复变函数复习及习题课20101123
复变函数_习题集(含答案)

原积分 .
20.解: 在 内以 为2级极点.
.
原积分 .
21.解: .
记 , 在上半平面内仅以 为二级极点.
,
故 .
22.解: .
设 , 以 为二级极点,且
,
.
故 .
23.解: .
设 , 为 在上半平面的一级极点,
,
.
.
24.解: .
记 满足 ,
.
故 .
25.解: 设 则 , .
,
令 则 在 内只有一级极点, ,依定理有
《复变函数》课程习题集
一、计算题
1.函数 在 平面上哪些点处可微?哪些点处解析?
2.试判断函数 在 平面上哪些点处可微?哪些点处解析?
3.试判断函数 在 平面上的哪些点处可微?哪些点处解析?
4.设函数 在区域 内解析, 在区域 内也解析,证明 必为常数.
5.设函数 在区域 内解析, 在区域 内为常数,证明 在区域 内必为常数.
25.用留数定理计算积分 .
26.判断级数 的收敛性.
27.判断级数 的敛散性.
28.判断级数 的敛散性.
29.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
30.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
31.将 按 的幂展开,并指明收敛范围.
32.试将函数 分别在圆环域 和 内展开为洛朗级数.
.
9.解:
.
10.解: .
11.解: 在C内解析.
.
12.解: .
13.解:
.
14.解:(a) .
(b)
.
15.解:(a) .
(b)
.
16.解: 在 内仅以z=1,z=2为分别为一、二级极点.
复变函数练习册(全套)

第一章 复数与复变函数一、选择题1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z ( )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数( )(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续学号:____________ 姓名:______________ 班级:_____________二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线5.=+++→)21(lim 421z z iz三、将下列复数化为三角表达式和指数表达式:(1)i (2)13i -+四、求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++- (3)1i +五、解方程:5()1z i +=六、设复数1≠z ,且满足,1||=z ,试证21]11Re[=-z .七 、证明复平面上的直线方程可写成:0,(0a z a z c a ++=≠其中为复常数,c 为实常数)八、证明复平面上的圆周方程可写成:0,(z z a z az c a +++=其中为复常数,c 为实常数)九 、函数1w z=把下列z 平面上的曲线映成w 平面中的什么曲线? (1) yx = (2) 224x y +=十、)0(),(21)(≠-=z zzz z i z f 试证当0→z 时)(z f 的极限不存在。
复变函数课后习题答案(全)

精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+精心整理页脚内容3. 求下列各式的值: (1)5(3)i -(2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5)3i 3cossin22i ππ=+(6)1i +2(cossin )44i ππ=+ 4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)51,z i +=由此2551k i z i ei π=-=-,(0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:精心整理页脚内容(1), (1), (1), (1)2222a a a a i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。
复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
复变函数-总复习

复变函数Complex Function⚫第一章复数与复变函数⚫第二章解析函数⚫第三章复变函数积分⚫第四章复变函数项级数⚫第五章留数及其应用主要内容复数形如 z = x+iy , 其中x 和y 是任意两个实数.=x z Re(), =y z Im()z 的共轭复数记作: ,z =+⇒z x iy =−z x iy共轭复数的性质:+=−=z z z z z i z 2Re(); 2Im()⎝⎭+ ⎪⎛⎫−i i 1117)(()()+−=−i i i 1117714)(=⎣⎦−⎡⎤i 21727)(=−i 2277)(=i .−+−i i i i 121)(()()−+⋅=++−i i i ii i i i 1111)()(−=+−+i i 2111=−−i 2231复数的四则运算: 和 差 积 商复数的几何表示向量的长度==+z r x y22复数的模=z rei θ指数表示式三角表示式=+z r i cos sin θθ)(其中r = |z |, = Arg zθ复数的表示方法幅角的主值:满足−<≤πθπ的复数z 的幅角称为辐角的主值.θ=z arg 0)Arg arg 2 0,1,2,.π=+=±±z z k k (复数的幅角θθθθθθ⋅=⋅+++=⋅+ez z r r i r r i [cos()sin()](12212)1212112θθθπ=⎝⎭ ⎪==+⎛⎫+++r e n n w z r i k k n ni k k nncos sin 22121ππ)(复数的方根=θ−θ+θ−θ=θ−θe z r r i z r r i [cos()sin()]21)22121211(12复数乘积和商θθθ=+=r e z r n i n n n n i n [cos()sin()]()θθθ=+=ei r z r i (cos sin )+=z 1604例1: 解方程ππ⎝⎭⎪=+⎛⎫++i k k 4416cos sin 2241ππππ⎝⎭⎪=+⎛⎫++i k k 442cos sin22ππ=k (0,1,2,3)复数的乘幂=−z 164解:幅角的主值).=+=±±πz z k k ,Arg arg 2 0,1,2(满足−<≤πθπ的复数z 的幅角称为辐角的主值.记做:=z arg 0θ例2: 的幅角主值=−+z i 13ππππ−−+=+=−+=i 133arg 13arctan 32)(的幅角主值=−z 3π−=arg(3)例3: 证明+=++z z z z z z 2Re ,121212222)(并由此证明+≤+z z z z .1212证明:+=++z z z z z z ()1212122)(=+++z z z z z z z z 11221212+=++z z z z z z 2Re 121212222)(≤++z z z z 2121222=++=+z z z z z z 2121212222)(+=z z z z z z ()2Re 121212)(≤x z=z zz2⇒+≤+z z z z .1212例4: 映射 ,求圆周的象.=+z w z 1=z 2令=+=+z x iy w u iv ,,映射=+1w z z⇒+=++−+u iv x iy x iyx y22,解:于是=++u x x x y 22 ,=−+v y y x y 22,=z 2⇒==u x v y 44,53⇒==x u y v53,44+=u v 25914422+=x y 422映射=w f z (), w 称为z 的象,z 称为w 的原象两个特殊的映射==w zw z (2)(1)2复变函数的极限与连续性定理2: 设 =+f z u x y iv x y ()(,)(,),则 f (z )在处连续 =+z x iy 000的充分必要条件是 u x y (,),v x y (,)都在x y (,)00点连续.结论:arg z 在原点与负实轴上不连续.=→f z f z z z lim ()()00复变函数连续复变函数的极限=→f z A z z lim ()0定理1:=+=+=+f z u x y iv x y A u iv z x iy ,(,),,00000)()(设函数=⇔==→→→→→f z A u x y u v x y v y y y y z z x x x x lim lim ,,lim ,000)()()(−+=+x yi x y f z x x x yi ()= ()22++==x y x y u v x xy , 22222=y kx方法1: 沿++==→→→→x k x k u x y x y y x x 1lim ,lim 1000022222 )(依赖于k ,故极限不存在。
复变函数复习题

复变函数复习题复变函数复习题复变函数是数学中一个重要的分支,它研究的是定义在复数域上的函数。
复变函数的研究不仅在理论上具有重要意义,而且在实际应用中也有广泛的应用。
在这篇文章中,我将为大家整理一些复变函数的复习题,希望能够帮助大家巩固相关知识。
1. 计算下列复变函数的导数:a) f(z) = z^3 - 2z^2 + z + 1b) f(z) = e^z + z^2c) f(z) = sin(z) + cos(z)d) f(z) = ln(z) + z^22. 计算下列复变函数的积分:a) ∫(z^2 - 3z) dz,其中积分路径为沿着单位圆逆时针方向b) ∫(e^z + z) dz,其中积分路径为从0到1的直线段c) ∫(sin(z) + cos(z)) dz,其中积分路径为沿着单位圆逆时针方向d) ∫(1/z) dz,其中积分路径为沿着单位圆逆时针方向3. 判断下列函数是否解析:a) f(z) = z^2 + 3z + 2b) f(z) = e^z + sin(z)c) f(z) = ln(z) + z^2d) f(z) = 1/z4. 判断下列函数是否是调和函数:a) f(z) = x^2 - y^2b) f(z) = e^x * sin(y)c) f(z) = ln|z|d) f(z) = x^3 - 3xy^25. 利用柯西-黎曼方程,求下列函数的实部和虚部:a) f(z) = z^2 + 2z - 1b) f(z) = e^z + sin(z)c) f(z) = ln(z) + z^2d) f(z) = 1/z在解答这些问题时,我们需要熟练掌握复数的运算规则、复变函数的导数和积分计算方法,以及判断函数解析性和调和性的条件。
此外,柯西-黎曼方程是判断函数实部和虚部的关键工具,需要灵活运用。
通过复习这些复变函数的问题,我们可以加深对复变函数理论的理解,并提高解题能力。
掌握复变函数的基本概念和计算方法,对于后续学习更高级的数学分析、物理学和工程学等学科都具有重要的作用。
复变函数复习题一(参考答案)
复习题一一、 判断题(正确打∨,错误打⨯,把判断结果填入下表):1、若函数f (z )在0z 解析,则f (z )在0z 的某个邻域内可导。
(∨)2、若函数f (z )在0z 处解析,则f (z )在0z 满足C.-R.条件。
( ∨)3、如果0z 是f (z )的可去奇点,则)(lim 0z f z z →不存在。
(⨯ )4、若函数f (z )在区域D 内解析,则)('z f 在区域D 内解析。
(∨ )5、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展为幂级数。
( ∨)6、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
(∨ )7、若函数f (z )在区域D 内的解析,且在D 内某一条曲线上恒为常数,则f (z )在区域D 内恒等于常数。
(∨ )8、若0z 是f (z )的m 阶零点,则0z 是)(1z f 的m 阶极点。
(∨ ) 9、如果函数f (z )在闭圆3||k ≤z :上解析,且时当3|z |=,有)0(|)(|>≤m m z f ,则m z f ≤∈∀|)(|,k z 有。
( ∨ ) 10、lim z z e →∞=∞。
(⨯ )二、 单项选择题(将选择结果填入下表。
)1、方程| z + 3 | + | z + 1 | = 4所表示的图形是:(A )双曲线; (B )椭圆; (C )直线; (D )圆。
.)(()()()()()()()(2)(22轴上可导仅在;仅在原点可导;处处不可导;处处可微,那么设、x z f D z f C z f B z f A x i xy z f-=3、设c :,1=-i z 则⎰=-C dz i z z2)(cos(A )eiπ2 (B )1sinh 2π (C )0 (D )i i cos.0)(;0)(;)(;)()(41232但发散,通项趋于通项不趋于条件收敛绝对收敛为级数、D C B A ne n in ∑∞=.)(;)(;)(;)()(353sin 二级极点一级极点可去奇点本性奇点是在点函数、D C B A z e zz =-三、填空题,2,1,0;23arctan ,311±±=+-=--=k k Argz i z ππ则设、 2、=-+22i i __543i +-__。
复变函数与积分变换复习重点及 习题
双曲函数 shz ez ez , chz ez ez ;
2
2
shz 奇函数, chz 是偶函数。 shz, chz 在 z 平面内解析,且 shz chz,chz shz 。
(四)解析函数的概念
1.复变函数的导数
1)点可导:
f
z0
=
lim
z 0
f
z0
z
z
f
z0
;
2)区域可导: f z 在区域内点点可导。
c
(七)关于复变函数积分的重要定理与结论
1.柯西—古萨基本定理:设 f z 在单连域 B 内解析, c 为 B 内任一闭曲线,则
f z dz 0
c
6
2.复合闭路定理: 设 f z 在多连域 D 内解析,c 为 D 内任意一条简单闭曲线,c1, c2, cn 是 c 内的简单闭曲线,它们互不包含互不相交,并且以 c1, c2, cn 为
复变函数与积分变换期末考试复习知识点
(一)复数的概念
1.复数的概念: z x iy , x, y 是实数, x Re z , y Im z . i2 1.
注:两个复数不能比较大小.
2.复数的表示
1)模: z x2 y2 ;
2)幅角:在 z 0 时,矢量与 x 轴正向的夹角,记为 Arg z (多值函数);主值 arg z 是位于 ( , ] 中的幅角。
2 i n!
f
n z0
n
曲线 c 内有多于一个奇点: f z dz
f z dz ( ci 内只有一个奇点 zk )
c
k 1 ck
n
或: f z dz 2i Re s[ f (z), zk] (留数基本定理)
复变函数论习题及答案
第一章习题1.设12z -=,求||z 及Arg z .2.设12z z i ==,试用指数形式表 z 1 z 2及12z z .3.解二项方程440(0).z a a +=> 4.证明2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义。
5.设z 1、z 2、z 3三点适合条件: 1231230 |z ||||| 1.z z z z z ++=++=及试证明z 1、z 2、z 3是一个内接于单位圆周||1z =的正三角形的顶点。
6.下列关系表示的点z 的轨迹的图形是什么?它是不是区域? (1)1|212|||,()z z z z z z -=-≠;(2)|||4|z z ≤-;(3)111z z -<+;(4)0arg(1) 2Re 34z z π<-<≤≤且;(5)|| 2 z >且|3|1z ->; (6)Im 1 ||2z z ><且;(7)||2 0arg 4z z π<<<且;(8)131 2222i i z z ->->且.7.证明:z 平面上的直线方程可以写成 .az az c += (a 是非零复常数,c 是实常数)8.证明:z 平面上的圆周可以写成0Azz z z C ββ+++=.其中A 、C 为实数,0,A β≠为复数,且2||.AC β> 9.试证:复平面上的三点1,0,a bi a bi +-+共直线。
10.求下列方程(t 是实参数)给出的曲线: (1)(1)z i t =+; (2)cos sin z a t ib t =+;(3)i z t t =+; (4)22i z t t =+.11.函数1w z =将z 平面上的下列曲线变成w 平面上的什么曲线(,z x iy w u iv =+=+)?(1)224;x y +=(2)y x =;(3)x = 1; (4)( x -1)2+y 2=1. 12.试证:(1)多项式1010()(0)n n n p z a z a z a a -=+++≠在z 平面上连续;(2)有理分式函数101101()n n nm m m a z a z a f z b z b z b --+++=+++(000,0a b ≠≠)在z 平面上除分母为的点外都连续。
复变函数复习题详细答案
复变函数复习题详细答案复变函数复习题详细答案如下:1. 复数的代数形式和几何解释复数 \( z = a + bi \) 可以表示为平面上的一个点 \( (a, b) \),其中 \( a \) 是实部,\( b \) 是虚部。
复数的模 \( |z| \) 表示该点到原点的距离,即 \( |z| = \sqrt{a^2 + b^2} \)。
2. 复数的运算两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的加法和乘法运算如下:\[ z_1 + z_2 = (a + c) + (b + d)i \]\[ z_1 \cdot z_2 = (ac - bd) + (ad + bc)i \]3. 复数的共轭和模复数 \( z = a + bi \) 的共轭为 \( \overline{z} = a - bi \),模为 \( |z| = \sqrt{a^2 + b^2} \)。
4. 复数的指数形式复数 \( z \) 可以表示为指数形式 \( z = re^{i\theta} \),其中\( r = |z| \) 是模,\( \theta \) 是 \( z \) 的辐角,满足\( \cos\theta = \frac{a}{r} \) 和 \( \sin\theta = \frac{b}{r} \)。
5. 复数的对数复数 \( z \) 的对数定义为 \( \log z = \log r + i\theta \),其中 \( r = |z| \),\( \theta \) 是 \( z \) 的主辐角。
6. 复数的导数设 \( f(z) = u(x, y) + iv(x, y) \) 是复函数,其中 \( z = x +iy \),则 \( f(z) \) 的导数为:\[ f'(z) = \frac{\partial u}{\partial x} + i\frac{\partialv}{\partial x} \]前提是 \( u \) 和 \( v \) 的偏导数满足柯西-黎曼方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、复数与复变函数:求极限、复数计算及化简; 2、解析函数:函数解析的判定,调和函数; 3、Байду номын сангаас变函数的积分:曲线积分计算 4、级数:收敛半径及收敛域的判定,解析函数的展 开; 5、留数:极点确定、留数计算
一、复数与复变函数
(1)复数的计算与化简
(2)函数的连续性
(3)复数极限
复数与复变函数举例
[例1]
[例3] 计算下列各式的值
( 1) ( 2)
复数计算举例
[例4] 求满足下列条件的所有复数: ( 1) z
13 z
13 6 ; 是实数,且 1 z z
(2)z的实部和虚部都是整数,且z实部为奇数。
复数极限计算
[例6] 计算或讨论下列各式的值,其中z为复数
(1) lim
z 0
Re z z
z 2 iz 1 i lim ( 2) z ( i 1) z 2 2i
(3) lim
z i
z i z (1 z 2 )
1 z z ( ) ( z 0) (4)lim z 0 2i z z
复数证明题举例
[例9] 证明 z 1 z 2 z 1 z 2 [例10] 证明:|z1+z2|2+|z1-z2|2=2(|z1|2+|z2|2),并说明 其几何意义。 [例11] 设z1、z2、z3三点适合条件:z1+z2+z3=0, |z1|=|z2|=|z3|=1。证明:z1、z2、z3是内接于单位圆 |z|=1的一个正三角形的顶点。
1+i。
[例42] 计算积分 C ( z 2 zz )dz ,C为圆周|z|=1上从
1到–1的上半圆周。
复变函数积分
[例44]
复变函数积分
[例45] 计算或讨论下列各式的值,其中z为复数。
( 1)
z 3
ez dz 2 z ( z 1)
( 2)
cos 9 x dx cos x
四、级数
解析函数展开
[例70]
精品课件!
精品课件!
五、留数计算举例
[例81] 判定 e
z 1 z
的孤立奇点的类型,并求其留数。
[例83] 判定
(
1 1 sh ) sin(z ) z z 1
的奇点类型,并求
孤立奇点处的留数。
解析函数计算
[例28] 设f(z)=my3+nx2y+i(x3+lxy2)为解析函数,试确 定l,m和n的值。 [例29] 设 v e px sin y ,求p的值使v为调和函数,并 求出解析函数f(z)=u+iv。
解析函数证明题
[例33]
[例 34]
三、复变函数积分
[例41] 计算积分
2 ( x y ix )dz ,C为直线段0到 C
1 n n (4) (sin ) z n n1
收敛半径
[例63]
级数计算
[例65] 计算或讨论下列各式的值,其中z为复数。
i 2n ( 1) n 0 ( 2n)!
(2) n(n 1)(2i) n
n2
2 n 1 lim 1 z z z ( 3) n
n1 n ( z z ) 的敛散性。 [例61] 讨论级数 n0
级数收敛半径
[例62] 求下列级数的收敛半径。 (1) (cos(in))z
n 1 n
zn ( 2) n n a ib n1
(a 0, b 0)
n 2n ( 3 4 i ) z ( 3) n1
二、解析函数举例
[例 20]
解析与可导
[例23] 讨论函数 f ( z) 3 z 2 z 2 在复平面上何处 可导?何处解析?
[例24] 讨论函数
1 z
在复平面上何处可导?何处解析?
[例25] 讨论函数 f ( z) ( x 2 y 2 x) i(2xy y 2 ) 在复 平面上何处可导?何处解析?