D2习题课 高等数学高数

合集下载

《高等数学习题课二》PPT课件

《高等数学习题课二》PPT课件

( C ) 与 y 轴 相 垂 直 ;( D ) 与x 轴 即 不 平 行 也 不 垂 直 :
h
1
3、 若 函 数 f (x) 在 点 x0 不 连 续 , 则 f (x) 在x0 ( )
( A) 必 不 可 导 ;
( B) 必 定 可 导 ;
(C)不一定可导; (D)必无定义 .
4 、 如 果 f ( x ) = ( ), 那 么 f ( x ) 0 .
x;
4、 6 x tan( 10 3 x 2 ) ;
5、 x y ; x y
6、
1
.
3(2 y 1)( 2 x 1) x 2 x
h
8
四、1、a g(0);
2、f
(
x)
x[
g(
x)
sin x] x2
[
g(
x)
cosx]
,
x
0 .
12(g(0) 1), x 0
五、 f (n) (1) (1)n2 (n 2)!.
六、2.09.
七、20 8.16(公里/小时). 6
h
9
x x0
x
( D ) lim f ( x ) f ( x 0 ) ;
x x0
x x0
2、 若 函 数 y f ( x ) 在 点 x 0 处 的 导 数 f ( x 0 ) 0 , 则
曲 线 y f (x)在 点 ( x0, f (x0))处 的 法 线 ( )
( A ) 与 x 轴 相 平 行 ;( B ) 与x 轴 垂 直 ;
cos x
x
,
x
0 其中g( x)
有二阶连
a, x 0
续导数,且 g(0) 1,

高数(2)习题课 (期末复习资料)

高数(2)习题课 (期末复习资料)

2011~2012学年下学期 高等数学(2)习题课习题课 一(第五章 定积分)1.求定积分⎰+33121xdx 的值。

2.求定积分dtt t ⎰23cos sin π的值。

3.求定积分dxxxx⎰+-+01224133的值。

4.求定积分⎰--223cosππdxxcox的值。

5.求定积分⎰+∞-++031ee xxdx的值。

习题课二(第七章 微分方程)第一部分:(求下列微分方程的值)1.eyx dxdy+=解:-)(e -y:=+++==-⎰⎰⎰==-=c e e eeee yc e x e yd dxdydxdy xyxyyx dxe x edyy积分对上式两端为:即:该微分方程的通解分别整理后可得:2.022=-⎪⎭⎫ ⎝⎛+xydy dx yx3.eyxycox sin '-=+4.)ln (ln 'y x y y xy +=+5.yxy x yxy2236322'-+-+=C x Ct utdtuu d tdt du uuu ut dt duu u u t dt du tyy t yty t dt dyyxy y x y x yty u x t ty u x t +-=-+-⎰⎰---+=++----=-==-=-=-=⇒==+=-=+=)1ln(ln ln 31ln3)3(3222322321232322)1(313112,1'22222222通解为:代入上式可得原方程的,分别将即:得:对该式两端分别积分可分离变量后可得:,则上式又可化为:再令则上述方程又可化为:所以:令解:上式可化为6.设)()()(x g x f x F =,且)()(x g x f ,满足)()(),()(''x f x g x g x f ==且ex g x f x f x2)()(0)(=+=,。

(1).求)(x F 所满足的微分方程。

[]⊗-=+=+=+=-)(24)()()(2)()()()()()()()()(2')(222'''x F e x F x g x f x g x f x g x f x g x f x g x f x Fxx F 所满足的微分方程为:所以:解:(2).求)(x F 。

高等数学下册习题课(27)

高等数学下册习题课(27)

习 题 课 二 十 七1.设⎰⎰⎰Ω=dV z y x f I ),,(,其中Ω是由4222≤++z y x 和z y x 322≤+围成的区域,试在直角坐标系、柱面坐标系和球面坐标系下分别将I 化为三次积分。

解:(1)在直角坐标系下,两曲面的交线为⎪⎩⎪⎨⎧=+=++ 3422222z y x z y x ⎪⎩⎪⎨⎧==+⇒ 1322z y xxoy 在Ω面上的投影区域为}3),{(22≤+=y x y x D xy 。

⎰⎰⎰--+----=224322232333),,(y x yx x x dz z y x f dy dx I 。

(2)在柱面坐标系下,}43,30 ,20),,{(22ρ-≤≤ρ≤ρ≤π≤ϕ≤ϕρ=Ωz z ,dz d d dV ϕρρ=,⎰⎰⎰ρ-ρπϕρϕρρρϕ=2432320),sin ,cos (dz z f d d I 。

(3)在球面坐标系下,21ΩΩ=Ω ,}20 ,30 ,20),,{(1≤≤π≤θ≤π≤ϕ≤ϕθ=Ωr r ,}sin cos 30 ,23 ,20),,{(22θθ≤≤π≤θ≤ππ≤ϕ≤ϕθ=Ωr r , ϕθθ=d drd r dV sin 2。

⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+==21),,(),,(),,(dV z y x f dV z y x f dV z y x f Idr r r r r fd d ⎰⎰⎰θϕθϕθθθϕ=ππ202020)cos ,sin sin ,cos sin (sin 3drr r r r f d d ⎰⎰⎰θθπππθϕθϕθθθϕ+2sin cos 3022320)cos ,sin sin ,cos sin (sin2.将直角坐标系下的三次积分⎰⎰⎰---+++=10)(302222222)(y y y y y x dz z y x f dx dyI ,分别化为柱面坐标系和球面坐标系下的三次积分。

解:对应的三重积分区域⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤--+≤≤Ω .10,,)(30:2222z y y x y y y x z上顶为锥面)(322y x z +=, 下底为平面0=z 上的圆,侧面为圆柱22y y x -=即222)21()21(=-+y x 。

高等数学课件--D2习题课

高等数学课件--D2习题课

a2
目录 上页 下页 返回 结束
同济高等数学课件
x 1 时, f ( x) a ,
f (1) 存在
f x 1时, ( x) 2 x
a b 1 1 (a b 1) 2
a2
f (1) 2
x 1 x 1
a 2 , b 1,
2 , f ( x) 2 x ,
解:
f (x)
1 (a b 1 1 时, f ( x) a ;

利用 f ( x) 在 x 1 处可导,得
f (1 ) f (1 ) f (1)
f (1) f (1)
10/12/2012

a b 1 1 (a b 1) 2
sine e
x sin x
d(sin x) esin x cose x d(e x )
e
sin x
(cos x sine e cose
x
x
x
) dx
10/12/2012
同济高等数学课件
目录 上页 下页 返回 结束
例7. 选择 可使下述函数在
f (x)
2

ax bx c , g ( x) , x0 x0
目录 上页 下页 返回 结束
1
作业
P125 5;
7;
6(1) ;
8 (3) ,
(4) , (5)
;
9 (2) ; 11 ;
12 (2) ;
13 ;
10/12/2012
15 ; 18
同济高等数学课件
目录 上页 下页 返回 结束
f ( x0 )
10/12/2012

《高等数学》(北大第二版)第02章习题课

《高等数学》(北大第二版)第02章习题课

《高等数学》(北大第二版)第02章习题课某存在,故只要证f(0)=0.分析需证证设limf(某)=A,则limf(某)=lim某f(某)=0A=0,某→0某→0某→0某某因为f(某)在某=0处连续,所以f(0)=limf(某)=0.某→0f(某)f(0)f(某)f′(0)=lim=lim=A 存在,即f(某)在某=0处可导.故某→0某→0某0某例2设f(u)的一阶导数存在,求1rrlim[f(t+)f(t)]r→0rararf(t+)f(t)+f(t)f(t)aa解原式=limr→0rrr[f(t+)f(t)][f(t)f(t)]11aa令r=h=lim+limrrrra→0a→0aaaaa1f(t+h)f(t)1f(t)f(th)=lim+limh→0aha h→0h1f(t+h)f(t)1f(th)f(t)=lim+limh→0ahah→0hh=某112=f′(t)+f′(t)=f′(t)aaa例3已知y=某ln(某+1+某2)1+某2解′(′y′=某ln(某+1+某2))1+某2)(求y′.某1+某2=ln(1+1+某)+某.某+1+某21+某221+某=ln(1+1+某)+2某1+某2某1+某2=ln(1+1+某2)例4求y=解某某某的导数.y=某111++248=某,所以278787′=某=y.888某练习:y=ln11+某,求y′.例5设y=a1某3某logb14arctan某2(a>0,b>0),求y′.111某∵lny=lna+lnlogb某+lnarctan某2,解2624111lny=lna+(lnln某lnlnb)+lnarctan某2,2某624对上式两边求导,得lna1某′=y[y++]2422某6某ln某12(1+某)arctan某1=2a1某3某logb4arctan某2某1lna[2+].42某3某ln某6(1+某)arctan某例6设y=y(某)由方程e某y+tg(某y)=y确定,求y′(0)解由方程知当某=0时y=1.对方程两变求导:1e(y+某y′)+(y+某y′)=y′2co(某y)101e(1+0y′(0))+(1+0y′(0))=y′(0)2co(0)某y故y′(0)=2例7已知某y=e某+y求y′′解将方程两边对某求导,得y+某y′=e某+y(1+y′)(A)y+某y′=e某+y+y′e某+y再将(B)两边对某求导,得(B)y-e某+yy′=某+ye某(C)y′+y′+某y′′=e某+y(1+y′)+y′′e某+y+y′e某+y(1+y′)e某+y(1+y′)22y′y′′=某e某+yy-e某+y其中y′=某+ye某.某=ln(1+t2),例7已知求y′,y′′,y′′′.y=tarctant.11(t-arctant)′1+t2=t,解y′==22t2(ln(1+t)′1+t2t()′1+t22y′′==,2′(ln(1+t))4t 1+t2()′t414ty′′′==3.(ln(1+t2))′8t例8设y=f2(某)+f(某2),其中f(某)具有二阶导数,求y′′.解y′=2f(某)f′(某)+f′(某2)2某.y′′=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+2某f′′(某2)2某=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+4某2f′′(某2).例9求下列函数的n阶导数y(n)(n>3).某41(1)y=;(2)y=2.21某某a 某41+11y==(某3+某2+某+1)1某1某n!(n).当n>3时,y=n+1(1某)1(2)y=2(练习).2某a解(1)例10求由方程先求微分,易得导数]解[先求微分,易得导数将方程两边同时取微分,因为yln某+y=arctan所确定的隐函数的导数和微分.某2222dln某+y==1某+y22d某+y=221某+y22d(某2+y2)2某2+y21某2+y22某d某+2ydy2某2+y2=而某d某+ydy,22某+yy1某dyyd某某dyyd某darctan==2某1+(y)2某2某+y2某∴某d某+ydy某dyyd某=222某+y某+y2∴某+ydy=d某,某y∴dy某+yy′==.d某某ya某ba某b例11设f(某)可导,求y=f(in某)+()()().的导数,b某aa其中,a>0,b>0,≠1,某≠0.ba某ba某b2解记y1=f(in某),y2=()()(),b某a′则y1=f′(in2某)2in某co某=in2某f(in2某).2lny2=某(lnalnb)+a(lnbln某)+b(ln某lna),a某ba某babaab′).∴y2=y2[(lnalnb)+]=()()()(ln+b某ab某某某例12设y=(ln某)某某ln某,求y′.lny=某ln(ln某)+(ln某)2,解两边取对数,两边关于某求导1y′=ln(ln某)+1+2ln某,yln某某12ln某某ln某y′=(ln某)某[ln(ln某)+∴+].ln某某练习:设(co某)y=(iny)某求y′例13解dy已知y=a+某,a>0为常数,(a≠1),求.d某arctan某2in某设y1=a,y2=某.arctan某2in某)′=lnaa(arctan某2)′1arctan某22′=lnaaarctan某22某.=lnaa(某)41+某1+某4对y2=某in某两边取对数,得lny2=in某ln 某1in某′y2=co某ln某+,两边对某求导,得某y2in某in某′y2=某(co某ln某+).某arctan某2arctan某2′y1=(a2-某,1<某<+∞,2例13设f(某)=某,0≤某≤1,某3,-∞<某<0.解第一步,在各开区间内分别求导:1,1<某<+∞;f′(某)=2某,0<某<1,3某2,-∞<某<0.求f′(某).第二步,在分段点用导数定义求导,分段点为某=0,1f(0+某)f(0)(某)20f+′(0)=lim+=lim+=0某→0某→0某某f(0+某)f(0)(某)30f′(0)=lim=lim=0,∴f′(0)=0某→0某→0某某f(1+某)f(1)2(1+某)12某=lim+=lim+=1f+′(1)=lim+某→0某→0某→0某某某f(1+某)f(1)(1+某)2122某+(某)2=lim=lim=3f′(1)=lim某→0某→0某→0某某某∴f(某)在某=1的导数不存在1,1<某<+∞,故f(某)=2某,0≤某<1,3某2,-∞<某<0.在某=1处f(某)不可导.某≤c,in某,例14设f(某)=c为常数a某+b,某>c.试确定a,b的值,使f′(c)存在.解因为f′(c)存在,所以f(某)在c处连续.某→clim-f(某)=lim-in某=inc某→c某→c某→clim+f(某)=lim+(a某+b)=ac+bf′(c)=lim∴inc=ac+b(1)因为f(某)在c处可导,in某incf(某)f(c)=lim某→c某→c某c某c某c某c某+cin2inco2co某+c=coc.22=lim=lim某→c某c某→c2某c2f(某)f(c)a某+binca某+b(ac+b)=a.f+′(c)=lim=lim=lim+++某→c某→c某→c某c某c某c所以,coc=a(2)解(1),(2)得,=coc,b=inc-ccoc.a某2,某≤1,习题2-115.设f(某)=a某+b,某>1.为了使函数f(某)在某=1处连续且可导,a,b应取什么值?解要使f(某)在某=1处连续,因为某→1limf(某)=lim某2=1,某→1某→1某→1lim(a某+b)=a+b,+应有limf(某)=limf(某)=f(1)+某→1即a+b=1要使f(某)在某=1处可导,因为(1+某)2122某+(某)2f(1+某)f(1)=lim=2,f′(1)=lim=lim某→1某→1某→1某某某代a+b=1 a(1+某)+b12f(1+某)f(1)a某f+′(1)=lim=lim=lim=a,+++某→1某→1某→1某某某应有a=2,代入(1)式得b=-1.6.假定f′(某0)存在,指出下式A表示什么?f(某)=A,其中f(0)=0,且f′(0)存在;某→0某f(某0+h)f(某0h)(3)lim=A.h→0h解(2)∵limf(某)=limf(某)f(0)=f(某0),某→0某→0某0某(2)lim∴A=f(某0).(3)∵limh→0f(某0+h)f(某0)+f(某0)f(某0h)f(某0+h)f(某0h)=limh→0hhf(某0+h)f(某0)f(某0)f(某0h)+limh→0hh=limh→0f(某0h)f(某0)令h=某=f′(某0)+lim========f′(某0)+f′(某0)=2f′(某0),h→0h∴A=2f′(某0).9.如果f(某)为偶函数,且f′(0)存在,证明f′(0)=0.证f(某)f(某0)f(某)f(0)f(某)f(0)′(某0)=lim(f)f′(0)=lim=lim某→某0某→0某→0某某0某0某0f(某)f(0)(令某=y)f(y)f(0)=f′(0)=lim==========lim某→0某0y→0y0∴2f′(0)=0,f′(0)=0.1例16设f(t)=limt(1+)2t某,求f′(t).某→∞某1某2t12t某解limt(1+)=limt[(1+)]=te2t某→∞某→∞某某f′(t)=(te2t)′=(2t+1)e2t.12某in,某≠0;例15求f(某)=某0,某=0一阶导数和二阶导数.11解当某≠0时,f′(某)=2某inco,某某12111f′′(某)=2inco2in.某某某某某当某=0时,用导数定义先求一阶导数,再来看二阶导数.f(0+某)f(0)=limf(某)f′(0)=lim某→0某→0某某=lim由于某2in某→01某=lim某in1=0;某→0某某1limf′(某)=lim(2某in1co1)=limco某→0某→0不存在(极限故处不连续(是振荡间断点是振荡间断点),所以不可导,即不存在极限),故f′(某)在某=0处不连续是振荡间断点所以f′(某)在某=0不可导即极限不可导f′′(0)不存在不存在.某某某→0某1g(某)co,某≠0,例16设f(某)=某0,某=0.且g(0)=g′(0)=0试问:(1)limf(某);某→0(2)f(某)在某=0处是否连续?(3)f(某)在某=0处是否可导?若可导,f′(0)=解(1limf(某)=limg(某)co)1=0某→0某→0某1(∵limg(某)=g(0)=0;co为有界函数)某→0某某→0(2)∵limf(某)=0=f(0)∵f(某)在某=0处连续.11g(某)co0g(某)co某某=0lim(3)f′(0)=lim某→0某→0某0某1g(某)g(0)g(某)(∵g′(0)=lim=lim=0,co有界)某→0某→0某0某某。

高等数学2-习题集(含答案)

高等数学2-习题集(含答案)

《高等数学2》课程习题集【说明】:本课程《高等数学2》(编号为01011)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。

一、计算题11. 计算 行列式6142302151032121----=D 的值。

2. 计算行列式5241421318320521------=D 的值。

3.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D 的值。

4. 已知2333231232221131211=a a a a a a a a a , 计算:333231232221131211101010a a a a a a a a a 的值。

5.计算行列式 0111101111011110=D 的值。

6. 计算行列式199819981997199619951994199319921991 的值.7. 计算行列式50007061102948023---=D 的值. 8. 计算行列式3214214314324321=D 的值。

9. 已知10333222111=c b a c b a c b a ,求222111333c b a c b a c b a 的值. 10. 计算行列式x a a a xa a ax D n=的值。

11.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2100430000350023A ,求1-A 。

12.求⎪⎪⎪⎭⎫ ⎝⎛=311121111A 的逆.13.设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。

14. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A 的逆。

15. 求⎪⎪⎪⎭⎫⎝⎛-----=461351341A 的逆矩阵。

16. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2300120000230014A 的逆。

17. 求⎪⎪⎪⎭⎫⎝⎛--=232311111A 的逆矩阵。

18.求矩阵⎪⎪⎪⎭⎫⎝⎛-=101012211A 的逆.19. 求矩阵112235324-⎛⎫⎪=- ⎪ ⎪-⎝⎭A 的逆。

(完整版)高等数学II练习册-第10章答案

(完整版)高等数学II练习册-第10章答案

(完整版)⾼等数学II练习册-第10章答案习题10-1 ⼆重积分的概念与性质1.根据⼆重积分的性质,⽐较下列积分的⼤⼩:(1)2()D x y d σ+??与3()Dx y d σ+??,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成;(2)ln()Dx y d σ+??与2[ln()]Dx y d σ+??,其中D 是三⾓形闭区域,三顶点分别为(1,0),(1,1),(2,0);2.利⽤⼆重积分的性质估计下列积分的值:(1)22sin sin DI x yd σ=,其中{(,)|0,0}D x y x y ππ=≤≤≤≤;(2)22(49)DI x y d σ=++??,其中22{(,)|4}D x y x y =+≤.(3).DI =,其中{(,)|01,02}D x y x y =≤≤≤≤解 (),f x y =Q 2,在D 上(),f x y 的最⼤值()14M x y ===,最⼩值()11,25m x y ====故0.40.5I ≤≤习题10-2 ⼆重积分的计算法1.计算下列⼆重积分:(1)22()Dx y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤;(2)cos()Dx x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三⾓形闭区域。

2.画出积分区域,并计算下列⼆重积分:(1)x y De d σ+??,其中{(,)|||1}D x y x y =+≤(2)22()Dxy x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。

3.化⼆重积分(,)DI f x y d σ=为⼆次积分(分别列出对两个变量先后次序不同的两个⼆次积分),其中积分区域D 是:(1)由直线y x =及抛物线24y x =所围成的闭区域;(2)由直线y x =,2x =及双曲线1(0)y x x=>所围成的闭区域。

《高等数学》(北大第二版 )第09章-习题课

《高等数学》(北大第二版 )第09章-习题课
Ω2
x2 + y2 ez
2
dxdydz, dxdydz,
x

Ω1
Z=1
⋅ ⋅

y
x +y
1 2
2
e = ∫ dθ ∫ dr∫ ⋅ rdz 0 0 1 r z 2π 2 2e + ∫ dθ ∫ dr∫ ⋅ rdz 0 1 r r = 2πe2.

z
x2 + y2 ≤1 其 Ω1 : 中 1 ≤ z ≤2
π
2Байду номын сангаас
2
0
2

0
u=
π
2
−t

∫∫
2

2
2
0

0
解2
0 ≤ x ≤ 2 y − y 2 , 如图所示,D: 0 ≤ y ≤ 2.
y 2
D
D1
∫∫ ydxdy = ∫
D
2
0
ydy ∫
2
− 2 y− y2
−2
dx
-2
o
x
= ∫ y (− 2 y − y 2 + 2)dy
0
= 2∫ ydy − ∫ y 2 y − y 2 dy
−2
0
2
0
ydy = 4.
8 π 4 ρ sin θ ⋅ ρdρ = ∫π sin θdθ 3 2
∫∫ ydxdy = ∫π dθ ∫
D1
π
2 sin θ
π 8 3 π π 8 2 4 = ∫ sin θdθ = ⋅ ⋅ = . ∴ ∫∫ yddxdy = 4 − . 2 3 4 2 2 3 0 D π π π π 0 π 0 − 0 ( ∫π = ∫π + ===== π − = 2 π + 2 2 = 2 ) π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(C) 0;
(ln
x)
1 x
;
(sin x) cos x
其他求导公式都可由它们及求导法则推出;
2) 求分段函数在分界点处的导数 , 及某些特殊
函数在特殊点处的导数;
3) 由导数定义证明一些命题.
(2)用导数定义求极限
(3)微分在近似计算的应用
机动 目录 上页 下页 返回 结束
例1.设 f (x0 ) 存在,求
lim f (x0 x (x)2 ) f (x0 ) .
x0
x
解:
原式=lxim0
f
( x0
x (x)2) x (x)2
f
(x0 )
x
(x)2
x
f (x0 )
机动 目录 上页 下页 返回 结束
例2.若
f
(1)
0

f
(1)
存在
,

lim
x0
f
(sin (ex
2 x (0)
lim
x0
(ax2
bx c) x0
g (0)
b
机动 目录 上页 下页 返回 结束
ax2 bx c, x 0
f (x) g(x) ,
x0
c g(0) b g (0)
3) 利用 f(0) f(0), 而
f(0)
lim
x0
g(
x) x
g 0
(0)
g (0)
f(0)
lim
x0
(2ax b) x0
b
2a

a
1 2
g
(0)
机动 目录 上页 下页 返回 结束
习题课 导数与微分
第二章
一、 导数和微分的概念及应用 二、 导数和微分的求法
机动 目录 上页 下页 返回 结束
一、 导数和微分的概念及应用
• 导数 :

时,为右导数

时,为左导数
• 微分 :
• 关系 : 可导
可微
机动 目录 上页 下页 返回 结束
• 应用 : (1) 利用导数定义解决的问题
1) 推出三个最基本的导数公式及求导法则
2. 熟练掌握求导方法和技巧
(1) 求分段函数的导数
注意讨论界点处左右导数是否存在和相等
(2) 隐函数求导法
对数法
(3) 参数方程求导法 (4) 复合函数求导法
(5) 高阶导数的求法
逐次求导归纳 ;
间接求导法; 利用莱布尼兹公式.
机动 目录 上页 下页 返回 结束
例4. 选择

存在, 问怎样
可使下述函数在
处有二阶导数.
ax2 bx c, x 0
f (x) g(x) ,
x0
解: 由题设 f (0) 存在, 因此
1) 利用 在
连续, 即 f (0 ) f (0 ) f (0),
得 c g(0)
2) 利用 f(0) f(0), 而
f (0)
lim
x0
g
(
x) x
g 0
(0)
g (0)
求 f (2) .
解: f (2) lim f (x) lim[(x 2) f (x) ] 0
x2
x2
(x 2)
f (2) lim f (x) f (2) x2 x 2
lim f (x) 3 x2 x 2
机动 目录 上页 下页 返回 结束
二、 导数和微分的求法
1. 正确使用导数及微分公式和法则
x)
.
解:
原式 =
lim
x0
f
(sin 2
x x2
cos
x)

联想到凑导数的定义式
lim
x0
f (1 sin2 x cos x 1) sin2 x cos x 1
f (1)
sin
2
x
cos x2
x
1
f (1) (1 1) 1 f (1) 22
机动 目录 上页 下页 返回 结束
例3.设 f (x) 在 x 2 处连续,且 lim f (x) 3, x2 x 2
相关文档
最新文档