方程-直线的参数方程》课件

高中数学《参数方程-直线的参数方程》课件
§2 直线和圆锥曲线的参数方程
-1-
2.1
直线的参数方程
-2-
首 页
课程目标
1.掌握直线参数方程的标准形
式,理解参数 t 的几何意义.
2.能依据直线的几何性质,写出
它的两种形式的参数方程,体会
参数的几何意义.
3.能利用直线的参数方程解决
简单的实际问题.
学习脉络
J 基础知识 Z 重点难点
ICHU ZHISHI

4

= -1 + cos ,
4
3π (t
= 2 + sin
4
解:因为 l 过定点 M,且 l 的倾斜角为 ,
所以它的参数方程是

2
t,
2
(t
2
+ t
2
= -1=2
为参数).
为参数).①
把①代入抛物线方程,得 t2+ 2t-2=0.
解得 t1=
- 2+ 10
- 2- 10
,t2=
5
= 1 + t,
=
为参数).
因为 3×5-4×4+1=0,所以点 M 在直线 l 上.
4
5
由 1+ t=5,得 t=5,即点 P 到点 M 的距离为 5.
因为 3×(-2)-4×6+1≠0,所以点 N 不在直线 l 上.
由两点间距离公式得|PN|= (1 + 2)2 + (1-6)2 = 34.
π
6
即 α= 或

3
时,|PA||PB|最小,其最小值为
1
6
2 1+4
6

人教版高中数学《利用t的几何意义求解距离问题》

人教版高中数学《利用t的几何意义求解距离问题》



x1x1x2x2132
AB 1 k 2 (x1 x2 )2 4x1x2 14
A
t2 B t1
P
AB t1 t2
t1 P A t2
B
AB t2 t1
t2 t1
t1 t2
6 极点 O 为原点,极轴为 x 轴的正半轴建立直角坐标系. (1)求直线 OP 的参数方程和曲线 C 的直角坐标方程; (2)若直线 OP 与曲线 C 交于 A 、 B 两点,求 1 1 的值.
PA PB
解:Q 2 cos 2 2 cos2 2 sin2 又Q x cos , y sin
t2 2
2t 4 0

y

1

2t 2
设t1、t2分别为A、B所对应的参数, 则t1t1t2t242 2
t2 2 2t 4 0 则t1t1t2t242 2
① PA PB t1 t2 t1t2 4
t1
A
P
B t2
② PA PB tt11 t2t2 t1 t2 t1 t2 2 4t1t2 2 6
直线 l 与曲线 C 的交点为 A , B ,求| AB | 的值.

2
解:将l
:

x
t 2
代入x2 +y2 4 y 0,得 :

y

1
2t 2
设t1、t2分别为A、B所对应的参数,则t1t1t2t23 2
AB t1 t2 t1 t2 2 4t1t2 14
直线过点(2,0),倾斜角为
6
l3:x

y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:直线参数方程中的几何意义几点分析与解析一. 知识点概述:★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为为参数,t t y y t x x ⎩⎨⎧+=+=ααsin cos 00 ★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则|MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+;|MP|·|MQ|的几何意义就是:||||||21t t MQ MP ⋅=⋅;|PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ⋅-+=-=-=,即.★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为:⎪⎪⎩⎪⎪⎨⎧+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或⎪⎪⎩⎪⎪⎨⎧++=+++=+=++=+++=+=)(22)()(2)(22)()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中 中点M 的相应参数为t ,而221t t t +=,所以中点坐标也为:⎩⎨⎧+=+=t p y y t p x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点,则中点M 的相应参数:221t t t +==0 (因为⎩⎨⎧+=+=t p y y t p x x 200100,而21p p ,均不为0,所以t=0)体会一:教学中一定要讲清楚直线参数方程的推导过程,并且一定要强调其中参数T 的由来。

实际上由新课程标准人教A 版数学选修课本中坐标系与参数方程的内容我们知道,平面内过定点),(000y x p 、倾斜角为α的直线l 的参数方程的标准形式为⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数),其中t 表示直线l 上以定点0p 为起点,任意一点P (x ,y )为终点的有向线段P P 0的数量,当P 点在0p 上方时t 为正,当P 点在0p 下方时t 为负。

体会二:教学中必须要强调参数T 的几何意义及两个结论的引导应用示范。

实际上在教学中我们知道,由直线参数方程的推导过程及向量模的几何意义等知识,很容易得参数t 具有如下的两个重要结论: 如果我们假设直线l 上两点A 、B 所对应的参数分别为B A t t 和,则:第一:A 、B 两点之间的距离为B A B A B A t t t t t t AB •-+=-=4)(||||2,特别地,A 、B 两点到0p 的距离分别为.|||,|B A t t 第二:A 、B 两点的中点所对应的参数为2B A t t +,若0p 是线段AB 的中点,则0=+B A t t ,反之亦然。

在解决坐标系与参数方程这一选考题,特别是直线的参数方程与曲线的参数方程或是极坐标方程有关的内容的题目,最典型的是涉及直线与圆锥曲线相交所得的弦和弦长、或是求一点到某点的距离为定值、求弦的中点等有关方面的题目时,如果我们能够充分利用参数t 的上述两个重要结论的话,我们的解题速度和解题正确率、得分率将得到的大大提高,我们的解题水准也必将得到巨大的提升。

1、例如在求解与距离有关的题目时我们可以用结论一:例1、直线l 过点)0,4(0-P ,倾斜角为6π,且与曲线C :7=ρ相交于A 、B 两点。

(1)求弦长AB. (2)求A P 0和B P 0的长 (3)A P 0•B P 0解:(1)因为直线l 过点)0,4(0-P ,倾斜角为6π,所以直线l 的参数方程为 ⎪⎪⎩⎪⎪⎨⎧+=+-=6sin 06cos 4ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 21234,(t 为参数),而曲线C 是圆722=+y x ,于是将直线的参数方程代入圆C 的方程,得7)21()234(22=++-t t ,整理得09342=+-t t 有参数T 的几何意义设A 、B 所对应的参数分别为21,t t ,则3421=+t t ,921=t t ,所以||||21t t AB -=.324)(21221=-+=t t t t(2)解:由第一问解方程09342=+-t t 得,3,3321==t t ,有参数的几何意义同理可得A P 033||1==t ,B P 0.3||2==t(3)由于是由第一问的求解过程可知A P 0B P 0=921=t t2、再如在求解与点的坐标有关的题目时可以用结论二:例2、已知直线l 过点)8,4(0P ,倾斜角为3π,求出直线l 上到点0P 的距离为5的点的坐标。

解:因为直线l 过点)8,4(0P ,倾斜角为3π,所以直线l 的参数方程为 ⎪⎪⎩⎪⎪⎨⎧+=+=3sin 83cos 4ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 238214,(t 为参数), (1) 设直线l 上与已知点)8,4(0P 相距为5的点为P 点,且P 点对应的参数为t ,则||0P P 5||==t ,所以5±=t ,将t 的值代入(1)式,当t =5时,M 点的坐标为)2358,213(+; 当t =-5时,M 点的坐标为)2358,23(-, 综上,所求P 点的坐标为)2358,213(+或)2358,23(-. 点评:若使用直线的普通方程,利用两点间的距离公式求P 点的坐标需要将直线方程代入曲线方程,消元后再用根与系数的关系,中点坐标公式来求解,相当麻烦,而我们使用直线的参数方程,充分利用参数t 的几何意义求P 点的坐标就显得比较容易。

3、解决有关弦的中点问题时也可以用性质二例3、过点)0,1(0P ,倾斜角为4π的直线l 和曲线线⎩⎨⎧==22ty t x 相交于M 、N 两点,求线段MN 的中点P 的坐标。

解:直线l 过点)0,1(0P ,倾斜角为4π,所以直线l 的参数方程为 ⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221,(t 为参数),因为直线l 和抛物线相交,将直线的参数方程代入抛物线方程 x y 22=中,得:)221(2)22(2t t +=,整理得022212=--t t , 06)2(214)2(2>=-⨯⨯--=∆,设这个二次方程的两个根为21,t t , 由韦达定理得2221=+t t ,由P 为线段MN 的中点,根据t 的几何意义,得2221=+=t t t p ,易知中点M 所对应的参数为2=M t ,将此值代入直线的参数方程得,M 点的坐标为(2,1) 点评:对于上述直线l 的参数方程,M 、N 两点对应的参数为21,t t ,则它们的中点所对应的参数为.221t t t +=将参数值代入直线参数方程后很快就可得到答案,这将十分方便快捷。

再如例4:过双曲线116922=-y x 的右焦点F 作倾斜角为︒45的直线L 与双曲线交于A,B 两点,M 是AB 的中点,求|MF|。

如果用传统的解法则是解:方法一 依题意a =3,b =4,c =5 所以F(5,0),又直线l 的倾斜角为45度 所以k=1 5-=∴x y l 的方程为5x y 116y 9x 22-==-和联立 0369x 90x 7:2=-+得 7805x y 7452x x x M M21M -=-=-=+=∴2760|MF |=∴整个解答过程将会比较繁琐,因为传统的解法必须要将直线方程与曲线方程联立,消元后用根与系数的关系及终点坐标公式才能求解。

解法2:依题意l 的参数方程为:116y 9x t 22y t 225x 22=-⎪⎪⎩⎪⎪⎨⎧=+=代入0512t 2160t 72=-+得 27802||||21=+=∴t t MF小结: 方法二:用参数方程求解,且灵活运用参数t 的几何意义,使求解过程变得简洁, 不容易出错,如果我们在教学中能多引导学生从这些方面思考,那么我们教起来轻松,学生学起来也将会更容易。

体会三:两个性质在用的过程中要注意参数T 取非单位向量时候的处理转化。

从上面的例子不难看出,这两个性质的确好用,但是我们在教学中一定要要注意下面例子中的问题就需要对参数T 所取的单位长度作转化: 例如:已知曲线的方程是)4cos(2πθρ+=,直线L 的方程是⎩⎨⎧+-=-=t y t x 3141若直线与曲线相交与A 、B 两点,求AB 弦长。

解法1:解:直线方程可以化简为:0143=-+y x ,而曲线的方程可化简为:022=+-+y x y x 将直线方程代入曲线方程,消去一个未知数y 后可得关于x 的一元二次方程,由点到直线的距离公式及,弦心距,半径,半弦长之间构成直角三角形可以解得57=AB解法2:将直线的参数方程代入曲线方程,则可以得到一个关于t 的一元二次方程:07252=-t t 如果还是用以前的有参数t 的几何意义的话将会求得AB 的弦长为25702574)(||||22=-=•-+=-=BA B A B A t t t t t t AB这一结果与上述结果为何会不一样呢?两种解法所得的结果是哪一种对呢?当然答案是第一种解法的对,实际上这就是在推导直线的参数方程时一定要注意到直线参数方程中参数T 的几何意义的问题,实际上,在上述题目中我们的参数T 是选取了模为5的向量当作了单位向量,而非模为1的向量为单位向量,但是在解题过程中多数同学甚至是老师也不会注意到这一细节,所以在涉及到直线参数方程,曲线的极坐标方程的问题时我们一定要注意到直线参数方程中参数T 的几何意义的探究,如上题中的直线方程⎩⎨⎧+-=-=t y t x 3141中由于直线的参数方程标准形式⎩⎨⎧+=+=ααsin cos 00t y y t x x 中t 的系数无论是ααcos sin 还是,都只能在][1,1-上取值一旦t 的前面的系数超过了区间][1,1-则要考虑参数t 是多少个单位长度为单位向量。

于是在上面的解答中我们只要在257=AB 的基础上乘以直线参数方程⎩⎨⎧+-=-=t y t x 3141中t 的模5即可以得到正确答案即575257=⨯=AB 。

如果我们能在我们在教学中注意到了这样的问题,点清了问题的实质所在。

也就是强调解释清楚了参数T 的几何意义,并用适当的例子进行了纠错练习,那么学生的学习效果必然是好的。

相关文档
最新文档