数值分析Chap3Sec6

合集下载

数值分析学习课件

数值分析学习课件

数值分析学习课件目录1. 内容概要 (2)1.1 数值分析的重要性 (2)1.2 课件内容概述 (3)2. 基础知识准备 (4)2.1 数学知识要点 (6)2.2 计算机基础 (7)2.3 编程基础 (8)3. 数值计算的基本原理 (10)3.1 误差理论 (11)3.2 近似计算 (13)3.3 算法稳定性与收敛性 (15)4. 数值计算方法与技巧 (16)4.1 插值与逼近 (17)4.2 微分与积分计算 (19)4.3 线性代数方程求解 (19)4.4 优化计算方法 (21)5. 数值分析的应用实例 (22)5.1 数据拟合与预测分析 (23)5.2 微分方程数值解法应用 (24)5.3 线性规划优化问题应用 (26)5.4 其他领域的应用实例 (27)6. 实践操作指导 (28)6.1 编程实践环境搭建 (30)6.2 数值计算软件使用介绍 (31)6.3 编程实践案例分析 (32)7. 课程总结与展望 (33)7.1 课程重点内容回顾 (34)7.2 数值分析发展趋势 (35)7.3 学习建议与展望 (37)1. 内容概要数值分析是一个研究数值算法的学科,旨在寻找有效的方法来求解大量的数学问题,特别是那些无法得到精确解或者求解起来过于繁杂的问题。

它在物理学、工程学、经济学、生物技术以及许多其他科学领域中都是至关重要的。

本课程将涵盖数值分析的核心概念和方法,重点是数值线性代数、数值积分、数值微分方程以及数值优化等经典主题。

学生将理解这些问题的数学背景,掌握相关的数值算法,并能够运用编程实现这些算法。

学生还将学习误差分析、收敛性理论以及如何选择和实现适合特定问题的数值方法。

在整个课程中,学生将通过实际问题的解决,如物理模型、金融模型、生物数据的分析和处理等,来应用所学的数值分析知识和技能。

通过本课程的学习,学生不仅能够加深对数值方法的理解,还能增强解决实际问题的能力。

1.1 数值分析的重要性数值分析是利用计算机解决数学问题的重要工具,在许多领域,例如物理、工程、金融、生物等,现实世界的问题常常难以用精确的解析解表达出来。

数值分析各章重点公式整理

数值分析各章重点公式整理

数值分析各章重点公式整理数值分析是计算数学的一个分支,主要涉及计算和分析数值近似解的方法。

本文将从数值分析的基本概念、插值与逼近、数值微分和数值积分、非线性方程数值解、线性方程组直接解法、线性方程组迭代解法和特征值问题等几个方面,对数值分析中的重点内容进行整理。

一、数值分析的基本概念数值分析是用数值方法解决实际问题的方法和技术。

其主要研究目标是通过一定的计算机运算来获取数学问题的近似解。

数值分析涉及到误差分析、收敛性分析、稳定性分析等概念,对于数值方法的正确性和可行性提供了理论依据。

二、插值与逼近插值是通过已知数据点构造一个函数,使得这个函数通过已知数据点。

常用的插值方法有拉格朗日插值和牛顿插值。

逼近是选择一种较为简单的函数来近似表示给定的复杂函数。

常用的逼近方法有最小二乘法和切比雪夫逼近。

三、数值微分和数值积分数值微分主要研究如何通过函数值的有限差分来估计导数值。

常用的数值微分方法有前向差分、后向差分和中心差分。

数值积分主要研究如何通过数值方法求出函数在一定区间上的定积分值。

常用的数值积分方法有梯形法则和 Simpson 法则。

四、非线性方程数值解非线性方程通常难以用解析方法求解,而数值方法则可以通过迭代来逼近方程的根。

常用的数值解法有二分法、牛顿法和割线法。

同时,对于多维非线性方程,也可以使用牛顿法的变形,牛顿下山法。

五、线性方程组直接解法线性方程组是数值分析中的一个重要问题。

直接解法主要有高斯消元法、LU 分解法和 Cholesky 分解法。

高斯消元法通过矩阵的初等行变换将线性方程组化为上三角方程组来求解。

LU 分解法将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积,然后通过回代求解。

Cholesky 分解法则适用于对称正定矩阵的解法。

六、线性方程组迭代解法线性方程组的迭代解法通过选取适当的初始解,通过迭代来逼近精确解。

常用的迭代解法有Jacobi迭代法、Gauss-Seidel迭代法和超松弛迭代法。

数值分析课件

数值分析课件

辛普森方法
一种基于矩形法思想的数值积分方法 ,适用于计算定积分。
自适应辛普森方法
一种基于辛普森方法和梯形法的自适 应数值积分方法,能够根据函数性质 自动选择合适的积分策略。
常微分方程的数值求解
01
欧拉方法
一种基于常微分方程初值 问题的数值求解方法,通 过逐步逼近的方式求解近 似解。
02
龙格-库塔方法
定积分是函数在区间上积分和的极限;不定积分是函数在 某个区间上的原函数。
02
应用领域
积分广泛应用于物理、工程、经济等领域,如求曲线下面 积、求解变速直线运动位移等。
03
数值计算方法
使用数值积分方法(如梯形法、辛普森法等)来近似计算 定积分和不定积分的值。这些方法将积分区间划分为若干 个小段,并使用已知的函数值和导数值来近似计算每个小 段的积分值,最后求和得到积分的近似值。
一种基于常微分方程初值 问题的数值求解方法,通 过构造龙格-库塔曲线来 逼近解。
03
阿达姆斯-图灵 方法
一种基于常微分方程初值 问题的数值求解方法,通 过构造阿达姆斯-图灵曲 线来逼近解。
04
自适应步长控制 方法
一种基于欧拉方法和龙格 -库塔方法的自适应步长 控制方法,能够根据误差 自动调整步长。
偏微分方程的数值求解
高斯消元法的步骤
1. 将方程组按照行进行排列,并将每个方程中的未知数 按照列排列。
2. 对于每个方程,选取一个未知数作为主元,并将其余 的未知数用主元表示。
3. 将主元所在的行与其他行进行交换,使得主元位于对 角线上。
4. 将主元所在的列中位于主元下方的元素消为0,从而得 到一个阶梯形矩阵。
线性方程组的解法
数值分析是一种工具,它可以帮助我 们更好地理解和解决实际问题,同时 也可以帮助我们更好地理解和应用数 学理论。

数值分析第六章课件

数值分析第六章课件

a(1) 1n
x1
b(1) 1
a(1) 21
a(1) 22
a(1) 2n
x2
b(1) 2
.
a(1) m1
a(1) m2
a(1) mn
xn
b(1) m
将(2.1)记为A(1)x=b(1),其中
a(1) 11
a(1) 12
a(1) 1n
a11
a12
a1n
A(1)
a(1) 21
5.2 高斯消去法
本节介绍高斯消去法(逐次消去法)及消去法和 矩阵三角分解之间的关系. 虽然高斯消去法是一种 古老的求解线性方程组的方法(早在公元前250年 我国就掌握了解方程组的消去法),但由它改进、 变形得到的选主元素消去法、三角分解法仍然是目 前计算机上常用的有效方法.我们在中学学过消去 法,高斯消去法就是它的标准化的、适合在计算机 上自动计算的一种方法.
有的问题的数学模型中虽不直接表现为含线性方 程组,但它的数值解法中将问题“离散化”或“线性 化”为线性方程组.因此线性方程组的求解是数值分 析课程中最基本的内容之一.
关于线性方程组的解法一般有两大类:
1. 直接法 经过有限次的算术运算,可以求得方程组的精确解( 假定计算过程没有舍入误差).如线性代数课程中提到 的克莱姆算法就是一种直接法.但该法对高阶方程组 计算量太大,不是一种实用的算法.
下面讨论求解一般线性方程组的高斯消去法.由
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2n xn b2
am1 x1 am2 x2 amn xn bm
a(1) 11
a(1) 21
x1 x1
a(1) 12
x2

数值分析

数值分析

数值分析主要研究截断误差与舍入误差。

某算法受初始误差或计算过程中产生的舍入误差的影响较小,则称之是数值稳定的,反之称为不稳定算法。

若初始数据的微小误差都会对最终的计算结果产生极大的影响,则称这种问题为病态问题(坏条件问题),反之称其为良态问题。

在插值节点n x x x ,,,10⋅⋅⋅处,取给定值n y y y ,,,10⋅⋅⋅,且次数不高于n 的插值多项式是存在且唯一的。

1. 线性插值与抛物插值(1) 线性插值)()()(1100101001011x l y x l y y x x x x y x x x x x L +=--+--=记为,其中)(),(10x l x l 称为线性插值的基函数。

(2) 抛物插值 ))(())(())(()(1020212x x x x C x x x x B x x x x A x L --+--+--= 分别令210,,x x x x =,即得))((,))((,))((120222*********x x x x y C x x x x y B x x x x y A --=--=--=,故0201122012010210122021()()()()()()()()()()()()()x x x x x x x x x x x x L x y y y x x x x x x x x x x x x ------=++------001122()()()y l x y l x y l x =++记为,其中)(),(),(210x l x l x l 称为抛物插值的基函数。

⎩⎨⎧≠==ik ik x l i k 01)(设)()(x fn ],[b a 上连续,在),(b a 内可导,则以插值多项式)(x L n 逼近)(x f 的截断误差(即余项)),(,)()!1()()()()(0)1(b a x x n f x L x f x R ni i n n n ∈-+=-=∏=+ξξ。

数值分析 CHAPTER3

数值分析 CHAPTER3

▲ 他把严格的论证引进分析学,建立了实数理论,引进了 现今分析学上通用的ε-δ定义,奠基了分析学的算术化。
▲ 在变分法中,给出了带有参数的函数的变分结构,研究
了变分问题的间断解。 ▲ 在微分几何中,研究了测地线和最小曲面; ▲ 在线性代数中,建立了初等因子理论,并用来简化矩阵。 ▲ 魏尔斯特拉斯一生中培养了很多有成就的学生,其中著
L2 ,1 ( x )
( x x 0 )( x x 2 ) ( x1 x 0 )( x1 x 2 )
L2 , 2 ( x )
( x x 0 )( x x1 ) ( x 2 x 0 )( x 2 x1 )
(3) The nth Lagrange interpolating polpolynomial P ( x ) of degree at most n that passes through the n+1 given points ( x0 , f ( x0 )) , ( x1 , f ( x1 )) , , ( xn , f ( xn )) .
The coefficient determinant of the system is
1 1 1 x0 x1 xn x0 x1 xn
2 2
x0 x1 xn
n n


2 n
0.
Vandemonde determinant
3.1 Interpolation and Lagrange Polynomial
f ( 3) P ( 3) 0.325
The truncation error
Ln ,n ( x )
Ln ,1 ( x )
( x x 0 )( x x 2 )( x x n ) ( x1 x 0 )( x1 x 2 )( x1 x n )

数值分析ppt课件


数值积分与微分
数值积分
通过数值方法近似计算定积 分,如梯形法则、辛普森法 则等。
数值微分
通过数值方法近似计算函数 的导数,如差分法、中心差 分法等。
常微分方程的数值解法
通过数值方法求解常微分方 程,如欧拉方法、龙格-库塔 方法等。
03
数值分析的稳定性与误差分析
误差的来源与分类
模型误差
由于数学模型本身的近 似性和简化,与真实系
非线性代数方法
非线性方程组的求解
通过迭代法、直接法等求解非线性方程组,如牛顿法、拟牛顿法 等。
非线性最小二乘问题
通过迭代法、直接法等求解非线性最小二乘问题,如GaussNewton方法、Levenberg-Marquardt方法等。
多项式插值与逼近
通过多项式插值与逼近方法对函数进行近似,如拉格朗日插值、 样条插值等。
机器学习与数值分析的交叉研究
机器学习算法
利用数值分析方法优化和改进机器学 习模型的训练和预测过程,提高模型 的准确性和效率。
数据驱动的模型
通过数值分析方法处理大规模数据集 ,提取有用的特征和模式,为机器学 习模型提供更好的输入和输出。
大数据与数值分析的结合
大数据处理
利用数值分析方法处理和分析大规模数 据集,挖掘其中的规律、趋势和关联信 息。
数值分析PPT课件
contents
目录
• 引言 • 数值分析的基本方法 • 数值分析的稳定性与误差分析 • 数值分析的优化方法 • 数值分析的未来发展与挑战
01
引言
数值分析的定义
数值分析
数值分析是一门研究数值计算方法及 其应用的学科,旨在解决各种数学问 题,如微积分、线性代数、微分方程 等。

数值分析全册完整课件

似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:

数值分析学习公式总结

数值分析学习公式总结数值分析是以计算机为工具,对数学问题进行数值计算和近似方法的研究。

在数值分析中,有许多重要的数学公式和算法被广泛应用。

下面是一些数值分析中常用的公式和算法的总结。

1.插值公式:-拉格朗日插值公式:假设有给定的n个点(x_0,y_0),(x_1,y_1),...,(x_n,y_n),则对于任意一个x,可以通过拉格朗日插值公式计算出相应的y值。

-牛顿插值公式:利用差商构造的插值公式,对给定n个点进行插值,得到一个多项式函数。

2.数值积分公式:-矩形法:将区间分割成若干小矩形,计算每个矩形的面积然后求和。

-梯形法:将区间分割成若干个梯形,计算每个梯形的面积然后求和。

-辛普森法则:将区间分割成若干个小区间,通过对每个小区间应用辛普森公式计算出近似的定积分值。

3.数值微分公式:-前向差分公式:利用函数在特定点的导数与函数在该点附近的值之间的关系,通过近似计算导数的值。

-后向差分公式:类似于前向差分公式,但是利用函数在特定点的导数与函数在该点附近的值之间的关系,通过近似计算导数的值。

-中心差分公式:利用函数在特定点的导数与函数在该点两侧的值之间的差异,通过近似计算导数的值。

4.数值解线性方程组方法:-直接法:高斯消元法,LU分解法等。

-迭代法:雅可比迭代法,高斯-赛德尔迭代法等。

5.最小二乘拟合法:-线性最小二乘拟合:通过线性回归的方法,寻找最佳的拟合直线。

-非线性最小二乘拟合:通过非线性回归的方法,寻找最佳的非线性拟合曲线。

6.数值求解常微分方程方法:-欧拉法:将微分方程离散化,通过迭代计算得到近似解。

-改进欧拉法:利用欧拉法的计算结果进行修正,提高近似解的精度。

- 二阶龙格-库塔法:利用四阶Runge-Kutta法的计算结果进行修正,提高近似解的精度。

7.插值法的误差估计:-真实误差:插值函数与原函数之间的差异。

-误差界:对于给定的插值公式,通过计算条件和边界限制,得到误差的上限。

8.特殊函数的数值计算:-常用特殊函数的近似计算方法,如阶乘函数,指数函数,对数函数等。

第一章数值分析

x* 0.a1a2 an 10m (a1 0)有n位
有效数字
r
1 10n1 2(a1 1)

e x x* er x x
x* 0.a1a2 an 10m (a1 0)有n位
1 10n1 2a1
绝对误差(限)
相对误差(限)
e
er r ,
16
4 有效数字与绝对误差、相对误差的关系:
(1)若某数x的近似值x*有n位有效数字,则
数值分析
主讲数值分析课题组 Chenning
1
数值分析课程简介
数值分析
数值分析主要包括计算方法和数值方法两 部分。它是研究科学与工程技术中数学问题的 数值解及其理论的一个重要的数学分支,它主 要涉及到代数、微积分、微分方程的数值解等 问题。
数值分析及计算的主要任务,就是研究适合
于在计算机上使用的的数值计算方法及与此相
第八章 非线性方程的数值解法
第九章 常微分方程的数值解法
3
数值分析
第一章 数值计算中的误差分析
本章的主要内容有:
(一) 误差的来源; (二) 绝对误差、相对误差和有效数值; (三) 数值计算中误差的传播; (四) 数值计算中应注意的问题。
4
第一节 误差与数值计算 的误差估计
第二节 选用和设计算法 适应遵循的原则
3.14 3.14 0.0016 1 102.
2 ( 3.1416 3.14 0.0016) 3.142 3.142 0.00041 1 103
2 ( 3.14241 3.142 0.00041)
10
例:问3.142,3.141,22/7分别作为 的近似值各具有几位有效数字?
数值分析
5
误差与数值计算误差估计 一 误差的来源与分类 二 误差与有效数字
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9 10 如前例: 1
1 1
1 2


1 109
1 2 0 1 1
x2 1 ,

注:列主元法没有全主元法稳定。
9 1 10 例: 1 1
10 9 2

1 109 9 0 10
小主元可能导致计算 失败。

x2 1,
x1 0
一. 完全主元素消去法
每一步选绝对值最大的元素为主元素,保证 第k步: ① 选取 | ai
k
| mik。 |1
jk
| max | aij | 0 ;
k i , jn
② 如 ik k 则交换第 k 行与第 ik 行; 如 jk k 则交换第 k 列与第 jk 列; ③ 消元 注:列交换改变了 xi 的顺序,须记录交换次序,解完后 再换回来。优点是计算结果更可靠;缺点是挑主元花 机时更多,程序复杂。

a nn xn an ,n1
以上为消元过程。 (n) 回代求解公式
a n, n 1 xn ann x 1 [a k ,n1 k a kk
j k 1
a
n
kj
x j ] ( k n 1, n 2,...,1)
这是回代过程。
用高斯消去法计算:
a 22 1 m 21 1 0.0 ... 01 10 9 10 9 10 9
m21 a21 / a11 109 8个
b2 2 m21 1 109
10 9 0 1 10 9 1 10 9
a22 x2 a23 x3 a2 n xn a2 ,n1 a33 x3 a3 n xn a3 ,n1

an 3 x3 ann xn an ,n1
(n-1) 原方程组化为
a11 x1 a12 x 2 a1n xn a1,n1 a22 x2 a2 n xn a 2 ,n1
109 x2 1 , x1 0 9 10
注意:这两个方程组 在数学上严格等价。
§3.6 高斯主元素消去法
例3.6.1:单精度解方程组 /* 精确解为 x1
1 1 109
109 x1 x1 x2 x2 1 2
8个 8个 1.00...0100... 和 x 2 2 x1 0.99 ... 9899 ... */
(2) 找r2,使 ar2 2 max ai 2 ,若r2 2,对调2 r2行.
2 i n
消元:用a22把ai 2消为0 ( i 3,4, , n) : ai 2 第2行 第i行, a22
到此原方程组化为: a11 x1 a12 x2 a13 x3 a1 n xn a1,n1
到此原方程组化为
a11 x1 a12 x2 a1n xn a1,n1 a22 x2 a2 n xn a2 ,n1

ai 2 x2 ain xn ai ,n1

an 2 x2 ann xn an ,n1
二. 列主元素消去法
省去换列的步骤,每次仅选一列中最大的元。
| a i k , k | max | a ik | 0
k in
(1) 找行号r1 使 ar1 1 max ai 1 ,若r1 1,对调1 r1行:
1 i n
消元:用a11把ai 1消为0 ( i 2, 3,..., n) : ai 1 第1行 加到第i 行. a11
相关文档
最新文档