通原第7章-模数传输(3)
(数字电子技术)第7章数模与模数转换

第7章 数/模与模/数转换
7.1 概述 7.2 数/模转换 7.3 模/数转换 7.4 本章小结 7.5 例题精选 7.6 自我检测题
第7章 数/模与模/数转换
7.1 概 述
随着以数字计算机为代表的各种数字系统的广泛普及和 应用,模拟信号和数字信号的转换已成为电子技术中不可或 缺的重要组成部分。数/模转换指的是把数字信号转换成相 应的模拟信号,简称D/A转换,同时将实现该转换的电路称 为D/A转换器,简称DAC;模/数转换指的是把模拟信号转 换为数字信号,简称A/D转换,并将实现该转换的电路称为 A/D转换器,简称ADC。
当Rf=R时
uo=
uR 2n
n-1
di zi
i= 0
由上式可以看出,此电路完成了从数字量到模拟量的转 换,并且输出模拟电压正比于数字量的输入。
第7章 数/模与模/数转换
2. 集成DAC电路AD7524 AD7524(CB7520)是采用倒T型电阻网络的8位并行D/A 转换器,功耗为20 mW,供电电压UDD为5~15 V。 AD7524典型实用电路如图7.2.5所示。
第7章 数/模与模/数转换
7.3.4 常见的ADC电路
1. 逐次逼近型ADC 逐次逼近型ADC是按串行方式工作的,即转换器输出 的各位数码是逐位形成的。图7.3.6为原理框图,该电路由电 压比较器、逻辑控制器、D/A转换器、逐次逼近寄存器等组 成。
第7章 数/模与模/数转换
图 7.3.6 பைடு நூலகம்次逼近型ADC原理图
第7章 数/模与模/数转换
(2) 四舍五入法:取最小量化单位Δ=2Um/(2n-1-1), 量化时将0~Δ/2之间的模拟电压归并到0·Δ,把Δ/2~3·Δ/2之 间的模拟电压归并到1·Δ,依此类推,最大量化误差为Δ/2。 例如,需要把0~+1 V之间的模拟电压信号转换为3位二进制 代码,这时可取Δ=(2/15)V,那么0~(1/15)V之间的电压就 归并到0·Δ,用二进制数000表示;数值在(1/15)~(3/15)V之 间的电压归并到1·Δ,用二进制数001表示,并依此类推,如 图7.3.5(b)
数电电子第7章 数模(DA)和模数(AD)转换

28
D7
27
D1
21
D0
20 )
VREF R 210
9
i0
Di
2i
VREF R 210
D
模拟输出电流(流入运算放大 器虚地)与10位二进制数的数 值(即数字量)成正比,实现 了数字/模拟电流的转换
式中D为输入二进制数的数值。
接入运算放大器后,则可 将数字量转换为模拟电压,运放 的输出电压:
(二)集成D/A转换器的结构及分类
各种类型的集成DAC器件多由参考电压源,电阻网络和电子开关三个 基本部分组成。
按电阻网络的结构不同,可将DAC分成T形R-2R电阻网络DAC、倒T 形R-2R电阻网络DAC及权电阻求和网络DAC等几类。由于权电阻求和网 络中电阻值离散性太大,精度不易提高,因此在集成DAC中很少采用。T 形R-2R电阻网络DAC、倒T形R-2R电阻网络DAC中只有两种阻值的电阻, 因此最适用于集成工艺,集成DAC普遍采用这种电路结构。倒T形R-2R电 阻网络DAC在集成芯片中比T形R-2R网络DAC应用更广泛。
(二)集成A/D转换器的主要参数 1.分辨率 其含义与DAC的分辨率一样,通 常也可用位数来表示,位数越多,分辨率(有时 也称分辨力)也越高。
2.量化编码电路
用数字量来表示采样信号时,必须把它转化成某个最 小数量单位的整数倍,这个转化过程叫量化,所规定的最 小数量单位叫作量化单位,用S表示。
将量化的数值用二进制代码表示,称为编码。这个二 进制代码便是A/D转换器的输出信号。
量化的方法一般有两种形式:
1)舍尾取整法
2)四舍五入法
用舍尾取整法量化时,最大量化误差为1S,用四舍五 入法量化时,最大量化误差为S/2。所以,绝大多数ADC 集成电路均采用四舍五入量化方式。
第7章习题

第7章习题一、单选题1、(C )的特点是能够使读图者对整个二次回路的构成以及动作过程,都有一个明确的整体概念。
A、安装接线图B、屏面布置图C、归总式原理图D、展开式原理图2、( C)可以提高系统并列运行的稳定性、减少用户在低电压下的工作时间、减少故障元件的损坏程度,避免故障进一步扩大。
A、可靠性B、选择性C、速动性D、灵敏性3、相对编号常用于(A )中。
A、安装接线图B、屏面布置图C、归总式原理图D、展开式原理图4、(B )是指当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现。
A、主保护B、远后备保护C、辅助保护D、近后备保护5、下列电缆编号属于35KV线路间隔的是( B)。
A、1Y123B、1U123C、1E123D、1S1236、下列( D)属于电气设备故障。
A、过负荷B、过电压C、频率降低D、单相断线7、小母线编号中,I段直流控制母线正极用(C )表示。
A、+KM2B、-KM2C、+KM1D、-KM18、电压保护属于按(B )分类。
A、被保护的对象B、保护原理C、保护所起作用D、保护所反映的故障类型9、下列(A )表示110KV母线电流差动保护A相电流公共回路。
A、A310B、A320C、A330D、A34010、下列不属于微机保护装置人机接口主要功能的是(D )。
A、调试B、定值调整C、人对机器工作状态的干预D、外部接点输入11、( A)指正常情况下有明显断开的备用电源或备用设备或备用线路。
A、明备用B、冷备用C、暗备用D、热备用12、110KV及以下线路保护测控装置的线路电压报警为:当重合闸方式为( C)时,并且线路有流而无压,则延时10秒报线路电压异常。
A、检无压B、检同期C、检无压或检同期D、不检13、继电保护的( A)是指发生了属于它该动作的故障,它能可靠动作而在不该动作时,它能可靠不动。
A、可靠性B、选择性C、速动性D、灵敏性14、(A )是以屏面布置图为基础,以原理图为依据而绘制成的接线图,是一种指导屏柜上配线工作的图纸。
第7章 模 数(A D)与数 模(D A)转换

1. ADC0809的引脚
下。
ADC0809的引脚如图7-2所示,各引脚功能如
IN0~IN7:8通路模拟信号输入端,同一时刻 只可有一路模拟信号输入。
ADDA、ADDB、ADDC:地址信号线,输入,用 于选择控制8通路输入模拟量中的某一路工作。ADDA、 ADDB、ADDC与IN0~IN7的关系见表7-1。
2. ADC0809的结构与工作过程 ADC0809的内部结构如图7-3所示,其功能与工作 过程如下: 输入到地址锁存与译码模块的ADDA、ADDB、ADDC 三位地址信号用于决定IN0~IN7中哪一路模拟信号可以输 入,然后使地址锁存与译码模块的ALE=1,从而使IN0~ IN7中被选中的一路模拟信号经通道选择开关送达比较器 的输入端。
其中,n是可转换成的数字量的位数。所以位
数越高,分辨率也越高。例如,当输入满量程电压为5 V 时,对于8位A/D转换器,A/D转换的分辨率为5 V/255= 0.0195 V。
第7章 模/数(A/D)与数/模(D/A)转换
2) 转换时间 转换时间反映了A/D转换的速度。转换时间是启 动ADC开始转换到完成一次转换所需要的时间。目前常用 的A/D转换集成电路芯片的转换时间在微秒数量级。不同 的ADC有不同的转换时间,转换时间是编程时必须考虑的 因素。
第7章 模/数(A/D)与数/模(D/A)转换
START CLOCK
IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7
ADDA ADDB ADDC ALE
通道 选择 开关
地址锁存 和译码
定时和控制
逐次逼近 寄 存 器 SAR
DAC
8位 三态 锁存 缓冲器
ADC
VCC GND
第三章模拟信号的数字化传输

非均匀量化:所谓非均匀量化,指当信号幅度小时,量化台阶也小,信号幅度大时,量化台阶也大,以改善量化性能。
• 3.2.4 自适应差分脉冲编码调制
● 发展过程:1972年CCITT制定了G.711 64kb/s PCM语音编码标准,CCITT G.711A规 定的A律和μ律PCM采用非线性量化,在64kb/s的速率语音质量能够达到网络等级,当前 已广泛应用于各种数字通信系统中。由于它是一维统计语音信号,当速率进一步减小时, 将达不到网络等级所要求的话音质量。对于许多应用,尤其在长途传输系统中,64kb/s 的速率所占用的频带太宽以至通信费用昂贵,因此人们一直寻求能够在更低的速率上获 得高质量语音编码质量的办法。于是在1984年CCITT又提出了32kb/s标准的G.721 ADPCM 编码。ADPCM充分地使用了语音信号样点间的相关性,利用自适应预测和量化来解决语 音信号的非平稳特点,在32kb/s速率上能够给出符合公用网的要求的网络等级语音质量。
• PCM是一种最典型的语音信号数字化的波形编码方式,其系统原理,首先,在发送端 进行波形编码 (主要包括抽样、量化和编码三个过程),把模拟信号变换为二进制码
组。编码后的PCM码组的数字传输方式可以是直接的基带传输,也可以是调制后的调
制传输。在接收端,二进制码组经译码后还原为量化后的样值脉冲序列,然后经低通
P6
+
1)
8
×本段长度
第8个比较电平=本段的起始电平+(1
2
数模及模数转换器接口71DA转换器

20 8 9 11
2 3
4
1
5
6 VO
19 ILE IOUT2 12
U2
LM741
7
1 2
CS WR1 AGND
3
P27 /WR
17 18
XFER WR2 DGND
10
+12
DAC0832LCJ(20)
(c)
数模及模数转换器接口71DA转换
器
2、
主要应用在多路D/A转换器同步系统中。
DB
VCC
P27 /WR
D 0 VCC D1 D 2 VREF D3 D 4 FB D5 D 6 IOUT1 D7
19 ILE IOUT2
1 2
CS WR1 AGND
17 18
XFER WR2 DGND
DAC0832LCJ(20)
VCC VREF(-5V) -12 20
8
5
1
4
9
11
2
6 VO
3
12
U2
LM741
7
3
+12 10
当WR和2 否则
X均FER为低电平时, =L1E,2此时允许D/A转换, LE2=0,将数据锁存于DAC寄存器中
数模及模数转换器接口71DA转换 器
三、DAC0832管脚功能
引脚功能: D0~D7 数据线 ILE输入锁存允许信号
CS片选信号
U1
7 6 5 4 16 15 14 13
D0 D1 D2 D3 D4 D5 D6 D7
图 8-3 D A C 0832 引 脚 图
AGND:模拟地;数模D及模G数N转换D器:接口数71D字A转换地。
器
第7章 模数转换及数模转换

一个完整的微机闭环实时控制系统示意图
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
2
7.2 传感器
• A/D转换器是将模拟的电信号转换成数字信号。所以将物理量 转换成数字量之前,必须先将物理量转换成电模拟量。传感 器是把非电量的模拟量(如温度、压力、流量等)转换成电 压或电流信号。 • 因此,传感器一般是指能够进行非电量和电量之间转换的敏 感元件。传感器的精度直接影响整个系统的精度,如果传感 器误差较大,则测量电路、放大电路以及A/D转换电路和微机 的处理都会受到影响。 • 物理量的多样性使得传感器的种类繁多,下面对几种常用的 传感器作以简单的介绍。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
15
1.DAC 0832主要特性 . 主要特性
• • • • • • • • • • 8位分辨率, 电流型输出, 外接参考电压-10V~+10V, 可采用双缓冲、单缓冲或直接输入三种工作方式, 单电源+5V~+15V, 电流建立时间1µs, R-2R T型解码网络, 线性误差0.2%FS(FS为满量程), 非线性误差0.4%FS, 数字输入与TTL兼容。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
3
1.温度传感器 .
• 热电偶是一种大量使用的温度传感器,它是利用热电势效应 来工作的,室温下的典型输出电压为毫伏数量级。温度测量 范围与热电偶的材料有关,常用的有镍铝-镍硅热电偶和铂铑铂热电偶。热电偶的热电势-温度曲线一般是非线性的,需要 采取措施进行非线性校正。 • 另一种温度传感器为热敏电阻,它是一种半导体新型感温元 件,具有负的电阻温度系数,当温度升高时,其电阻值减小, 在使用热敏电阻作为温度传感器时,将温度的变化反映在电 阻值的变化中,从而改变电压或电流值。
北邮通信原理课件 第7章 7.9

■
N q = E ⎡ m − mq ⎢ ⎣
= ∑∫
i =1 M mi m i −1
(
)
2
⎤ = b x−m q ∫a ⎥ ⎦
2பைடு நூலகம்
(
) f ( x ) dx
2
( x − qi ) f ( x ) dx
b
■
S0 = E ⎡ m 2 ⎤ = ∫ x 2 f ( x ) dx ⎣ ⎦ a
9
7.9.3 均匀量化器例(1)
∆v = 0.5V
mi = −4 + 0.5i , i = 0,1,… ,16 qi = −3.75 + 0.5i , i = 0,1,… ,15
抽样值
2.1 2.25 12 1100 30
3.2 3.25 14 1110 32
-0.75 -0.75 6 0110 12
qi
量化级序号 二进制编码 四进制编码
24
7.9.3 µ 律15折线
对µ = 255 压扩特性的近似
z x=(2i-1)/255
段落 斜率
0
0
1 32
1 8 1 255 2 16
2 8 3 255 3 8
3 8 7 255 4 4
4 8 15 255 5 2
5 8 31 255 6 1
6 8 63 255 7
7 8 127 255 8
5
7.9.3 标量量化基本原理
量化误差(量化噪声): eq ( nTs ) = x( nTs ) − y( nTs )
eq = x − yk = x − Q ( x ) ~ 随机变量
量 化 噪声平均功率 (方差)
2 N q = E ⎡ eq ⎤ ⎣ ⎦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
A律正输入值编码表(续)
7
PCM编码码位的选择
位数的选择:位数越多,量化分层越细,量 化噪声越小。(语音:7~8位) 码位的安排
极性码:第一位 段落码:第二至四位,代表13折线中的8个段落 段内码:第五至八位,代表每一段落内的16个均 匀划分的量化间隔 压缩、量化、编码一体化
8
PCM编码举例
正极性 部分
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
负极性 部分
最高位表示信号极 性,其余码表示绝 对值,可简化编码 过程 误码对小信号影响 较小
9
10
11
12
PCM通信系统的组成
数字基带传输
编码:把模拟信号的抽样量化值变换成代码 译码:编码的逆过程
1
PCM中的编码
码型的选择:
自然二进码(NBC) 折叠二进码(FBC):PCM系统中选择的码型。 格雷码(RBC)
位数的选择:
8位
编码方法:
M1:代表信号的极性,“1”代表正极性,“0”代表负极性。 M2M3M4:段落码,代表8个段落的起始电平值。 M5M6M7M8:代表任一段落内的16个量化电平值。
例如:假定最小量化间隔为2个归一化电平,输入量化器的信号 幅度 x = 1250个归一化电平,求A律PCM编码输出的码组,计 算量化误差。 解:x=1250>0, M1 = 1, 1250>1024, x属于 第6段,M2M3M4 = 110; 第6段内的量化间隔为64, 1024+64×3<1250<1024+64×4 或者 1216<1250<1280, 即x属于第6段第3个量化间隔,即M5M6M7M8 = 0011; 量化电平为1248;对应的量化误差为 1250 - 1248 = 2。
2
三 种 编 码
3
PCM编码码型的选择
量化级
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
样值极性
自然二进码 折叠二进码
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
4
A律PCM编码的段落起点电平与量化间隔
各段的起点电平(假定最小量化间隔为2)
段落 起点 电平
0 0
1 32
2 64
3 128
4 256
5 512
6 1024
7 2048
每段均匀分为16个量化间隔,各段的量化间隔:
段落 0 1 2 3 4 5 6 7
量化间 隔
2
2
48Βιβλιοθήκη 163264
128
5
A律正输入值编码表