实对称矩阵的特征值和特征向量
求实对称三对角矩阵的特征值和特征向量

求实对称三对角矩阵的特征值和特征向量要求求解一个实对称三对角矩阵的特征值和特征向量。
在介绍如何求解之前,首先我们来了解一下实对称三对角矩阵的定义。
实对称三对角矩阵是指矩阵的非零元素主对角线上的元素为a,副对角线上的元素为b,而其他元素均为0。
可以表示为如下形式:[a1b100...0][b1a2b20...0][0b2a3b3...0][00b3a4...0][..................][ 0 0 0 ... bn-1 an ]下面我们将介绍如何求解实对称三对角矩阵的特征值和特征向量。
求解实对称三对角矩阵的特征值和特征向量有多种方法,其中一种常用的方法是通过迭代法,特别是Householder迭代法。
下面我们将介绍这种方法的主要步骤。
1. 首先,将实对称三对角矩阵转化为对称上Hessenberg矩阵。
对称上Hessenberg矩阵是一个具有类似三对角矩阵结构的对称矩阵。
2. 在转化得到的对称上Hessenberg矩阵上应用QR迭代,不断迭代直到矩阵的对角线元素基本上收敛于特征值。
3. 在每次QR迭代中,我们通过施密特正交化方法(Gram-Schmidt orthogonalization)来构建Q矩阵,然后计算出新的矩阵R,并将其与Q相乘,得到下一次迭代的矩阵。
4.在QR迭代的最后一步,我们得到了一个上三角矩阵,其对角线上的元素即为所求的特征值。
5. 然后,我们可以通过反复应用幂迭代法(power iteration method)来求解对应于这些特征值的特征向量。
幂迭代法是一种求解线性代数特征向量的数值方法。
通过上述方法,我们可以求解实对称三对角矩阵的特征值和特征向量。
这种方法具有较高的数值稳定性和计算效率,因此在实际求解中被广泛采用。
需要注意的是,在特征值和特征向量的计算过程中,可能会出现一些特殊情况。
比如矩阵中的主对角线元素不是严格递增或递减的时候,对于这种情况,我们需要进行一些额外的处理。
第二十二讲 实对称矩阵

§22 实对称矩阵22.1 实对称矩阵的特征值与特征向量若矩阵满足则称为对称矩阵.本节主要讨论实对称矩阵的性质. 这类矩阵应用广泛,理论丰富、优美.一个实矩阵的特征值可能是虚数, 如但定理:实对称矩阵的特征值都是实数.证明:设实对称矩阵有则因故即为实数.22.1 实对称矩阵的特征值与特征向量属于不同特征值的特征向量线性无关, 对实对称矩阵有更强的结果. 定理:实对称矩阵的属于不同特征值的特征向量相互正交.证明:设与是实对称矩阵的两互异特征值(由前面定理是实数), 是相应特征向量, 即于是而故22.1 实对称矩阵的特征值与特征向量例:有特征值为分别属于的特征向量.易见与正交.22.2 实对称阵正交相似于对角阵回忆:矩阵可对角化有一组特征向量作为空间的基.故若是可对角化的实对称阵, 则存在的一组特征向量构成空间的单位正交基.事实上,定理:任何实对称阵正交相似于对角阵, 即对实对称阵存在正交阵使为对角阵.22.2 实对称阵正交相似于对角阵证明:对矩阵的阶数用数学归纳法.时结论成立. 假设结论对阶矩阵成立.对阶实对称阵设且则可扩充为的一组基, 进一步正交化,得一组标准正交基,记为则为正交阵,且22.2 实对称阵正交相似于对角阵由得且由归纳假设知, 对阶实对称矩阵存在正交阵使令则为正交阵, 且22.2 实对称阵正交相似于对角阵例:设求正交阵使为对角阵.22.2 实对称阵正交相似于对角阵解:因此的特征值是22.2 实对称阵正交相似于对角阵对可求出齐次线性方程组的一个基础解系:对可求出齐次线性方程组的一个基础解系:22.2 实对称阵正交相似于对角阵作正交化(只需对进行),22.2 实对称阵正交相似于对角阵再作单位化,得则为正交阵,且22.2 实对称阵正交相似于对角阵由前面定理知, 对任何实对称阵其中为正交阵,于是即22.2 实对称阵正交相似于对角阵注记:为到由特征向量张成的一维空间的投影矩阵.任意实对称阵可表示为秩投影矩阵的和.可类似证明:Schur定理:任意一个复方阵均酉相似于上三角阵,即对任何复方阵存在酉矩阵使为上三角阵.22.2 实对称阵正交相似于对角阵例:设是阶实对称阵,为的全部特征值,则存在实数满足对任意证明:因为实对称阵,故存在正交阵使则对任意记有令则22.2 实对称阵正交相似于对角阵例:设是实对称阵的最大特征值.求证:的对角线元素证明:因实对称,故存在正交阵使注意到其中令则22.3 实对称阵特征值和主元的关系矩阵特征值的符号与主元的符号一般无关,如特征值为 (两负)主元为 (两正)但对实对称阵而言,二者符号一致,如特征值为 (一正一负)主元为 (一正一负) 定理:实对称阵的正特征值数与正主元数相同.22.3 实对称阵特征值和主元的关系引理:设矩阵可逆,且则证明:假设则齐次线性方程组有非零解令则22.3 实对称阵特征值和主元的关系于是上式左边右边矛盾!故同理可证故22.3 实对称阵特征值和主元的关系定理的证明:由于实对称阵的主元数等于其非零特征值数,故不失一般性,可对可逆实对称阵讨论.设的正主元数为正特征值数为则其中是对角元为的下三角阵,为主元.又其中是正交阵,为特征值.22.3 实对称阵特征值和主元的关系于是22.3 实对称阵特征值和主元的关系令则可逆,且由引理知定理得证.注记:事实上,我们证明了惯性定理.22.3 实对称阵特征值和主元的关系小结:1.实对称阵的特征值都是实数.2.实对称阵属于不同特征值的特征向量相互正交.3.实对称阵正交相似于对角阵.4.实对称阵的正特征值数与正主元数相同.。
10 实对称矩阵的特征值和特征向量的性质

实对称矩阵的特征值和特征向量一、实对称矩阵的特征值和特征向量 定理1 实对称矩阵的特征值为实数. 证明 ,,A x λ设复数为实对称矩阵的特征值复向量为对应的特征向量 ,0.Ax x x λ=≠即,,x x λλ用表示的共轭复数表示的共轭复向量 A x A x =则()().Ax x x λλ===一、实对称矩阵的特征值和特征向量于是有 T x Ax T x Ax 及()T x Ax =T x x λ=,T x x λ=()T T x A x =()T Ax x =()T Ax x =.T x x λ=两式相减,得()0.Tx x λλ-= 0,x ≠但因为()0,λλ⇒-= ,λλ=即.λ由此可得是实数211 0,n n T i i ii i x x x x x ====≠∑∑所以一、实对称矩阵的特征值和特征向量 说明,()0,0,.i i i A A E x A E λλλ-=-=由于实对称矩阵的特征值为实数所以特征向量所满足的线性方程组是实系数方程组由,知必有实的基础解系从而对应的特征向量也可以取实向量一、实对称矩阵的特征值和特征向量 12121212 ,,,,,.2A p p p p λλλλ≠设是实对称矩阵的两个特征值是对应的特征向量若则与理正交定证明 ,,,21222111λλλλ≠==Ap p Ap p ,,A A A T =对称 ()()T T T Ap p p 11111==∴λλ,11A p A p T T T ==于是 ()22121211p pAp p p p T T T λλ==,212p p T λ=().0 2121=-⇒p p Tλλ,21λλ≠ .21正交与即p p .021=∴p p T一、实对称矩阵的特征值和特征向量 r 个线性无关的特征向量.定理3 设 λ是n 阶实对称矩阵A 的r 重特征值,则 矩阵 A - λE 的秩为n −r , 从而对应特征值 λ恰有 定理4 任意实对称矩阵都与对角矩阵相似. 其中 是以A 的n 个特征值为对角元素的对角矩阵. Λ定理5 设A 为n 阶实对称矩阵,则存在正交矩阵P , 1P AP -=Λ使得二、举例 解 400031013A ⎛⎫ ⎪= ⎪ ⎪⎝⎭例 求矩阵的特征值和特征向量. 先求矩阵A 的特征值λλλλ---=-310130004E A ()(),422λλ--=.4,2321===λλλ得特征值二、举例再求矩阵A 的特征向量 ()得基础解系由对,02,21=-=x E A λ1(0,1,1).T η=-()得基础解系由对,04,432=-==x E A λλ23(1,0,0),(0,1,1).T Tηη==1213,]0,,]0,ηηηη==这里[[123010,,10120.101ηηη=-≠-同时|()|=谢谢!。
实对称矩阵的特征值和特征向量

A (aij )nn A (aij )nn
实对称矩阵的性质:
1.(定理4.12)实对称矩阵的特征值都是实数.
推论 实对称矩阵的特征向量都是实向量.
2.(定理4.13)实对称矩阵的属于不同特征值的特征向量正交.
定理4.4 矩阵的属于不同特征值的特征向量线性无关. 定理2.15 正交向量组必线性无关.
推论 实对称矩阵的属于不同特征值的特征向量线性无关. 3.实对称矩阵的属于ni重特征值的线性无关的特征向量恰有ni个. 4. n 阶实对称矩阵恰有n个线性无关的特征向量, 进而有n个单 位正交的特征向量. 5. 实对称矩阵必可对角化, 即 若A为实对称矩阵 , 则可逆矩阵P, 使P1 AP为对角矩阵 .
7.(定理4.14)若A为实对称矩阵 , 则正交矩阵Q, 使1.求A的所有互异的特征值 1 , 2 ,, m , 其中i的重数为ni , i 1,2,, m. 2.i , 解方程组(i E A) x 0, 求A的属于i的线性无关的特征向量 i1 , i 2 ,, ini . 3.利用Schmidt正交化方法将 i1 , i 2 , , ini 正交化, 再单位化, i 1,2, , m. 设所得的单位正交向量 组为1 , 2 , , n . 4.令Q ( 1 , 2 , , n ), 则Q为正交矩阵, 且 1 1 2 Q 1 AQ 2 m m
§4.3 实对称矩阵的特征值和特征向量 实对称矩阵: 对称的实矩阵. 共轭矩阵: 性质:
(1) A为实对称矩阵 A A AT . (2) AB A B , kB k B (k C ). (3)若A为实对称矩阵, 则 , R n , 有( A , ) ( , A ).
3.3 实对称矩阵的特征值和特征向量

Step3 利用施密特正交化方法,把向量组 i1 , i2 , ... , ini 正交化,得到正交向量组 i1 , i2 , ... , ini (i 1, 2, , m) . 再将所得正交向量组单位化,得到正交向量组 i1 , i2 , ... , ini (i 1, 2, , m) .
8
0
4
6
0 4 1 2
3
6
2
1
A为对称矩阵
A对称矩阵的特征值都是实数.
说明:若A是实数域上的对称矩阵,则
a11 a12 L
E A a21 a22 L
M
M
a1n a2n
M
an1 an2 L ann
1
,
0
2
2
T 2
T 1
1 1
1
1
0
1
1 2
1
1
0
1 2
1 2
1
再单位化得
1
(
1 2
,
1 2
,
0
)T
,
2
(
1 , 6
1, 6
2 )T 6
1
设特征值 3 对应的特征向量为
x = (x1 , x2 , x3)T , 由于实对称矩阵不同特征值对应的特征向量正交, 故
(1 , x) = x1 + x2 + x3 = 0
3.3 实对称矩阵的特征值和特征向量

第三章
5.Def.: 设α , β ∈ Rn , 如果 αTβ = 0, 则称向量 α , β 正交. 则称向量 正交. 注: (1) Rn 中的零向量与任意向量都正交; 中的零向量与任意向量都正交 都正交; (2) 与自身正交的向量只能是零向量; 与自身正交的向量只能是零向量; (3) 正交的几何意义: αT β = || α || · || β || cos θ 正交的几何意义: 6.Def.: 若一个非零向量组(即该向量组中的向量都不是零 若一个非零向量组( 非零向量组 向量) 中的向量两两正交, 则称非 向量两两正交 向量) α1 , α2 , … , αs (s ≥ 2) 中的向量两两正交, 则称非 零向量组 α1 , α2 , … , αs 为一个正交向量组. 为一个正交向量组 正交向量组. 若一个正交向量组中的每一个向量都是单位向量, 若一个正交向量组中的每一个向量都是单位向量,则称 向量 该向量组为正交单位向量组 正交单位向量组. 该向量组为正交单位向量组. 是一个正交向量组, 7.Th.: 设 α1 , α2 , … , αs 是一个正交向量组, 则α1,α2 , …,αs 线性无关. 线性无关.
P13P13-3
n
i=1
第三章
3.Def.: 设 α = (a1 , a2 , … , an)T ∈ Rn ,称 (α,α ) = α Tα (a 为向量 α 的长度(或模),记作 || α || . 即 的长度(
α = αα=
T
∑a
i=1
n
2 i
单位向量. 如果 || α || = 1,则称 α 为单位向量 , 1 ∀ α ≠ 0 ,则 为单位向量或标准化向量. α 为单位向量或标准化向量. 4. 长度的性质
第三节 实对称矩阵的特征值与特征向量

2
[a 2 , b1] b1
2
2
b1
b1 +
[a 3 , b2] b2
2
b2
b1= a1
[a 2 , b1 ] b1
2
[a 3 , b1] b1
b1
a 2 在 b1 上的 投影向量
a 3 在b1上的 投影向量
b1
例3
设 a 1 = (1, − 1, − 1) , 求求求向量
α 1 ,α 2 ,L ,α s 两两正交。 两两正交。
正交单位向量组: 两两正交, 正交单位向量组: 求求实向量 α 1 ,α 2 ,L ,α s 两两正交, 标准正交向量组) 且每个向量长度全为1。 (标准正交向量组) 且每个向量长度全为 。
1( i = j ) 即 (α i ,α j ) = 0( i ≠ j )
1 0 1 0 1 0
x1 = −x3 , ∴ x2 = 0.
−1 取 a3 = 0 即可 即可. 1
− 1 令 x3 = 1,得基础解系 ξ = 0 . 1
2. Schmidt正交化、单位化法。 正交化、单位化法。 正交化 定义5: 定义 : 正交向量组: 正交向量组:求求实向量
定理:正交向量组是线性无关的。 定理:正交向量组是线性无关的。
线性无关。 设a1 , a 2 , L , a r 为正交向量组 , 则a1 ,L, a r 线性无关。 定理 T 证 设λ1 a1 + λ 2 a 2 + L + λ r a r = 0 两端左乘 a 1 : T T T T ⇒ λ1 a 1 a 1 = 0 ⇒ λ1 a1 a1 + λ 2 a1 a 2 + L + λ r a1 a r = 0
ch5-4 实对称矩阵的相似矩阵

解: 由 A E
1 1 1 对1 1,由A E ~ 0 0 , 得 1 1 ; 1 1 1 对2 3,由A 3 E ~ 0 0 , 得 2 1
1
素的对角矩阵.
福 州 大 学
2013-7-21
4
三、利用正交矩阵将实对称矩阵 对角化的方法
根据上述结论,利用正交矩阵将实对称矩阵 化为对角矩阵,其具体步骤为: 1. 求A的特征值 1 , 2 ,, n ; 2. 由 A i E x 0, 求出A的特征向量 ; 3. 将特征向量正交化; 4. 将特征向量单位化得 P1 , P2 ,, Pn . 5。写出正交阵 P P 1
征向量,求A的属于特征值 1的特征向量。
T 解 设A的属于特征值 1的特征向量为 3 x1,x2,x3) , (
3与1 , 2正交, [3 ,1] [3 ,2 ] 0
x1 x2 x3 0 2 x1 2 x2 x3 0
1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 2 2 1 令 x2 = 1 x1 x2 T 3 11 0 ( ,) , x3 0
福Hale Waihona Puke 州 大 学2013-7-21
3
性质3:实对称矩阵A的k重特征值所对应的线性无 关的特征向量恰有k个。 由此推出:实对称矩阵A一定能对角化。
二、实对称矩阵的相似对角化:
定理1:实对称矩阵A一定与对角矩阵相似。
实
定理2: A为n阶对称矩阵, 则必有正交矩阵P , 使 设
P AP , 其中 是以 A的 n 个特征值为对角元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。