2015年高考山东省文科数学真题含答案解析(超完美版)

合集下载

高等学校招生全国统一考试数学文试题(山东卷,含解析)(1)

高等学校招生全国统一考试数学文试题(山东卷,含解析)(1)

2015年普通高等学校招生全国统一考试数学文试题(山东卷,含解析)第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的1. 已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A ⋂B=( ) (A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】C 【解析】试题分析:因为B ={x|1<x<3},所以(2,3)A B ⋂=,故选C. 考点:1.集合的基本运算;2.简单不等式的解法. 2. 若复数Z 满足1zi-=i ,其中i 为虚数单位,则Z=( ) (A )1-i (B )1+i (C )-1-i (D )-1+i 【答案】C考点:1.复数的运算;2.共轭复数.3. 设a=0.60.6,b=0.61.5,c=1.50.6,则a ,b ,c 的大小关系是( ) (A )a <b <c (B )a <c <b (C )b <a <c (D )b <c <a 【答案】C 【解析】试题分析:由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C.考点:1.指数函数的性质;2.函数值比较大小. 4. 要得到函数y=sin (4x-3π)的图象,只需要将函数y=si n4x 的图象( ) (A ).向左平移12π个单位 (B )向右平移12π个单位(C ).向左平移3π个单位 (D )向右平移3π个单位 【答案】B考点:三角函数图象的变换.5. 设m R ∈,命题“若m>0,则方程20x x m +-=有实根”的逆否命题是( ) A.若方程20x x m +-=有实根,则>0 B.若方程20x x m +-=有实根,则.若方程20x x m +-=没有实根,则>0.若方程20x x m +-=没有实根,则0【答案】D 【解析】试题分析:一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D. 考点:命题的四种形式.6. 为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的标号为( ) (A )①③ (B) ①④ (C) ②③ (D) ②④ 【答案】B考点:1.茎叶图;2.平均数、方差、标准差.7. 在区间[0,2]上随机地取一个数x,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A 【解析】试题分析:由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,332204P -==-,故选A.考点:1.几何概型;2.对数函数的性质.8. 若函数21()2x x f x a+=-是奇函数,则使f (x )>3成立的x 的取值范围为( )(A )( ) (B)() (C )(0,1) (D )(1,+)【答案】C 【解析】试题分析:由题意()()f x f x =--,即2121,22x x xx a a --++=---所以,(1)(21)0,1xa a -+==,21(),21x x f x +=-由21()321x xf x +=>-得,122,01,x x <<<<故选C. 考点:1.函数的奇偶性;2.指数运算.9. 已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) ()()()()【答案】B考点:1.旋转体的几何特征;2.几何体的体积. 10. 设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b=( ) (A )1 (B )78 (C )34 (D)12【答案】D 【解析】试题分析:由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D. 考点:1.分段函数;2.函数与方程.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分11. 执行右边的程序框图,若输入的x 的值为1,则输出的y 的值是 .【答案】13考点:算法与程序框图.12. 若x,y 满足约束条件13,1y x x y y -≤⎧⎪+≤⎨⎪≥⎩则3z x y =+的最大值为 .【答案】7 【解析】试题分析:画出可行域及直线30x y +=,平移直线30x y +=,当其经过点(1,2)A 时,直线的纵截距最大,所以3z x y =+最大为1327z =+⨯=.考点:简单线性规划. 13. 过点P (1,)作圆的两条切线,切点分别为A ,B ,则= .【答案】32考点:1.直线与圆的位置关系;2.平面向量的数量积.14. 定义运算“⊗”: 22x y x y xy-⊗=(,0x y R xy ∈≠,).当00x y >>,时,(2)x y y x ⊗+⊗的最小值是 .【解析】试题分析:由新定义运算知, 2222(2)4(2)(2)2y x y x y x y x xy --⊗==,因为,00x y >>,,所以,22222242(2)22x y y x x y x y y x xy xy xy --+⊗+⊗=+=≥=x =时,(2)x y y x ⊗+⊗考点:1.新定义运算;2.基本不等式.15. 过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .【答案】2+考点:1.双曲线的几何性质;2.直线方程. 三、解答题:本大题共6小题,共75分 16. (本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1) 从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【答案】(1) 13;(2)215. 【解析】试题分析:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015-=人,所以从该班级随机选1名同学,利用公式计算即得.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:111213212223313233{,},{,},{,},{,},{,},{,},{,},{,},{,},A B A B A B A B A B A B A B A B A B 414243515253{,},{,},{,},{,},{,},{,}A B A B A B A B A B A B ,共15个.根据题意,这些基本事件的出现是等可能的.事件“1A 被选中且1B 未被选中”所包含的基本事件有:1213{,},{,}AB A B ,共2个. 应用公式计算即得.试题解析:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015-=人,所以从该班级随机选1名同学,该同学至少参加上述一个社团的概率为151.453P == (2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:111213212223313233{,},{,},{,},{,},{,},{,},{,},{,},{,},A B A B A B A B A B A B A B A B A B 414243515253{,},{,},{,},{,},{,},{,}A B A B A B A B A B A B ,共15个.根据题意,这些基本事件的出现是等可能的.事件“1A 被选中且1B 未被选中”所包含的基本事件有:1213{,},{,}AB A B ,共2个. 因此1A 被选中且1B 未被选中的概率为215P =. 考点:1.古典概型;2.随机事件的概率. 17. (本小题满分12分)ABC ∆中,角A ,B ,C 所对的边分别为a,b,c.已知cos ()B A B ac =+==求sin A 和c 的值.由正弦定理可得a =,结合ac =.试题解析:在ABC ∆中,由cos B =sin B =. 因为A B C π++=,所以sin sin()9C A B =+=, 因为sin sin C B <,所以C B <,C为锐角,cos C =因此sin sin()sin cos cos sin A B C B C B C =+=+3=+=. 由,sin sin a c A C =可得sin sin c A a C ===,又ac =1c =. 考点:1.两角和差的三角函数;2.正弦定理.18. 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .【答案】证明见解析思路二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点, 可得HBEF 为平行四边形, //.BE HF 在ABC ∆中,G H ,分别为AC BC ,的中点, 得到//,GH AB 又GH HF H ⋂=, 得到平面//FGH 平面ABED .(II)证明:连接HE .根据 G H ,分别为AC BC ,的中点,得到 //,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,得到四边形EFCH 是平行四边形,从而 //.CF HE 又CF BC ⊥,得到 HE BC ⊥.试题解析:(I )证法一:连接,.DG CD 设CD GF M ⋂=,连接MH ,在三棱台DEF ABC -中,2AB DE G =,分别为AC 的中点,可得//,DF GC DF GC =,所以四边形DFCG 是平行四边形,则M为CD 的中点,又H 是BC 的中点,所以//HM BD ,又HM ⊂平面FGH ,BD ⊄平面FGH ,所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点,可得//,,BH EF BH EF =所以HBEF 为平行四边形,可得//.BE HF在ABC ∆中,G H ,分别为AC BC ,的中点,所以//,GH AB 又GH HF H ⋂=,所以平面//FGH 平面ABED ,因为BD ⊂平面ABED ,所以//BD 平面FGH.(II)证明:连接HE .因为G H ,分别为AC BC ,的中点,所以//,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,所以//,,EF HC EF HC =因此四边形EFCH 是平行四边形,所以//.CF HE 又CF BC ⊥,所以HE BC ⊥.又,HE GH ⊂平面EGH ,HE GH H ⋂=,所以BC ⊥平面EGH ,又BC ⊂平面BCD ,所以平面BCD ⊥平面.EGH考点:1.平行关系;2.垂直关系.19. (本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21n n +.(I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .【答案】(I )2 1.n a n =- (II) 14(31)4.9n n n T ++-⋅=【解析】试题分析:(I )设数列{}n a 的公差为d ,令1,n =得12113a a =,得到 123a a =.令2,n =得12231125a a a a +=,得到 2315a a =.解得11,2a d ==即得解.(II )由(I )知24224,n n n b n n -=⋅=⋅得到 121424......4,n n T n =⋅+⋅++⋅ 从而23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅利用“错位相减法”求和.试题解析:(I )设数列{}n a 的公差为d ,令1,n =得12113a a =,所以123a a =.令2,n =得12231125a a a a +=,所以2315a a =.解得11,2a d ==,所以2 1.n a n =-(II )由(I )知24224,n n n b n n -=⋅=⋅所以121424......4,n n T n =⋅+⋅++⋅所以23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅两式相减,得121344......44n n n T n +-=+++-⋅114(14)13444,1433n n n n n ++--=-⋅=⨯-- 所以113144(31)44.999n n n n n T ++-+-⋅=⨯+=考点:1.等差数列的通项公式;2.数列的求和、“错位相减法”.20. (本小题满分13分) 设函数. 已知曲线 在点(1,(1))f处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =(min{p ,q}表示,p ,q 中的较小值),求m(x)的最大值.【答案】(I )1a = ;(II) 1k = ;(III)24e . 【解析】试题分析:(I )由题意知, '(1)2f =,根据'()ln 1,a f x x x=++即可求得. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根. 设2()()()(1)ln ,x x h x f x g x x x e=-=+- 通过研究(0,1]x ∈时,()0h x <.又2244(2)3ln 2ln 8110,h e e=-=->-= 得知存在0(1,2)x ∈,使0()0h x =.应用导数研究函数()h x 的单调性,当(1,)x ∈+∞时,()h x 单调递增.作出结论:1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,得到020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,研究得到0()().m x m x ≤当0(,)x x ∈+∞时,应用导数研究得到24()(2),m x m e ≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e .试题解析:(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =, 又'()ln 1,a f x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根. 设2()()()(1)ln ,x x h x f x g x x x e=-=+- 当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln 8110,h e e =-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >, 所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)x x x x x m x x x x e+∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),x x x m x e -=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减; 可知24()(2),m x m e ≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e . 考点:1.导数的几何意义;2.应用导数研究函数的单调性、最值.21. (本小题满分14分)平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα的离心率为212)在椭圆C 上.(Ⅰ)求椭圆C 的方程; (Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q.(i )求||||OQ OP 的值; (ii)求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )(i )||2||OQ OP =;(ii ) 【解析】试题分析:(I )由题意知22311,4a b +=又2a =,解得224,1ab ==. (II )由(I )知椭圆E 的方程为221164x y +=. (i ) 设00||(,),,||OQ P x y OP λ=由题意知00(,)Q x y λλ--. 根据2200 1.4x y +=及 2200()()1164x y λλ--+=,知2λ=. (ii )设1122(,),(,),A x y B x y 将y kx m =+代入椭圆E 的方程,可得222(14)84160k x kmx m +++-=,由0,∆>可得22416m k <+……………………①应用韦达定理计算12||x x -=及OAB ∆的面积121||||2S m x x =-=== 设22.14m t k=+将直线y kx m =+代入椭圆C 的方程,可得222(14)8440k x kmx m +++-=,由0,∆≥可得2214m k ≤+……………………②由①②可知01,t S <≤==当且仅当1t =,即2214m k =+时取得最大值由(i )知,ABQ ∆的面积为3S 即得 ABQ ∆面积的最大值为试题解析:(I )由题意知22311,4a b +==,解得224,1a b ==, 所以椭圆C 的方程为22 1.4x y += (II )由(I )知椭圆E 的方程为221164x y +=. (ii ) 设00||(,),,||OQ P x y OP λ=由题意知00(,)Q x y λλ--. 因为2200 1.4x y +=又2200()()1164x y λλ--+=,即22200() 1.44x y λ+= 所以2λ=,即|| 2.||OQ OP = (ii )设1122(,),(,),A x y B x y 将y kx m =+代入椭圆E 的方程,可得222(14)84160k x kmx m +++-=,由0,∆>可得22416m k <+……………………①则有21212228416,.1414km m x x x x k k -+=-=++所以12||x x -=因为直线y kx m =+与y 轴交点的坐标为(0,)m ,所以OAB ∆的面积121||||2S m x x =-=== 设22.14m t k=+将直线y kx m =+代入椭圆C 的方程,可得222(14)8440k x kmx m +++-=,由0,∆≥可得2214m k ≤+……………………②由①②可知01,t S <≤==故S ≤当且仅当1t =,即2214m k =+时取得最大值由(i )知,ABQ ∆的面积为3S ,所以ABQ ∆面积的最大值为考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.距离与三角形面积;4.转化与化归思想.。

2015年全国高考文科数学试题及答案-山东卷

2015年全国高考文科数学试题及答案-山东卷

2015年普通高等学校招生全国统一考试(山东卷)数学(文科)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{24}A x x =<< ,{(1)(3)0}B x x x =--< ,则AB =(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 2、若复数z 满足1zi i=- ,其中i 为虚数单位,则z = (A )1i - (B )1i + (C )1i -- (D )1i -+ 3、设0.6 1.50.60.6,0.6, 1.5a b c === ,则,,a b c 的大小关系是(A )a b c << (B )a c b << (C )b a c << (D )b c a << 4、要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图象(A )向左平移12π个单位 (B )向右12π平移个单位 (C )向左平移3π个单位 (D )向右平移3π个单位5、设m R ∈ ,命题“若0m > ,则方程20x x m +-= 有实根”的逆否命题是(A )若方程20x x m +-=有实根,则0m > (B ) 若方程20x x m +-=有实根,则0m ≤ (C ) 若方程20x x m +-=没有实根,则0m > (D ) 若方程20x x m +-=没有实根,则0m ≤6、为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。

考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为(A ) ①③ (B ) ①④ (C ) ②③ (D ) ②④ 7、在区间[]0,2上随机地取一个数x ,则事件“1211log ()12x -≤+≤ ”发生的概率为(A )34 (B )23 (C )13 (D )148、若函数21()2x x f x a+=- 是奇函数,则使()3f x > 成立的x 的取值范围为(A )(),1-∞- (B )()1,0- (C )()0,1 (D )()1,+∞9、已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为 (A(B(C) (D) 10、设函数3,1,()2,1,xx b x f x x -<⎧=⎨≥⎩ 若5(())46f f = ,则b =(A )1 (B )78 (C )34 (D )12第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年山东省高考文科数学试题及答案(word版)演示教学

2015年山东省高考文科数学试题及答案(word版)演示教学

2015年普通高等学校招生全国统一考试(山东卷)数学(文科) 第I 卷(共50分)本试卷分第I 卷和第II 卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{}24A x x =<< ,()(){}130B x x x =--< ,则AB =(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,42、若复数z 满足1zi i=- ,其中i 为虚数单位,则z = (A )1i - (B )1i + (C )1i -- (D )1i -+ 3、设0.61.50.60.6,0.6, 1.5a b c === ,则,,a b c 的大小关系是(A )a b c << (B )a c b << (C )b a c << (D )b c a << 4、要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x =的图象 (A )向左平移12π个单位 (B )向右12π平移个单位 (C )向左平移3π个单位 (D )向右平移3π个单位5、设m R ∈ ,命题“若0m > ,则方程20x x m +-= 有实根”的逆否命题是 (A )若方程20x x m +-=有实根,则0m > (B ) 若方程20x x m +-=有实根,则0m ≤ (C ) 若方程20x x m +-=没有实根,则0m > (D ) 若方程20x x m +-=没有实根,则0m ≤6、为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。

考虑以下结论: ①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为(A ) ①③ (B ) ①④ (C ) ②③ (D ) ②④ 7、在区间[]0,2上随机地取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 (A )34 (B )23 (C )13 (D )148、若函数()212x x f x a+=- 是奇函数,则使()3f x > 成立的x 的取值范围为(A )(),1-∞- (B )()1,0- (C )()0,1 (D )()1,+∞ 9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为 (A)3 (B)3(C) (D) 10.设函数()3,1,2,1,xx b x f x x -<⎧=⎨≥⎩ 若546f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则b =(A )1 (B )78 (C )34 (D )12第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年全国高考文科数学试题及答案-山东卷

2015年全国高考文科数学试题及答案-山东卷

2015年普通高等学校招生全国统一考试(山东卷)数学(文科)第I 卷(共50分)本试卷分第I 卷和第II 卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{}24A x x =<< ,()(){}130B x x x =--< ,则A B =(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,42、若复数z 满足1z i i=- ,其中i 为虚数单位,则z = (A )1i - (B )1i + (C )1i -- (D )1i -+3、设0.6 1.50.60.6,0.6, 1.5a b c === ,则,,a b c 的大小关系是(A )a b c << (B )a c b << (C )b a c << (D )b c a <<4、要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需将函数sin 4y x =的图象 (A )向左平移12π个单位 (B )向右12π平移个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 5、设m R ∈ ,命题“若0m > ,则方程20x x m +-= 有实根”的逆否命题是(A )若方程20x x m +-=有实根,则0m >(B ) 若方程20x x m +-=有实根,则0m ≤(C ) 若方程20x x m +-=没有实根,则0m >(D ) 若方程20x x m +-=没有实根,则0m ≤6、为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。

考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为(A ) ①③ (B ) ①④ (C ) ②③ (D ) ②④7、在区间[]0,2上随机地取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭ ”发生的概率为 (A )34 (B )23 (C )13 (D )148、若函数()212x x f x a+=- 是奇函数,则使()3f x > 成立的x 的取值范围为 (A )(),1-∞- (B )()1,0- (C )()0,1 (D )()1,+∞9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A(B(C) (D) 10.设函数()3,1,2,1,x x b x f x x -<⎧=⎨≥⎩ 若546f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ ,则b = (A )1 (B )78 (C )34 (D )12第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年山东省高考数学试卷(文科)

2015年山东省高考数学试卷(文科)

2015年山东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)2.(5分)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.(5分)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位5.(5分)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤06.(5分)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④7.(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.8.(5分)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)9.(5分)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π10.(5分)设函数f(x)=,若f(f())=4,则b=()A.1 B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图的程序框图,若输入的x的值为1,则输出的y的值是.12.(5分)若x,y满足约束条件,则z=x+3y的最大值为.13.(5分)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=.14.(5分)定义运算“⊗”x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为.15.(5分)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.三、解答题(共6小题,满分75分)16.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.18.(12分)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.19.(12分)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.20.(13分)设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.21.(14分)平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E与A,B两点,射线PO交椭圆E于点Q.(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值.2015年山东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•山东)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)【分析】求出集合B,然后求解集合的交集.【解答】解:B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},A={x|2<x<4},∴A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.3.(5分)(2015•山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【分析】直接判断a,b的大小,然后求出结果.【解答】解:由题意可知1>a=0.60.6>b=0.61.5,c=1.50.6>1,可知:c>a>b.故选:C.【点评】本题考查指数函数的单调性的应用,考查计算能力.4.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x 的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.5.(5分)(2015•山东)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是()A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤0【分析】直接利用逆否命题的定义写出结果判断选项即可.【解答】解:由逆否命题的定义可知:当m∈N*,命题“若m>0,则方程x2+x ﹣m=0有实根”的逆否命题是:若方程x2+x﹣m=0没有实根,则m≤0.故选:D.【点评】本题考查四种命题的逆否关系,考查基本知识的应用.6.(5分)(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④【分析】由已知的茎叶图,我们易分析出甲、乙甲,乙两地某月14时的气温抽取的样本温度,进而求出两组数据的平均数、及方差可得答案【解答】解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:=[(26﹣29)2+(28﹣29)2+(29﹣29)2+(31﹣29)2+(31﹣29)2]=3.6乙地该月14时温度的方差为:=[(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2,故>,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差.故选:B.【点评】本题考查数据的离散程度与茎叶图形状的关系,考查学生的计算能力,属于基础题7.(5分)(2015•山东)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.【分析】先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤log(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A【点评】本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.8.(5分)(2015•山东)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)【分析】由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【解答】解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C【点评】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.9.(5分)(2015•山东)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.2πD.4π【分析】画出图形,根据圆锥的体积公式直接计算即可.【解答】解:如图为等腰直角三角形旋转而成的旋转体.V=2×S•h=2×πR2•h=2×π×()2×=.故选:B.【点评】本题考查圆锥的体积公式,考查空间想象能力以及计算能力.是基础题.10.(5分)(2015•山东)设函数f(x)=,若f(f())=4,则b=()A.1 B.C.D.【分析】直接利用分段函数以及函数的零点,求解即可.【解答】解:函数f(x)=,若f(f())=4,可得f()=4,若,即b≤,可得,解得b=.若,即b>,可得,解得b=<(舍去).故选:D.【点评】本题考查函数的零点与方程根的关系,函数值的求法,考查分段函数的应用.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2015•山东)执行如图的程序框图,若输入的x的值为1,则输出的y的值是13.【分析】模拟执行程序框图,依次写出得到的x,y的值,当x=2时不满足条件x <2,计算并输出y的值为13.【解答】解:模拟执行程序框图,可得x=1满足条件x<2,x=2不满足条件x<2,y=13输出y的值为13.故答案为:13.【点评】本题主要考查了循环结构的程序框图,属于基本知识的考查.12.(5分)(2015•山东)若x,y满足约束条件,则z=x+3y的最大值为7.【分析】作出题中不等式组表示的平面区域,再将目标函数z=x+3y对应的直线进行平移,可得当x=1且y=2时,z取得最大值.【解答】解:作出不等式组表示的平面区域,得到如图的三角形及其内部,由可得A(1,2),z=x+3y,将直线进行平移,当l经过点A时,目标函数z达到最大值=1+2×3=7.∴z最大值故答案为:7【点评】本题给出二元一次不等式组,求目标函数z=x+3y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.13.(5分)(2015•山东)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=.【分析】根据直线与圆相切的性质可求PA=PB,及∠∠APB,然后代入向量数量积的定义可求.【解答】解:连接OA,OB,PO则OA=OB=1,PO=,2,OA⊥PA,OB⊥PB,Rt△PAO中,OA=1,PO=2,PA=∴∠OPA=30°,∠BPA=2∠OPA=60°∴===故答案为:【点评】本题主要考查了圆的切线性质的应用及平面向量的数量积的定义的应用,属于基础试题.14.(5分)(2015•山东)定义运算“⊗”x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为.【分析】通过新定义可得x⊗y+(2y)⊗x=,利用基本不等式即得结论.【解答】解:∵x⊗y=,∴x⊗y+(2y)⊗x=+=,由∵x>0,y>0,∴x2+2y2≥2=xy,当且仅当x=y时等号成立,∴≥=,故答案为:.【点评】本题以新定义为背景,考查函数的最值,涉及到基本不等式等知识,注意解题方法的积累,属于中档题.15.(5分)(2015•山东)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为2+.【分析】求出P的坐标,可得直线的斜率,利用条件建立方程,即可得出结论.【解答】解:x=2a时,代入双曲线方程可得y=±b,取P(2a,﹣b),∴双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线的斜率为,∴=∴e==2+.故答案为:2+.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.三、解答题(共6小题,满分75分)16.(12分)(2015•山东)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.17.(12分)(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【分析】①利用两角和与差的正弦函数公式以及基本关系式,解方程可得;②利用正弦定理解之.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.【点评】本题考查了利用三角函数知识解三角形,用到了两角和与差的正弦函数、同角三角函数的基本关系式、正弦定理等知识.18.(12分)(2015•山东)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.【分析】(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.由已知可得四边形CFDG是平行四边形,DM=MC.利用三角形的中位线定理可得:MH∥BD,可得BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点.可得四边形BHFE 为平行四边形.BE∥HF.又GH∥AB,可得平面FGH∥平面ABED,即可证明BD ∥平面FGH.(II)连接HE,利用三角形中位线定理可得GH∥AB,于是GH⊥BC.可证明EFCH 是平行四边形,可得HE⊥BC.因此BC⊥平面EGH,即可证明平面BCD⊥平面EGH.【解答】(I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF﹣ABC中,AB=2DE,G为AC的中点.∴,∴四边形CFDG是平行四边形,∴DM=MC.又BH=HC,∴MH∥BD,又BD⊄平面FGH,MH⊂平面FGH,∴BD∥平面FGH;证法二:在三棱台DEF﹣ABC中,AB=2DE,H为BC的中点.∴,∴四边形BHFE为平行四边形.∴BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,∴GH∥AB,又GH∩HF=H,∴平面FGH∥平面ABED,∵BD⊂平面ABED,∴BD∥平面FGH.(II)证明:连接HE,∵G,H分别为AC,BC的中点,∴GH∥AB,∵AB⊥BC,∴GH⊥BC,又H为BC的中点,∴EF∥HC,EF=HC.∴EFCH是平行四边形,∴CF∥HE.∵CF⊥BC,∴HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,∴BC⊥平面EGH,又BC⊂平面BCD,∴平面BCD⊥平面EGH.【点评】本题考查了空间线面面面平行与垂直的判定及性质定理、三角形中位线定理、平行四边形的判定与性质定理,考查了空间想象能力、推理能力,属于中档题.19.(12分)(2015•山东)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.【分析】(1)通过对c n=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过b n=n•4n,写出T n、4T n的表达式,两式相减后利用等比数列的求和公式即得结论.【解答】解:(1)设等差数列{a n}的首项为a1、公差为d,则a1>0,∴a n=a1+(n﹣1)d,a n+1=a1+nd,令c n=,则c n==[﹣],∴c1+c2+…+c n﹣1+c n=[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n项和为,∴,∴a1=1或﹣1(舍),d=2,∴a n=1+2(n﹣1)=2n﹣1;(2)由(1)知b n=(a n+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴T n=b1+b2+…+b n=1•41+2•42+…+n•4n,∴4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3T n=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴T n=.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.20.(13分)(2015•山东)设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.【分析】(Ⅰ)求出f(x)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a=1;(Ⅱ)求出f(x)、g(x)的导数和单调区间,最值,由零点存在定理,即可判断存在k=1;(Ⅲ)由(Ⅱ)求得m(x)的解析式,通过g(x)的最大值,即可得到所求.【解答】解:(Ⅰ)函数f(x)=(x+a)lnx的导数为f′(x)=lnx+1+,曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=1+a,由切线与直线2x﹣y=0平行,则a+1=2,解得a=1;(Ⅱ)由(Ⅰ)可得f(x)=(x+1)lnx,f′(x)=lnx+1+,令h(x)=lnx+1+,h′(x)=﹣=,当x∈(0,1),h′(x)<0,h(x)在(0,1)递减,当x>1时,h′(x)>0,h(x)在(1,+∞)递增.当x=1时,h(x)min=h(1)=2>0,即f′(x)>0,f(x)在(0,+∞)递增,即有f(x)在(k,k+1)递增,g(x)=的导数为g′(x)=,当x∈(0,2),g′(x)>0,g(x)在(0,2)递增,当x>2时,g′(x)<0,g(x)在(2,+∞)递减.则x=2取得最大值,令T(x)=f(x)﹣g(x)=(x+1)lnx﹣,T(1)=﹣<0,T(2)=3ln2﹣>0,T(x)的导数为T′(x)=lnx+1+﹣,由1<x<2,通过导数可得lnx>1﹣,即有lnx+1+>2;e x>1+x,可得﹣>,可得lnx+1+﹣>2+=>0,即为T′(x)>0在(1,2)成立,则T(x)在(1,2)递增,由零点存在定理可得,存在自然数k=1,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根;(Ⅲ)由(Ⅱ)知,m(x)=,其中x0∈(1,2),且x=2时,g(x)取得最大值,且为g(2)=,则有m(x)的最大值为m(2)=.【点评】本题考查导数的运用:求切线方程和单调区间、极值,同时考查零点存在定理和分段函数的最值,考查运算能力,属于中档题.21.(14分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:=1(a >b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E与A,B两点,射线PO交椭圆E于点Q.(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值.【分析】(Ⅰ)通过将点点(,)代入椭圆C方程,结合=及a2﹣c2=b2,计算即得结论;(Ⅱ)通过(I)知椭圆E的方程为:+=1.(i)通过设P(x0,y0)、=λ可得Q(﹣λx0,﹣λy0),利用+=1及+=1,计算即可;(ii)设A(x1,y1)、B(x2,y2),分别将y=kx+m代入椭圆E、椭圆C的方程,利用根的判别式△>0、韦达定理、三角形面积公式及换元法,计算即可.【解答】解:(Ⅰ)∵点(,)在椭圆C上,∴,①∵=,a2﹣c2=b2,∴=,②联立①②,解得:a2=4,b2=1,∴椭圆C的方程为:+y2=1;(Ⅱ)由(I)知椭圆E的方程为:+=1.(i)设P(x0,y0),=λ,由题意可得Q(﹣λx0,﹣λy0),∵+=1,及+=1,即(+)=1,∴λ=2,即=2;(ii)设A(x1,y1),B(x2,y2),将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,由韦达定理,可得x1+x2=﹣,x1•x2=,∴|x1﹣x2|=,∵直线y=kx+m交y轴于点(0,m),∴S=|m|•|x1﹣x2|△OAB=|m|•==2,设t=,将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0,可得m2≤1+4k2,又∵m2<4+16k2,∴0<t≤1,∴S=2=2=≤2,当且仅当t=1,即m2=1+4k2时取得最大值2,由(i)知S=3S,△ABQ∴△ABQ面积的最大值为6.【点评】本题是一道直线与圆锥曲线的综合问题,考查求椭圆方程、线段的比及三角形的面积问题,考查计算能力,利用韦达定理是解决本题的关键,注意解题方法的积累,属于难题.参与本试卷答题和审题的老师有:qiss;whgcn;吕静;w3239003;cst;刘长柏;wkl197822;changq;沂蒙松;双曲线(排名不分先后)菁优网2017年3月17日。

2015年全国高考文科数学试题及答案-山东卷_New

2015年全国高考文科数学试题及答案-山东卷_New

2015年全国高考文科数学试题及答案-山东卷2015年普通高等学校招生全国统一考试(山东卷)数学(文科) 第I 卷(共50分)本试卷分第I 卷和第II 卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{}24A x x =<< ,()(){}130B x x x =--< ,则A B =I(A )()1,3 (B )()1,4 (C )()2,3(D )()2,42、若复数z 满足1zi i=- ,其中i 为虚数单位,则z = (A )1i - (B )1i + (C )1i -- (D )1i -+ 3、设0.61.50.60.6,0.6, 1.5a b c === ,则,,a b c 的大小关系是(A )a b c << (B )a c b << (C )b a c << (D )b c a <<4、要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x =的图象π个单位(B)(A)向左平移12π平移个单位向右12π个单位(D)(C)向左平移3π个单位向右平移35、设m R∈,命题“若0m>,则方程20+-=有实根”x x m的逆否命题是(A)若方程20m>+-=有实根,则0x x m(B)若方程20m≤x x m+-=有实根,则0(C)若方程20m>+-=没有实根,则0x x m(D)若方程20m≤x x m+-=没有实根,则06、为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。

考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为 (A ) ①③ (B ) ①④(C ) ②③ (D ) ②④7、在区间[]0,2上随机地取一个数x ,则事件“1211log12x ⎛⎫-≤+≤ ⎪⎝⎭ ”发生的概率为(A )34(B )23(C )13 (D )148、若函数()212x xf x a+=- 是奇函数,则使()3f x > 成立的x 的取值范围为(A )(),1-∞- (B )()1,0- (C )()0,1(D )()1,+∞9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A )23π (B )423π(C )22π(D )42π10.设函数()3,1,2,1,xx b x f x x -<⎧=⎨≥⎩ 若546f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则b =(A )1 (B )78(C )34 (D )12第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年普通高等学校招生全国统一考试文科数学(山东卷)

2015年普通高等学校招生全国统一考试山东文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2015山东,文1)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A ∩B=( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4) 答案:C 解析:B={x|(x-1)(x-3)<0}={x|1<x<3},A={x|2<x<4},结合数轴可得,A ∩B={x|2<x<3}. 2.(2015山东,文2)若复数z 满足z1−i=i,其中i 为虚数单位,则z=( )A.1-iB.1+iC.-1-iD.-1+i 答案:A 解析:∵z1−i=i,∴z =i(1-i)=i-i 2=1+i .∴z=1-i . 3.(2015山东,文3)设a=0.60.6,b=0.61.5,c=1.50.6,则a ,b ,c 的大小关系是( ) A.a<b<c B.a<c<b C.b<a<c D.b<c<a 答案:C解析:函数y=0.6x 在定义域R 上为单调递减函数,∴1=0.60>0.60.6>0.61.5.而函数y=1.5x 为单调递增函数, ∴1.50.6>1.50>1,∴b<a<c.4.(2015山东,文4)要得到函数y=sin (4x −π3)的图象,只需将函数y=sin 4x 的图象( )A.向左平移π12个单位B.向右平移π12个单位C.向左平移π3个单位D.向右平移π3个单位答案:B解析:∵y=sin (4x −π3)=sin [4(x −π12)],∴只需将函数y=sin 4x 的图象向右平移π12个单位即可.5.(2015山东,文5)设m ∈R ,命题“若m>0,则方程x 2+x-m=0有实根”的逆否命题是( ) A.若方程x 2+x-m=0有实根,则m>0 B.若方程x 2+x-m=0有实根,则m ≤0 C.若方程x 2+x-m=0没有实根,则m>0 D.若方程x 2+x-m=0没有实根,则m ≤0 答案:D解析:原命题的逆否命题是将条件和结论分别否定,作为新命题的结论和条件,所以其逆否命题为“若方程x 2+x-m=0没有实根,则m ≤0”.6.(2015山东,文6)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A.①③ B.①④ C.②③ D.②④ 答案:B解析:由茎叶图可知,x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以x 甲<x 乙;s 甲2=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6,s 乙2=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,所以s 甲2>s 乙2.7.(2015山东,文7)在区间[0,2]上随机地取一个数x ,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( )A.34B.23C.13D.14 答案:A解析:由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32−02−0=34.8.(2015山东,文8)若函数f (x )=2x +12x −a是奇函数,则使f (x )>3成立的x 的取值范围为( )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞) 答案:C解析:∵f (x )为奇函数,∴f (-x )=-f (x ).即2−x +12−x −a =-2x +12x −a ,也就是2x +11−a·2x =-2x +12x−a,∴1-a ·2x =a-2x ,即(1-a )2x =a-1,∴1-a=0,解得a=1.∴f (x )=2x +12x −1.则2x +12x −1>3,即2x +1−3(2x −1)2x −1>0,即−2(2x −2)2x −1>0,即(2x-2)(2x -1)<0,∴1<2x <2,即0<x<1.9.(2015山东,文9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2√2π3B.4√2π3C.2√2πD.4√2π答案:B 解析:由题意可知所得几何体为两个底面重合的圆锥,如图所示.圆锥的底面半径r=√2,高h=√2. 所以体积为V=2×13×π×(√2)2×√2=4√2π3.10.(2015山东,文10)设函数f (x )={3x −b,x <1,2x , x ≥1.若f (f (56))=4,则b=( )A.1B.78C.34D.12答案:D解析:∵f (56)=3×56-b=52-b ,∴f (f (56))=f (52−b).当52-b<1时,即b>32时,f (52−b)=3×(52−b)-b=4,∴b=78(舍去).当52-b ≥1时,即b ≤32时,f (52−b)=252−b =4,即52-b=2,∴b=12.综上,b=12.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2015山东,文11)执行下边的程序框图,若输入的x 的值为1,则输出的y 的值是 .答案:13解析:输入x=1,∵1<2,∴x=1+1=2.∵x=2不满足“x<2”,执行“否”,∴y=3×22+1=13.12.(2015山东,文12)若x ,y 满足约束条件{y −x ≤1,x +y ≤3,y ≥1,则z=x+3y 的最大值为 .答案:7 解析:如图,作出不等式组所表示的可行域.由z=x+3y ,得y=-13x+z3.取l 0:x+3y=0,在可行域内平移直线l 0,由图可知直线过A 点时z 最大,由{y −x =1,x +y =3,得A (1,2).所以z max =1+3×2=7.13.(2015山东,文13)过点P (1,√3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ = . 答案:32解析:由题意可作右图,∵OA=1,AP=√3,又∵PA=PB ,∴PB=√3. ∴∠APO=30°.∴∠APB=60°.∴PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =|PA ⃗⃗⃗⃗⃗ |·|PB ⃗⃗⃗⃗⃗ |cos 60°=√3×√3×12=32. 14.(2015山东,文14)定义运算“ ”:x y=x 2−y 2xy(x ,y ∈R ,xy ≠0).当x>0,y>0时,x y+(2y ) x 的最小值为 .答案:√2解析:∵x y=x 2−y 2xy ,∴x y+(2y ) x=x 2−y 2xy+(2y)2−x 22yx=x 2+2y 22xy≥2√x 2·2y 22xy=2√2xy 2xy=√2.其中x>0,y>0,当且仅当x 2=2y 2,即x=√2y 时等号成立. 15.(2015山东,文15)过双曲线C :x 2a 2−y 2b2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C 于点P.若点P的横坐标为2a ,则C 的离心率为 . 答案:2+√3解析:不妨设过右焦点与渐近线平行的直线为y=b a(x-c ),与C 交于P (x 0,y 0).∵x 0=2a ,∴y 0=b a(2a-c ).又P (x 0,y 0)在双曲线C 上,∴(2a)2a 2−b 2a 2(2a−c)2b2=1,∴整理得a 2-4ac+c 2=0,设双曲线C 的离心率为e ,故1-4e+e 2=0.∴e 1=2-√3(舍去),e 2=2+√3. 即双曲线C 的离心率为2+√3. 三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2015山东,文16)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15人.所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P=1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有: {A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2}, {A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1}, {A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3}, 共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个. 因此A 1被选中且B 1未被选中的概率为P=215.17.(本小题满分12分)(2015山东,文17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知cos B=√33,sin(A+B )=√69,ac=2√3,求sin A 和c 的值.解:在△ABC 中,由cos B=√33,得sin B=√63,因为A+B+C=π,所以sin C=sin(A+B )=√69.因为sin C<sin B ,所以C<B ,可知C 为锐角, 所以cos C=5√39. 因此sin A=sin(B+C )=sin B cos C+cos B sin C=√63×5√39+√33×√69=2√23. 由a sinA=csinC,可得a=csinA sinC=2√23c √69=2√3c , 又ac=2√3,所以c=1.18.(本小题满分12分)(2015山东,文18)如图,三棱台DEF-ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH. (1)证法一:连接DG,CD,设CD∩GF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)证明:连接HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE,又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.19.(本小题满分12分)(2015山东,文19)已知数列{a n}是首项为正数的等差数列,数列{1a n·a n+1}的前n项和为n2n+1.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)·2a n,求数列{b n}的前n项和T n.解:(1)设数列{a n}的公差为d.令n=1,得1a1a2=13,所以a1a2=3.令n=2,得1a1a2+1a2a3=25,所以a2a3=15.解得a 1=1,d=2,所以a n =2n-1. (2)由(1)知b n =(a n +1)·2a n =2n ·22n-1=n ·4n , 所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n+1, 两式相减,得-3T n =41+42+…+4n -n ·4n+1=4(1−4n )1−4-n ·4n+1=1−3n 3×4n+1-43. 所以T n =3n−19×4n+1+49=4+(3n−1)4n+19. 20.(本小题满分13分)(2015山东,文20)设函数f (x )=(x+a )ln x ,g (x )=x 2ex .已知曲线y=f (x )在点(1,f (1))处的切线与直线2x-y=0平行. (1)求a 的值.(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k+1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由. (3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 解:(1)由题意知,曲线y=f (x )在点(1,f (1))处的切线斜率为2,所以f'(1)=2.又f'(x )=ln x+ax+1,所以a=1.(2)k=1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x+1)ln x-x 2ex , 当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e2=ln 8-4e2>1-1=0, 所以存在x 0∈(1,2),使得h (x 0)=0. 因为h'(x )=ln x+1x +1+x(x−2)e x, 所以当x ∈(1,2)时,h'(x )>1-1e>0,当x ∈(2,+∞)时,h'(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以k=1时,方程f (x )=g (x )在(k ,k+1)内存在唯一的根.(3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ), x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )={(x +1)lnx,x ∈(0,x 0],x 2ex ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m'(x )=ln x+1x+1>0, 可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m'(x )=x(2−x)e x, 可得x ∈(x 0,2)时,m'(x )>0,m (x )单调递增; x ∈(2,+∞)时,m'(x )<0,m (x )单调递减; 可知m (x )≤m (2)=4e2,且m (x 0)<m (2). 综上可得,函数m (x )的最大值为4e2.21.(本小题满分14分)(2015山东,文21)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的离心率为√32,且点(√3,12)在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 24b2=1,P为椭圆C 上任意一点,过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E于点Q.①求|OQ||OP|的值;②求△ABQ 面积的最大值. 解:(1)由题意知3a 2+14b2=1,又√a 2−b 2a=√32,解得a 2=4,b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1. ①设P (x 0,y 0),|OQ||OP|=λ, 由题意知Q (-λx 0,-λy 0).因为x 024+y 02=1, 又(−λx 0)216+(−λy 0)24=1,即λ24(x 024+y 02)=1,所以λ=2,即|OQ||OP|=2.②设A (x 1,y 1),B (x 2,y 2),将y=kx+m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx+4m 2-16=0, 由Δ>0,可得m 2<4+16k 2. 不等式①则有x 1+x 2=-8km 1+4k2,x 1x 2=4m 2−161+4k2.所以|x 1-x 2|=4√16k 2+4−m 21+4k2.因为直线y=kx+m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S=12|m||x 1-x 2| =2√16k 2+4−m 2|m|1+4k2=2√(16k 2+4−m 2)m 21+4k2=2√(4−m 21+4k2)m 21+4k2.设m 21+4k2=t.将y=kx+m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.不等式②由不等式①不等式②,可知0<t ≤1, 因此S=2√(4−t)t =2√−t 2+4t . 故S ≤2√3,当且仅当t=1,即m 2=1+4k 2时取得最大值2√3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6√3.。

2015年山东省高考数学试卷(文科)答案与解析

2015年山东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•山东)已知集合A={x|2<x<4},B={x|(x﹣1)(x﹣3)<0},则A∩B=2.(5分)(2015•山东)若复数z满足=i,其中i为虚数单位,则z=()=i=i0.6 1.50.64.(5分)(2015•山东)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向左平移向右平移单位向左平移向右平移单位﹣﹣﹣的图象向右平移5.(5分)(2015•山东)当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题6.(5分)(2015•山东)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()时的平均气温:时的平均气温:时温度的方差为:=[时温度的方差为:=[>,7.(5分)(2015•山东)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”Blog()∴解可得,﹣≤,P=8.(5分)(2015•山东)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值=整理可得,>∴整理可得,9.(5分)(2015•山东)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在Bπ×π×π×(×=10.(5分)(2015•山东)设函数f(x)=,若f(f())=4,则b=(),若)),可得b=,可得(舍去)二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2015•山东)执行如图的程序框图,若输入的x的值为1,则输出的y的值是13.12.(5分)(2015•山东)若x,y满足约束条件,则z=x+3y的最大值为7.解:作出不等式组13.(5分)(2015•山东)过点P(1,)作圆x2+y2=1的两条切线,切点分别为A,B,则=.PA=∴=故答案为:14.(5分)(2015•山东)定义运算“⊗”x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为.x=x==2=∴,故答案为:15.(5分)(2015•山东)过双曲线C:(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为2+.±b(∴=2+.三、解答题(共6小题,满分75分)16.(12分)(2015•山东)某中学调查了某班全部45名同学参加书法社团和演讲社团的情(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.=这是一个古典概型,∴17.(12分)(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.cosB=,,所以sinB=sinAcosB+cosAsinB=,所以cosA=,结合平方关系得6sinA=a=2ac=218.(12分)(2015•山东)如图,三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC 的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.∴∴19.(12分)(2015•山东)已知数列{a n}是首项为正数的等差数列,数列{}的前n 项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.分离分母,并项相加并利用数列{,=[﹣[﹣﹣+] [﹣,{项和为,∴2=,.20.(13分)(2015•山东)设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(x))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.,=lnx+1+,﹣==,﹣<﹣==21.(14分)(2015•山东)平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,且点(,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 与A,B两点,射线PO交椭圆E于点Q.(Ⅰ)求的值;(Ⅱ)求△ABQ面积的最大值.、及的方程为:+、,利用+及=+y+=1,∵=1,及,即()=2,=,=|m|t==2=,,.。

2015文科数学(山东卷)

(A).向左平移 个单位(B)向右平移 个单位
(C).向左平移 个单位(D)向右平移 个单位
(5)若 ,如题“m>0,则方程
(6)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
(15)过双曲线C: (a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P。若点P的横坐标为2a,则C的离心率为____
三、解答题:本大题共6小题,共7分
(16)(本小题满分12分)
某中学点差了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团
未参加书法社团
(2)若复数Z满足 =i,其中i为虚数单位,则Z=
(A)1-i(B)1+I(C)-1-I(D)-1+i
(3)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是
(A)a<b<c(B)a<c<b(C)b<a<c(D)b<c<a
(4)要得到函数y=sin(4x- )的图像,只需要将函数y=sin4x的图像()
m(x)的最大值
(21)(本小题满分14分)
平面直角坐标系 中,已知椭圆C: 的离心率为 ,且点( , )在椭圆C上。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆E: ,P为椭圆C上任意一点,过点P的直线 交椭圆E于A,B连点,射线PO交椭圆E于点Q。
(i)பைடு நூலகம் 的值;
(ii)求 面积的最大值。
参加演讲社团
8
5
未参加演讲社团
2
30
(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;

2015年全国高考文科数学试题及答案-山东卷

(A) (B) (C) (D)
9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为
(A) (B) (C) (D)
10.设函数 若 ,则
(A)1(B) (C) (D)
第II卷(共100分)
二、填空题:本大题共5小题,每小题5分,共25分。
(11)执行右边的程序框图,若输入的 的值为1,则输出的 的值是.
③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为
(A)①③(B)①④(C)②③(D)②④
7、在区间 上随机地取一个数 ,则事件“ ”发生的概率为
(A) (B) (C) (D)
8、若函数 是奇函数,则使 成立的 的取值范围为
又 平面 ,所以平面 平面
19(I)设数列 的公差为 ,
令 得 ,得到 .
令 得 ,得到 .
解得 即得解.
(II)由(I)知 得到
从而 利用“错位相减法”求和.
试题解析:(I)设数列 的公差为 ,
令 得 ,所以 .
令 得 ,所以 .
解得 ,所以
(II)由(I)知 所以
所以
两式相减,得
所以
20(I)由题意知,曲线 在点 处的切线斜率为 ,所以 ,
(A) (B) (C) (D)
2、若复数 满足 ,其中 为虚数单位,则
(A) (B) (C) (D)
3、设 ,则 的大小关系是
(A) (B) (C) (D)
4、要得到函数 的图象,只需将函数 的图象
(A)向左平移 个单位(B)向右 平移个单位
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考山东省文科数学真题一、选择题1.已知集合{|24}A x x =<<,{|(1)(3)0}B x x x =--<,则A B = ( ) A .(1,3)B .(1,4)C .(2,3)D .(2,4)2.若复数Z 满足1zi-=i ,其中i 为虚数单位,则Z=( ) A .1-i B .1+i C .-1-i D .-1+i3.设a=0.60.6,b=0.61.5,c=1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a4.要得到函数sin(4)3y x π=-的图像,只需要将函数y=sin4x 的图像( )A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移3π个单位 D .向右平移3π个单位 5.若m n ∈,如题“0m >,则方程20x x m +-=有实根”的逆否命题是( )A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤ C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤6.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图。

考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差。

其中根据茎叶图能得到的统计结论的标号为( )A .①③B .①④C .②③D .②④7.在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -≤+≤”发生的概率为( )A .34B .23C .13D .148.若函数21()2x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围为( )A .(,1)-∞-B .(-1,0)C .(0,1)D .(1,)+∞9.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A .3B .3C .D .10.设函数3,1()2,1x x b x f x x -<⎧=⎨≥⎩若5(())46f f =,则b =( )A .1B .78C .34D .12二、填空题11.执行下边的程序框图,若输入的x 的值为1,则输出的y 的值是_________。

12.若x,y 满足约束条件131y x x y y -≤⎧⎪+≤⎨⎪≥⎩,则z=x+3y 的最大值为_______。

13.过点(1P 作圆221x y +=的两条切线,切点分别为A ,B ,则PA PB ⋅=________。

14.定义运算“⊗”:22(,,0)x y x y x y R xy xy-⊗=∈≠。

当0,0x y >>时,(2)x y y x ⊗+⊗的最小值为__________。

15.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点作一条与渐近线平行的直线,交C 于点P 。

若点P 的横坐标为2a ,则C 的离心率为___________。

三、解答题(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3。

现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率。

17.ABC ∆中,角A ,B,C 所对的边分别为a ,b ,c 。

已知cos ()B A B ac =+==sin A 和c 的值。

18.如图,三棱台DEF —ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点。

(Ⅰ)求证:BD//平面FGH ;(Ⅱ)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥FG 。

19.已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为21nn +。

(1)求数列{}n a 的通项公式;(2)设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T 。

20.设函数分2()()ln ,()x x f x x a x g x e=+=。

已知曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(k,k+1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}(min{},m x f x g x p q p q =+表示,中的较小值),m(x)的最大值21.平面直角坐标系xoy 中,已知椭圆C :22221(0)x y a b a b +=>>1)2在椭圆C上。

(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A ,B 连点,射线PO 交椭圆E 于点Q 。

(i )求||||OQ OP 的值 (ii )求ABQ ∆面积的最大值。

2015年高考山东省文科数学真题答案一、选择题 1.答案:C 解析过程:因为所以,选C 2.答案:A解析过程:(1)1z i i i =-=+,所以1z i =-,选A3.答案:C 解析过程:由在区间是单调减函数可知,,又,选C4.答案:B 解析过程: 因为sin(4)sin 4()312y x x ππ=-=-,所以,只需要将函数sin 4y x =的图象 向右平移12π个单位,选B 5.答案:D 解析过程:一个命题的逆否命题,要将原命题的条件、结论加以否定, 并且加以互换,选D. 6.答案:B 解析过程:甲地数据:26,28,29,31,31,乙地数据:28,29,30,31,32 所以,2628293131==295x ++++甲,2829303132==305x ++++乙B ={x|1<x<3},(2,3)A B ⋂=0.6x y =(0,)+∞1.50.600.60.61<<<0.61.51>22221=[(2629)(2829)(2929)5s -+-+-甲22(3129)(3129)] 3.6+--=22221=[(2830)(2930)(3030)5s -+-+-乙22(3130)(3230)]2+-+-=即正确的有①④,选B 7.答案:A 解析过程:由得, , 所以,由几何概型概率的计算公式得,,选A.8.答案:C 解析过程:由题意,即 所以,, 由得,选C. 9.答案:B 解析过程:由题意得,该等腰直角三角形的斜边长为所以其体积为2133π=,选B 10.答案:D 解析过程: 由题意,由得, 121-1log 2x ≤+≤()111122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤()332204P -==-()()f x f x =--2121,22x x xx a a --++=---(1)(21)0,1xa a -+==21(),21x xf x +=-21()321x xf x +=>-122,01,x x <<<<555()3,662f b b =⨯-=-5(())46f f =或, 解得,故选D 二、填空题 11.答案: 13解析过程:第一次执行程序,满足条件2x <,112x =+=; 第二次执行程序,不满足条件2x <,232113y =⨯+=,输出13,结束。

12.答案:7 解析过程:画出可行域及直线,平移直线, 当其经过点时,直线的纵截距最大, 所以最大为.13.答案:32解析过程:如图,连接PO ,在直角三角形PAO 中,1OA=,PA =tan APO ∠=51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩5251224bb -⎧-≥⎪⎨⎪=⎩12b =30x y +=30x y +=(1,2)A 3z x y =+1327z =+⨯=22211tan 1cos 1tan 2APO APB APO --∠∠===+∠, 故cos PA PB PA PB APB ⋅=⋅∠1322==14.解析过程:由新定义运算知,, 因为,,所以,当且仅当时,. 15.答案:2解析过程:双曲线22221x y a a-=的右焦点为(,0)c ,不妨设所作直线与双曲线的渐近线by x a=平行, 其方程为()by x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c+=,2222(2)4(2)(2)2y x y x y x y x xy --⊗==00x y >>,22222242(2)222x y y x x y x y y x xy xy xy xy--+⊗+⊗=+=≥=x =(2)x y y x ⊗+⊗由2222a c a c+=,得2()410c ca a -+=,解得2c a =+,2c a =(舍去,因为离心率1ca>),故双曲线的离心率为2三、解答题 16.答案:(1) ;(2). 解析过程:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有人, 故至少参加上述一个社团的共有人, 所以从该班级随机选名同学,该同学至少参加上述一个社团的概率为 (2)从这名男同学和名女同学中各随机选人, 其一切可能的结果组成的基本事件有:,共个.根据题意,这些基本事件的出现是等可能的.事件“被选中且未被选中”所包含的基本事件有:,共个. 因此被选中且未被选中的概率为. 17.;1 解析过程:在中,由. 因为,所以, 1321530453015-=1151.453P ==531111213212223313233{,},{,},{,},{,},{,},{,},{,},{,},{,},A B A B A B A B A B A B A B A B A B 414243515253{,},{,},{,},{,},{,},{,}A B A B A B A B A B A B 151A 1B 1213{,},{,}A B A B 21A 1B 215P =ABC ∆cos B =sin B =A B C π++=sin sin()C A B =+=因为,所以,为锐角,因此. 由可得, 又,所以. 18.答案:证明见解析 解析过程:(I )证法一:连接设,连接,在三棱台中,分别为的中点,可得,所以四边形是平行四边形,则为的中点,又是的中点,所以, 又平面,平面,所以平面.证法二:在三棱台中, 由为的中点, 可得sin sin C B <C B <C cos C =sin sin()sin cos cos sin AB C B C B C =+=+3=+=,sin sin a cA C =sinsin c A a C ===ac =1c =,.DG CD CD GF M ⋂=MH DEF ABC -2AB DE G =,AC //,DF GC DF GC =DFCG M CD H BC //HM BD HM ⊂FGH BD ⊄FGH //BD FGH DEF ABC -2,BC EF H =BC //,,BH EF BH EF =所以为平行四边形,可得 在中,分别为的中点, 所以又, 所以平面平面, 因为平面, 所以平面.(II)证明:连接.因为分别为的中点, 所以由得, 又为的中点,所以 因此四边形是平行四边形,所以 又,所以.又平面,,所以平面, 又平面,所以平面平面19.答案:(I ) (II) 解析过程:(I )设数列的公差为, 令得,所以. HBEF //.BE HF ABC ∆G H ,AC BC ,//,GH AB GH HF H ⋂=//FGH ABED BD ⊂ABED //BD FGH HE G H ,AC BC ,//,GH AB ,AB BC ⊥GH BC ⊥H BC //,,EF HC EF HC =EFCH //.CF HE CF BC ⊥HE BC ⊥,HE GH ⊂EGH HE GH H ⋂=BC ⊥EGH BC ⊂BCD BCD ⊥.EGH 2 1.n a n =-14(31)4.9n n n T ++-⋅={}n a d 1,n =12113a a =123a a =令得,所以. 解得,所以(II )由(I )知所以所以两式相减,得所以 20.答案:(I ) ;(II) ;(III). 解析过程:(I )由题意知,曲线y =f (x )在点处的切线斜率为, 所以,又所以. (II )时,方程在内存在唯一的根.设 当时,.又 所以存在,使.因为所以 当时,, 当时,, 2,n =12231125a a a a +=2315a a =11,2a d ==2 1.n a n =-24224,n n nb n n -=⋅=⋅121424......4,n n T n =⋅+⋅++⋅23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅121344......44n n n T n +-=+++-⋅114(14)13444,1433n n n n n ++--=-⋅=⨯--113144(31)44.999n n n n n T ++-+-⋅=⨯+=1a =1k =24e (1,(1))f 2'(1)2f ='()ln 1,a f x x x=++1a =1k =()()f x g x =(1,2)2()()()(1)ln ,x x h x f x g x x x e=-=+-(0,1]x ∈()0h x <2244(2)3ln 2ln 8110,h e e =-=->-=0(1,2)x ∈0()0h x =1(2)'()ln 1,x x x h x x x e-=+++(1,2)x ∈1'()10h x e >->(2,)x ∈+∞'()0h x >所以当时,单调递增.所以时,方程在内存在唯一的根. (III )由(II )知,方程在内存在唯一的根, 且时,,时,,所以. 当时,若若由 可知故当时,由 可得时,单调递增;时,单调递减;可知且. 综上可得函数的最大值为. 21.答案:(I );(II )(i );(ii ) 解析过程:(I )由题意知又, 解得,所以椭圆C 的方程为 (II )由(I )知椭圆E 的方程为. (1,)x ∈+∞()h x 1k =()()f x g x =(,1)k k +()()f x g x =(1,2)0x 0(0,)x x ∈()()f x g x <0(,)x x ∈+∞()()f x g x >020(1)ln ,(0,](),(,)x x x x x m x x x x e+∈⎧⎪=⎨∈+∞⎪⎩0(0,)x x ∈(0,1],()0;x m x ∈≤0(1,),x x ∈1'()ln 10,m x x x=++>00()();m x m x <≤0()().m x m x ≤0(,)x x ∈+∞(2)'(),x x x m x e-=0(,2)x x ∈'()0,()m x m x >(2,)x ∈+∞'()0,()m x m x <24()(2),m x m e≤=0()(2)m x m <()m x 24e 2214x y +=||2||OQOP =22311,4a b+=2a =224,1a b ==22 1.4x y +=221164x y +=(i )设由题意知. 因为又,即 所以,即 (ii )设将代入椭圆E 的方程,可得,由可得………①则有 所以 因为直线与轴交点的坐标为,所以的面积设将直线代入椭圆C 的方程, 可得,由可得………② 由①②可知故当且仅当,即时取得最大值由(i )知,的面积为,所以面积的最大值为00||(,),,||OQ P x y OP λ=00(,)Q x y λλ--2200 1.4x y +=2200()()1164x y λλ--+=22200() 1.44x y λ+=2λ=|| 2.||OQ OP =1122(,),(,),A x y B x y y kx m =+222(14)84160k x kmx m +++-=0,∆>22416m k <+21212228416,.1414km m x x x x k k -+=-=++122||14x x k -=+y kx m =+y (0,)m OAB ∆121||||2S m x x =-===22.14m t k =+y kx m =+222(14)8440k x kmx m +++-=0,∆≥2214m k ≤+01,t S <≤==S ≤1t =2214m k =+ABQ ∆3S ABQ ∆。

相关文档
最新文档