分布式发电知识大全
分布式光伏发电原理

分布式光伏发电原理分布式光伏发电是指利用分布式光伏系统将太阳能转换为电能的过程。
在分布式光伏系统中,光伏组件被安装在建筑物的屋顶或者陆地上,而不是集中在一个地方。
这种分布式的布局有助于减少输电损耗,提高光伏系统的发电效率,同时也减少了对传统能源的依赖,有利于环境保护和可持续发展。
分布式光伏发电的原理主要包括光伏效应、光伏组件、逆变器、电网连接等多个方面。
接下来将逐一介绍这些原理。
1.光伏效应光伏效应是光伏发电的基础原理。
当光照射到光伏材料表面时,光子激发了材料中的电子,使其从价带跃迁到导带。
这种光生载流子的产生导致了电子和空穴的分离,从而在材料中产生了电场。
当将两端连接一个外部电路时,这个电场将导致电子在电路中流动,从而产生电能。
这就是光伏效应的基本原理。
2.光伏组件光伏组件是将多块光伏电池组合在一起,形成一个完整的发电单元。
光伏电池通常由硅、镓、砷化镓等半导体材料制成,其结构包括PN结和金属化层。
当光照射到光伏组件表面时,光伏电池产生电压,通过串联或并联的方式组成光伏组件,以提高电压和电流的输出。
光伏组件的质量和性能对光伏系统的发电效率和稳定性有重要影响。
3.逆变器逆变器是光伏系统中的关键设备,它的主要功能是将光伏组件输出的直流电转换为交流电,以适应电网的需求。
逆变器通常采用晶闸管、硅控整流等器件,通过PWM或者MPPT等技术控制,将光伏组件输出的直流电转换为符合电网要求的交流电。
逆变器的性能和稳定性对光伏系统的发电效率和安全性有重要影响。
4.电网连接分布式光伏系统是将光伏系统直接连接到电网中,通过逆变器将光伏组件的电能输出到电网中,供给居民生活和工业生产所需的电能。
在电网连接时,需要考虑到光伏系统的稳定性、电网的安全运行和保护措施等因素。
此外,与电网的连接方式和技术也对光伏系统的发电效率和安全性有重要影响。
除以上原理外,分布式光伏系统的选址、布局、安装、运行和维护等方面也是影响系统发电效率和可靠性的重要因素。
分布式光伏发电介绍汇总

分布式光伏发电介绍汇总分布式光伏发电是指将光伏发电设备分散安装在建筑物、工厂、居民区等各类电力使用场所,通过就近发电、就近消耗、就近接入电网的方式,实现电力的自给自足和微网供电,并将多余的电力并网销售的一种发电模式。
相比于传统的大型集中式光伏电站,分布式光伏发电具有灵活部署、节能减排、可持续发展等优势,逐渐引起了世界各国的广泛关注和应用。
分布式光伏发电的主要特点是:独立性、近距离用电、多能互补和高效益。
首先,分布式光伏发电系统由于分布在多个地点,每个系统可以独立运行,不会影响其他系统的正常发电。
其次,光伏发电系统就近供电,将电力直接送给建筑物或居民区,减少了输电线路的损耗和线损。
再次,分布式光伏发电可以与其他能源系统相互补充,比如与风电、生物质能等结合,提高能源利用效率。
最后,分布式光伏发电的实际收益较高,因为其可以根据用电需求来进行规模化投资,同时多余的电力还可以并网卖给电网运营商,获取发电补贴。
在分布式光伏发电系统中,太阳能光伏电池是发电的核心组件。
太阳能光伏电池是利用半导体材料的光伏效应将太阳光能转化为直流电能的装置。
光伏电池具有可靠性高、使用寿命长、无噪音、无污染等特点。
根据发电系统的规模和用途不同,光伏电池的类型也有所不同,包括单晶硅、多晶硅和薄膜太阳能电池。
此外,分布式光伏发电系统还包括逆变器、电池储能系统和电网互联等组成部分。
逆变器用于将光伏电池输出的直流电转化为交流电,以满足家庭、企业等用电需求。
电池储能系统则可以将多余的电力存储起来,以备不时之需,也可以在晚上或阴天供电。
电网互联是将分布式光伏电站与电网连接起来,实现电力交换和售电。
分布式光伏发电在能源领域有着广泛的应用前景。
首先,分布式光伏发电可以提供清洁、可再生的能源,减少对传统能源的依赖,降低碳排放和环境污染。
其次,分布式光伏发电可以避免电力输送过程中的能量损耗和损耗线,提高能源利用效率。
再次,光伏发电系统的安装和维护相对简单,可以减少对传统电网的压力,提高电网的安全性和可靠性。
分布式发电技术

人们对燃料电池成为未来主流发电技术持肯定态度,各国都 在投巨资进行研发,至今已开发了多种类型燃料电池。其中 质子交换膜燃料电池(proton exchange membrane fuel cell,
PEMFC)和固体氧化物燃料电池(solid oxide fuel cell, SOFC)
被认为是最具潜力的两种燃料电池。
其他可再生能源利用
• 三、生物质气化供气技术
• 1.生物质气化供气技术的的优势 • 生物质作为气化原料具有以下突出优点:(1)挥发分含 量高; (2)炭的活性高; (3)灰分低; (4)硫含量极低。 • 2.生物质气化集中供气系统 • 生物质气化集中供气系统是以秸秆为主要原料,以自 然村为单元的生物质能源转换和炊事燃气供应系统。 将锄成小段的秸秆送入气化器经过热解气化转换成可 燃气体,出去杂质后,由风机送入气柜内。
35%~41%,热电联产时总效率71%~85%。
亟待解决的PAFC研究课题,概括来讲就是: (1)提高电池功率密度; (2)延长电池使用寿命,提高其运行可靠性; (3)进一步降低电池制造成本。
其他Hale Waihona Puke 再生能源利用第二节 生物质能
• 自有人类以来,生物质能源一直是我们赖以生 存的重要资源。目前,全世界仍有25亿人口用 生物质煮饭、取暖和照明。 • 生物质能源指在近期内来自于动、植物体的一 类物质。 • 植物体中的能量本质上来自太阳能,经过光合 作用转化为生物质中的化学能。在自然界中, 所有的生物质都会分解释放出热量,消耗氧气 并放出二氧化碳。生物质能的利用过程相当于 这种自然过程的模拟,只不过认为的加快了分 解的速度而已。
美国于1997年开始研制 1998年就有42台200kW PAFC发电机组投入运行,PAFC 己商业化,不再投入资金进行研究开发。 2002年,250KW和MW级MCFC达到商业化; 2003年,100kw~1MW级SOFC进行商业化。 2001年10kw PEFC实现商业化运营。
分布式发电知识大全

分布式发电知识大全分布式发电(Distributed Generation:DG,又称分布式电源)是指:直接接入配电网或分布在用户现场附近的容量规模较小的发电系统,用以满足特定需要,能够经济、高效、可靠发电。
对环境污染小,投资规模小,发电方式灵活,运行费用低,可靠性高,相对于大电网集中供电方式有其独特的优越性,将起到无法忽视的作用,利用大电网与分布式发电相结合,被认为是未来供电方式的发展方向。
分布式发电(DG) 或分布式能源(DER) 是一种分散、非集中式的发电方式,通常是指发电功率在几千瓦至数百兆瓦(也有的建议限制在30~50兆瓦以下)的小型模块化、分散式、布置在用户附近的高效、可靠的发电单元具有以下特点Ø接近终端用户Ø容量小(几十kW 至几十M W)Ø以孤立方式或与配电网并网方式,运行在380V 或10kV或稍高的配电电压等级上(一般低于66kV)Ø采用洁净或可再生能源,例如以液体或气体为燃料的燃机、微型燃气轮机、太阳能发电(光伏电池、光热发电)、风力发电、生物质能发电等分布式能发电的优势在于可以充分开发利用各种可用的分散存在的能源,包括本地可方便获取的化石类燃料和可再生能源,并提高能源的利用效率。
分布式电源通常接入中压或低压配电系统,并会对配电系统产生广泛而深远的影响。
传统的配电系统被设计成仅具有分配电能到末端用户的功能,而未来配电系统有望演变成一种功率交换媒体,即它能收集电力并把它们传送到任何地方,同时分配它们。
因此将来它可能不是一个‘配电系统’而是一个‘电力交换系统(Power delivery system)’。
分布式发电具有分散、随机变动等特点,大量的分布式电源的接入,将对配电系统的安全稳定运行产生极大的影响。
通过分布式发电和集中供电系统的配合应用有以下优点:(1)分布式发电系统中各电站相互独立,用户由于可以自行控制,不会发生大规模停电事故,所以安全可靠性比较高;(2)分布式发电可以弥补大电网安全稳定性的不足,在意外灾害发生时继续供电,已成为集中供电方式不可缺少的重要补充;(3)可对区域电力的质量和性能进行实时监控,非常适合向农村、牧区、山区,发展中的中、小城市或商业区的居民供电,可大大减小环保压力;(4)分布式发电的输配电损耗很低,甚至没有,无需建配电站,可降低或避免附加的输配电成本,同时土建和安装成本低;(5)可以满足特殊场合的需求,如用于重要集会或庆典的(处于热备用状态的)移动分散式发电车;(6)调峰性能好,操作简单,由于参与运行的系统少,启停快速,便于实现全自动。
分布式光伏培训资料

分布式光伏培训资料一、概述分布式光伏是指将光伏发电系统分布在各个建筑物或地区内,以发电为目的的分布式发电系统。
本文将为您提供分布式光伏培训的相关资料,帮助您了解光伏发电系统的工作原理、设计与安装、运维与管理等方面的知识。
二、光伏发电系统的工作原理1. 太阳能光伏电池组件的工作原理太阳能光伏电池是将太阳光转化为直流电能的关键组件。
通过P-N结的形成,光子的能量转化为电能,实现发电。
本节将详细介绍光伏电池的结构、类型、工作原理等方面的内容。
2. 光伏系统的组成与工作原理光伏系统由光伏电池组件、逆变器、电网连接设备等组成。
各个部分之间的工作原理以及系统的整体工作原理是确保光伏发电系统正常运行的关键。
本节将详细阐述各个组件的功能及其相互关系。
三、光伏发电系统的设计与安装1. 光伏发电系统设计的基本原则光伏发电系统的设计需要考虑建筑物或地区的特点、能源需求以及发电系统的性能等方面的要求。
本节将介绍光伏系统设计的重要原则,包括系统容量计算、倾角与方向的选择、遮阳与阴影分析等内容。
2. 光伏系统的安全设计与规范在光伏系统的设计过程中,安全问题是至关重要的。
正确的安全设计可以确保光伏系统的安全运行,减少潜在的事故风险。
本节将介绍光伏系统的安全设计原则、安全设备的选择以及相关安全规范的遵循等内容。
3. 光伏发电系统的安装步骤与要点光伏发电系统的安装是确保系统正常运行的关键环节。
本节将逐步介绍光伏系统的安装步骤,包括光伏电池组件的安装、逆变器与电网连接设备的安装、系统接地与保护等方面的要点。
四、光伏发电系统的运维与管理1. 光伏系统的日常运维光伏系统的日常运维包括对系统的定期巡检、清洁与维护、性能分析与评估等工作。
本节将介绍光伏系统的日常运维要点,帮助您确保系统的高效运行。
2. 光伏系统故障排除与维修光伏系统可能会遭遇各种故障,如组件损坏、逆变器故障等。
本节将介绍故障排除的基本原则、光伏组件与逆变器的常见故障与维修方法,帮助您在出现故障时能够及时处理。
分布式电源基础知识介绍

(2)国内对分布式电源的研究
• 我国对分布式电源的研究虽然尚处在起步阶段, 但对电源系统本身的研究已经引起了相当程度的 重视。我国已开始在北京、上海等地兴建基于冷、 热、电联产的分布式电源,在西部和沿海兴建基 于可再生资源(太阳能、风能)的分布式电源。 这些电站大多还是属于示范性,规模不大,对与 电网运行安全有关的技术问题的研究还非常薄弱, 许多问题还有待于在进一步的工作中解决。
• 目前,分布式发电研究的热点之一是可再生能源 发电技术,其中风力发电、生物能发电属于比较 成熟的技术,而太阳能发电、地热及潮汐发电等 都属于新兴的发电技术。
2.主要分布式发电分类:
风力发电技术
风力发电通过风力发电机将风能转化为电能, 输出功率由风能决定,不需要消耗燃料。作为一
种清洁型能源,是目前最成熟、最具规模化开
发前景的新型发电方式。
微型燃气轮机 指功率为数百千瓦以下的以天然气、甲烷、汽
油和柴油为燃料的超小型燃气轮机,实用化和 商业化已经完成,应用前景十分广泛。
太阳能光伏 电池
光伏电池基于半导体受到太阳光照时的光伏效 应,将太阳光能转变成直流电能, 使用时根据 需要将组件串并联组成方阵。
燃料电池
在催化剂的作用下直接将燃料与空气氧化剂发 生化学反应,在生成水的同时进行发电。
分布式发电知识大全

分布式发电知识大全分布式发电*概述分布式发电(Distributed Generation:DG,又称分布式电源)是指:直接接入配电网或分布在用户现场附近的容量规模较小的发电系统,用以满足特定需要,能够经济、高效、可靠发电。
对环境污染小,投资规模小,发电方式灵活,运行费用低,可靠性高,相对于大电网集中供电方式有其独特的优越性,将起到无法忽视的作用,利用大电网与分布式发电相结合,被认为是未来供电方式的发展方向。
分布式发电(DG) 或分布式能源(DER) 是一种分散、非集中式的发电方式,通常是指发电功率在几千瓦至数百兆瓦(也有的建议限制在30~50兆瓦以下)的小型模块化、分散式、布置在用户附近的高效、可靠的发电单元具有以下特点Ø 接近终端用户Ø 容量小(几十kW 至几十M W)Ø 以孤立方式或与配电网并网方式,运行在380V 或10kV或稍高的配电电压等级上(一般低于66kV)Ø 采用洁净或可再生能源,例如以液体或气体为燃料的内燃机、微型燃气轮机、太阳能发电(光伏电池、光热发电)、风力发电、生物质能发电等分布式能发电的优势在于可以充分开发利用各种可用的分散存在的能源,包括本地可方便获取的化石类燃料和可再生能源,并提高能源的利用效率。
分布式电源通常接入中压或低压配电系统,并会对配电系统产生广泛而深远的影响。
传统的配电系统被设计成仅具有分配电能到末端用户的功能,而未来配电系统有望演变成一种功率交换媒体,即它能收集电力并把它们传送到任何地方,同时分配它们。
因此将来它可能不是一个‘配电系统’而是一个‘电力交换系统(Power delivery system)’。
分布式发电具有分散、随机变动等特点,大量的分布式电源的接入,将对配电系统的安全稳定运行产生极大的影响。
分布式发电*优点通过分布式发电和集中供电系统的配合应用有以下优点:(1)分布式发电系统中各电站相互独立,用户由于可以自行控制,不会发生大规模停电事故,所以安全可靠性比较高;(2)分布式发电可以弥补大电网安全稳定性的不足,在意外灾害发生时继续供电,已成为集中供电方式不可缺少的重要补充;(3)可对区域电力的质量和性能进行实时监控,非常适合向农村、牧区、山区,发展中的中、小城市或商业区的居民供电,可大大减小环保压力;(4)分布式发电的输配电损耗很低,甚至没有,无需建配电站,可降低或避免附加的输配电成本,同时土建和安装成本低;(5)可以满足特殊场合的需求,如用于重要集会或庆典的(处于热备用状态的)移动分散式发电车;(6)调峰性能好,操作简单,由于参与运行的系统少,启停快速,便于实现全自动。
分布式光伏知识点总结

分布式光伏知识点总结随着清洁能源的发展,分布式光伏发电作为一种重要的可再生能源形式,受到了越来越多的关注。
分布式光伏发电系统的建设和运行对于推动清洁能源的发展、减缓全球气候变化、改善空气质量和提升能源安全具有重要意义。
在这篇文章中,将对分布式光伏发电的知识点进行总结和介绍。
一、分布式光伏发电技术原理1. 光伏发电原理光伏发电是利用光电效应将太阳能转化为电能的一种技术。
当太阳光照射到光伏电池上时,光子激发了光伏电池中的电子,使得电子从价带跃迁到导带,形成光生电子-空穴对,最终产生电能。
光伏电池是分布式光伏发电系统的核心组件,其性能直接影响着发电系统的效率和功率。
2. 分布式光伏发电系统结构分布式光伏发电系统主要由光伏电池组、逆变器、配电箱、网侧并网装置、监控系统等组成。
光伏电池组负责将太阳能转化为直流电能;逆变器将直流电能转换为交流电能,以便于并网发电;配电箱则起到电能分配和保护的作用;网侧并网装置用于将发电系统的电能接入电网;监控系统则用于对发电系统进行实时监测和管理。
3. 分布式光伏系统并网模式分布式光伏系统有多种并网模式,包括自用自发、余电上网、全额上网和电力市场交易等。
在自用自发模式下,分布式光伏系统将发电所得的电能全部自用;在余电上网模式下,多余的电能可以上网卖电;全额上网模式下,则将全部发电的电能都接入电网;而电力市场交易模式则是将发电的电能通过市场交易的方式销售。
二、分布式光伏发电系统的优势1. 环保分布式光伏发电系统具有零排放且能源环保的优势。
光伏发电不会产生污染物,降低了对环境的影响,同时也有利于缓解温室效应和气候变化。
2. 分布式分布式光伏发电系统分布在各个建筑或场所上,不需要大规模的土地和资源,可以利用建筑物的房顶或墙壁等空间进行布局。
这种分布式的特点使得光伏发电系统的建设更加灵活和多样化。
3. 低成本在一定程度上,分布式光伏发电系统相对于集中式光伏发电系统来说,建设和维护成本会更低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布式发电知识大全分布式发电(Distributed Generation:DG,又称分布式电源)是指:直接接入配电网或分布在用户现场附近的容量规模较小的发电系统,用以满足特定需要,能够经济、高效、可靠发电。
对环境污染小,投资规模小,发电方式灵活,运行费用低,可靠性高,相对于大电网集中供电方式有其独特的优越性,将起到无法忽视的作用,利用大电网与分布式发电相结合,被认为是未来供电方式的发展方向。
分布式发电(DG) 或分布式能源(DER) 是一种分散、非集中式的发电方式,通常是指发电功率在几千瓦至数百兆瓦(也有的建议限制在30~50兆瓦以下)的小型模块化、分散式、布置在用户附近的高效、可靠的发电单元具有以下特点Ø 接近终端用户Ø 容量小(几十kW 至几十M W)Ø 以孤立方式或与配电网并网方式,运行在380V 或10kV或稍高的配电电压等级上(一般低于66kV)Ø 采用洁净或可再生能源,例如以液体或气体为燃料的内燃机、微型燃气轮机、太阳能发电(光伏电池、光热发电)、风力发电、生物质能发电等分布式能发电的优势在于可以充分开发利用各种可用的分散存在的能源,包括本地可方便获取的化石类燃料和可再生能源,并提高能源的利用效率。
分布式电源通常接入中压或低压配电系统,并会对配电系统产生广泛而深远的影响。
传统的配电系统被设计成仅具有分配电能到末端用户的功能,而未来配电系统有望演变成一种功率交换媒体,即它能收集电力并把它们传送到任何地方,同时分配它们。
因此将来它可能不是一个‘配电系统’而是一个‘电力交换系统(Power delivery system)’。
分布式发电具有分散、随机变动等特点,大量的分布式电源的接入,将对配电系统的安全稳定运行产生极大的影响。
通过分布式发电和集中供电系统的配合应用有以下优点:(1)分布式发电系统中各电站相互独立,用户由于可以自行控制,不会发生大规模停电事故,所以安全可靠性比较高;(2)分布式发电可以弥补大电网安全稳定性的不足,在意外灾害发生时继续供电,已成为集中供电方式不可缺少的重要补充;(3)可对区域电力的质量和性能进行实时监控,非常适合向农村、牧区、山区,发展中的中、小城市或商业区的居民供电,可大大减小环保压力;(4)分布式发电的输配电损耗很低,甚至没有,无需建配电站,可降低或避免附加的输配电成本,同时土建和安装成本低;(5)可以满足特殊场合的需求,如用于重要集会或庆典的(处于热备用状态的)移动分散式发电车;(6)调峰性能好,操作简单,由于参与运行的系统少,启停快速,便于实现全自动。
l 燃气轮机l 内燃机l 燃料电池l 太阳能发电l 风能发电l 生物质能发电根据所使用一次能源的不同,分布式发电可分为基于化石能源的分布式发电技术、基于可再生能源的分布式发电技术以及混合的分布式发电技术。
(1)基于化石能源的分布式发电技术主要由以下三种技术构成:①往复式发动机技术:用于分布式发电的往复式发动机采用四冲程的点火式或压燃式,以汽油或柴油为燃料,是目前应用最广的分布式发电方式。
但是此种方式会造成对环境的影响,最近通过对其技术上的改进,已经大大减少了躁音和废气的排放污染。
②微型燃气轮机技术:微型燃气轮机是指功率为数百千瓦以下的以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机。
但是微型燃气轮机与现有的其它发电技术相比,效率较低。
满负荷运行的效率只有30%,而在半负荷时,其效率更是只有10%~15%,所以目前多采用家庭热电联供的办法利用设备废弃的热能,提高其效率。
目前国外已进入示范阶段,其技术关键主要是高速轴承、高温材料、部件加工等。
③燃料电池技术:燃料电池是一种在等温状态下直接将化学能转变为直流电能的电化学装置。
燃料电池工作时,不需要燃烧,同时不污染环境,其电能是通过电化学过程获得的。
在其阳极上通过富氢燃料,阴极上面通过空气,并由电解液分离这两种物质。
在获得电能的过程中,一些副产品仅为热、水和二氧化碳等。
氢燃料可由各种碳氢源,在压力作用下通过蒸汽重整过程或由氧化反应生成。
因此它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。
(2)基于可再生能源的分布式发电技术主要由以下几种技术构成:①太阳能光伏发电技术:太阳能光伏发电技术是利用半导体材料的光电效应直接将太阳能转换为电能。
光伏发电具有不消耗燃料、不受地域限制、规模灵活、无污染、安全可靠、维护简单等优点。
但是此种分布发电技术的成本非常高,所以现阶段太阳能发电技术还需要进行技术改进,以降低成本而适合于广泛应用。
(2)风力发电技术是将风能转化为电能的发电技术,可分为独立与并网运行两类,前者为微型或小型风力发电机组,容量为100W~10kW,后者的容量通常超过150kW。
近年来,风力发电技术进步很快,单机容量在2MW以下的技术已很成熟。
(3)混合的分布式发电技术通常是指两种或多种分布式发电技术及蓄能装置组合起来,形成复合式发电系统。
目前已有多种形式的复合式发电系统被提出,其中一个重要的方向是热电冷三联产的多目标分布式供能系统,通常简称为分布式供能系统。
其在生产电力的同时,也能提供热能或同时满足供热、制冷等方面的需求。
与简单的供电系统相比,分布式供能系统可以大幅度提高能源利用率、降低环境污染、改善系统的热经济性。
分布式发电*分布式储能分布式发电中能量的存储通常分为两大类以电能的形式存储(蓄电池等)以其它形式存储(热能、机械能等)。
以满足额外的能量需求还可以保证电网的电能需求也可以保证电力系统调峰调频的需要。
除此之外储能系统对电力系统配电网电能质量的提高也具有非常重要的作用。
作为补偿DG输出间歇性、波动性的有效手段分布式储能技术受到了人们的重视。
分布式发电*储存分类传统的储能技术包括我们所熟知的抽水蓄能电站等,它是电力系统调峰调频的主要手段。
新型的分布式储能技术包括蓄电池、超级电容器、飞轮储能、超导磁能储能等。
蓄电池储能(BESS)蓄电池储能近来已成为电力系统中最有前途的短期储能技术之一,目前在小型分布式发电中应用最为广泛,但存在初次投资高、寿命短、环境污染等诸多问题。
根据所使用的不同化学物质蓄电池可以分为许多不同类型。
通常包括铅酸电池和金属镍氢电池MH—Ni(Metal Hydride一Niekel)电池。
超导磁能(SMES)直到20世纪70年代,SMES才首次被提出作为电力系统的能量存储技术。
SMES系统将能量存储在由流过超导线圈的直流电流产生的磁场中,其中的超导线圈浸泡在温度极低的液体(液态氢等)中,然后密封在容器里。
如果超导线圈由电感构成,就没有电阻的消耗,电流在闭合电感中不会消失而长期循环。
在使用能量时由线圈引出,经转换接人系统或用户。
SMES系统具有几个显著特点,无噪声污染,响应快,效率高(达95%),不受建造场地限制且非常可靠。
其最大缺点就是成本太高,其次就是需要压缩机和泵以维持液化冷却剂的低温,使系统变得更加复杂,需要定期的维护。
超级电容器储能普通电容器由于其存储能量过小,所以未能用作电力系统中的储能装置。
所谓的“超级电容器”,其存储容量为普通电容器的20-1000倍。
它是通过使用一种多孔电解质(其介电常数和电压承受能力仍然比较低)加大两极板的面积,从而使储能能力得到提高。
根据电极材料的不同,可以分为碳类和金属氧化物超级电容器。
超级电容器兼有常规电容器功率密度大、充电能量密度高的优点,可快速充放电,且使用寿命长,不易老化。
超级电容器还具有一些自身的优势,它没有可动部分,既不需要冷却装置也不需要加热装置,在正常工作时,内部没有发生任何化学变化。
超级电容器能够安全放电安装简易,结构紧凑,适应各种不同的环境。
超级电容器的这些优点使得它在应用于分布式发电时,在与其它储能方式互相竞争中胜出。
超级电容器在许多领域都有广阔的应用前景,特别是在电动汽车上的应用具有非常明显的优势,许多国家都投人大量人力、物力对超级电容器进行研究开发,有些公司的产品已实现商品化。
2005年,美国加利福尼亚州建造了一台450kW的超级电容器储能装置,用以减轻950 kW风力发电机组向电网输送功率的波动。
分布式发电*分布式电源分布式电源(Distributed Generating Source,DGS)包括功率较小内燃机(Internal Combustion Engines)、微型燃气轮机(Micro-turbines)、燃料电池(Fuel Cell)、可再生能源如太阳能发电的光伏电池(Photovoltaic Cell)和风力发电等。
国际大型电力系统委员会(CIGRE)将分布式发电定义为“非经规划的或中央调度型的电力生产方式,通常与配电网连接,一般发电规模在50~100 MW之间。
”2002年11月,欧洲电力研讨会在布鲁塞尔召开,会议的论题之一是“分布式发电:过渡到未来电力系统的挑战者”。
研讨会上认为由于电网的概念将从被动式转变为主动,在新的配电网的概念之下,分布式发电也被纳入;电网实时管理的应用和分步式控制系统已经可以在技术上结合使用需求侧管理和主动的负荷管理系统。
分布式发电*对电力系统影响近年来,随着DG技术性能不断得到改善,成本进一步降低,DG在经济、运行以及环境性能上的技术优势逐步提高,使得其在电力系统中所占的比重逐步增长。
DG与常规电力系统并网运行的趋势越来越明显。
DG的并网会产生两个方面的问题:一是并网系统本身的结构和性能;另一个就是DG并网后对电力系统运行、控制、保护等各方面产生的影响。
分布式发电系统可以由不同的电厂组成,各电厂使用不同的一次能源。
分布式电厂可以按照发电设备的发电能力或按照其在整个电网中的位置来分类。
分布式发电系统可以定义为:所有不直接与国家电网连接、不由中央配电系统进行配送、不经电网调频的发电系统。
这个定义和目前意大利对输电网的定义相符,按照这个定义,输电网的主要功能是连接发电厂和配电系统。
从这个意义上说,现在只有高压和超高压线路才被看作输电线,这些线路只与10MW以上电厂连接。
因此目前认为将来只有10MW以上才可以直接参与电力市场(即:售电)。
因此这样说来,分布式发电应该包含所有发电能力在10MW以下电厂。
分布式发电(Distributed Generation,简称DG),通常是指发电功率在几千瓦至数百兆瓦(也有的建议限制在30~50兆瓦以下)的小型模块化、分散式、布置在用户附近的高效、可靠的发电单元。
主要包括:以液体或气体为燃料的内燃机、微型燃气轮机、太阳能发电(光伏电池、光热发电)、风力发电、生物质能发电等。
分布式能发电的优势在于可以充分开发利用各种可用的分散存在的能源,包括本地可方便获取的化石类燃料和可再生能源,并提高能源的利用效率。