原子物理学课后习题详解第6章(褚圣麟)

合集下载

原子物理学,褚圣麟第六章

原子物理学,褚圣麟第六章

2
1 1 1 1 ( 1) 1(1 1) ( 1) 2 2 2 2 2 g1 1 1 1 3 2 ( 1) 2 2
第 六 章 在 磁 场 中 的 原 子
M
M2 g 2
3 2 6 5
1 2 3 5

1 2

3 2
M
2

3 2
,
1 2

3 5

6 5
M1
h
c
3 .4
第 六 章 在 磁 场 中 的 原 子
1. 可测原子的基态的 g 值. 2. 原子处在磁场为单峰, 固体出现多个共振峰.
3. 波谱精细结构用于研究分子、固体、液体结构.
4. 超精细结构: 用于测量原子核的角动量量子数. 晶体顺磁共振吸收曲线
2l 1 个
超精细结构
(一个峰裂成几个挨近的峰)

PJ
洛伦兹单位
L
eB 4 π mc
d
dP
第 六 章 在 磁 场 中 的 原 子
附加能量
2
E Mg B B
15 g 1 4 3
例 求 P3 2 在磁场中能级的分裂。
L 1, s 1 2 , J 3 2
2 3 4 4 5 3 2
M
3 2

第 2. 原子受磁场作用的附加能量 六 e 章 E J B cos g PJ B cos 2m 在 B h 磁 J PJ cos M , 2π 场 中 M J , J 1, , J . 的 原 附加能量 E Mg B B 子 光谱项差 eh B T E hc Mg MgL 4 π m hc

原子物理学习题答案(褚圣麟)详解

原子物理学习题答案(褚圣麟)详解

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p ZeMv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.4钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。

原子物理学(褚圣麟)课后答案

原子物理学(褚圣麟)课后答案

原子物理学(褚圣麟)课后答案原子物理学习题解答原子物理学习题解答原子物理学习题解答原子物理学习题解答刘富义刘富义刘富义刘富义编编编编临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系临沂师范学院物理系理论物理教研室理论物理教研室理论物理教研室理论物理教研室第一章原子的基本状况1.1若卢瑟福散射用的粒子是放射性物质镭放射的,其动能为电子伏?''C67.6810?特。

散射物质是原子序数的金箔。

试问散射角所对应的瞄准距离多大?79Z?150 b解:根据卢瑟福散射公式:20022cot4422KMvbbZeZe得到:米2192150152212619079(1.600)3.97104(48.510)(7.681010)ZectgctgbK式中是粒子的功能。

212KMv1.2已知散射角为的粒子与散射核的最短距离为??,试问上题粒子与散射的金原子核2202121()(1)4sinmZerMv之间的最短距离多大?mr 解:将1.1题中各量代入的表达式,得:mr2min202121()(1)4sinZerMv1929619479(1.010)1910(1)7.68101.6010sin75米143.02101.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个电荷而质量是质子的e?两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为。

当入射粒子的动能全部转化为两180?粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:,故有:220min124pZeMvKr2min04pZerK???米19291361979(1.6010)9101.410101.6010由上式看出:与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代minr替质子时,其与靶核的作用的最小距离仍为米。

《原子物理学》(褚圣麟)第六章_磁场中的原子

《原子物理学》(褚圣麟)第六章_磁场中的原子

E eB Mg MgL 光谱项差: T hc 4mc
e 1 洛仑兹单位: L B 0.47 cm B 4mc
第6章 在磁场中的原子
结 论
E Mg B B
1.原子在磁场中所获得的附加能量与B成正比;
2.因为M取(2J+1)个可能值,因此无磁场时的原子
的一个能级,在磁场中分为(2J+1)个子能级。
1 2

第6章 在磁场中的原子 原子 Su, Cd, Hg,, Pb
史特恩-盖拉赫实验结果
g — — Mg 0 相片图样
基态
1
S0 P0 S1 / 2 P1/ 2 P2 P1 P0
Su,
Pb
3 2 2 3
0
H, Li, Na, K
Cu, Ag,, Au Tl
2
1
1 3
2/3 3/2
3 3, ,0 2
1 dB L 2 1 dB L 2 S ( ) z ( ) Mg B 2m dZ v 2m dZ v
M J , J 1, J
原子态为2s+1Lj的原子将分裂为2j+1束。 如实验中使用基态氢原子、银原子,基态原态 所以进入非均匀磁场中要分裂为两束。
2
S1 / 2 , M
PJ
E J B J B cos
B

J
e E g p J B cos 2m
h p J cos M M 2
磁量子数: M J , J 1, J 共(2J+1)个
第6章 在磁场中的原子
e E Mg B Mg B B 2m
e L g B B, 2me
J e g g 2me PJ

原子物理学课后答案(褚圣麟)第3章第4章第6章

原子物理学课后答案(褚圣麟)第3章第4章第6章

第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。

3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。

因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。

试证明之。

证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。

所以,可以将上式的根式作泰勒展开。

只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细

1.1解:根据卢瑟福散射公式:可能达到的最粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:79 (1.60 10 19 )213 6诂 1.14 10 一1310 6 1.60 10 _19由上式看出:r min 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核 代替质子时,其与靶核的作用的最小距离仍为1.14 10“米。

1 .原子的基本状况ctg0—b = 4- 2 Ze 2「b Ze 2得到:e24二;°K79 (1.60 1019)2ctg 曹6…,小二915 r(4 二 8.85 10-12) (7.68 106 10J9^ 3.97 10 米 式中K 一. =2 Mv 2是〉粒子的功能。

1.2已知散射角为二的:•粒子与散射核的最短距离为212 Z e 2 1r m =()77^(1-),4 二; 试问上题:•粒子与散射的金原子核之间的最短距离r m 多大?212 Ze 21解:将1.1题中各量代入r m 的表达式,得:r min = ()^(1)192=9 109 I :。

俨寫10)。

靑心02 10_14 米1.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核解:当入射粒子与靶核对心碰撞时,散射角为180:。

当入射粒子的动能全部转化为两1 Mv 2Ze 24 二;0 r min,故有:r minZe 2oK p1・7能量为3.5兆电子伏特的细「粒子束射到单位面积上质量为1.05 10-公斤/米2的银 箔上,:•粒解:设靶厚度为t '。

非垂直入射时引起:粒子在靶物质中通过的距离不再是靶物质的 厚度t ',而是t=t '/si n60,,如图1-1所示。

因为散射到与之间茁立体角内的粒子数dn 与总入射粒子数n 的比为:式中立体角元 d ; -ds/L 2,t =t '/sin60° =2t '/-3门-20°N 为原子密度。

原子物理学习题答案(褚圣麟)很详细

原子物理学习题答案(褚圣麟)很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。

非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。

因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。

(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。

解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。

钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。

(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。

解:裂开后的谱线同原谱线的波数之差为:mcBe g m g m v πλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。

对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。

mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。

特斯拉。

00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

解:在弱磁场中,不考虑核磁矩。

2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。

6.4 在平行于磁场方向观察到某光谱线的正常塞曼效应分裂的两谱线间波长差是οA 40.0。

所用的磁场的B 是2.5特斯拉,试计算该谱线原来的波长。

解:对单重项(自旋等于零)之间的跃迁所产生的谱线可观察到正常塞曼效应。

它使原来的一条谱线分裂为三条,两个σ成分,一个π成分。

π成分仍在原来位置,两个σ成分在π成分两侧,且与π成分间的波数间隔都是一个洛仑兹单位L 。

又2/)1(~,1~λλλλ∆-=∆=∆=vv符号表示波长增加波数减少。

根据题设,把λ∆近似地看作σ成分与π成分间的波长差,则有:L v=∆=∆2/~λλ 其中mc Be L π4/=2D 3/22P 1/2有磁场-3/2-1/2 M 3/2 1/21/2因此,ολλA L5.4140101405.47=⨯≈∆=-米 6.5氦原子光谱中波长为)2131(1.66781121P p s D d s A →ο及)2131(1.70650311P p s S s s A →ο的两条谱线,在磁场中发生塞曼效应时应分裂成几条?分别作出能级跃迁图。

问哪一个是正常塞曼效应?哪个不是?为什么?解:(1)1,0,1,2,2,0,22221=±±====g M J S L D 谱项:。

1,0,1,1,0,11111=±====g M J S L P 谱项:L v)1,0,1(~+-=∆。

可以发生九种跃迁,但只有三个波长,所以ολA 1.6678=的光谱线分裂成三条光谱线,且裂开的两谱线与原谱线的波数差均为L ,是正常塞曼效应。

(2)对2,0,1,1,1,02213=±====g M J S L S 能级:00,0,0,1,1111103======g M g M J S L P ,能级:对L v )2,0,2(~+-=∆,所以ολA 1.7065=的光谱线分裂成三条,裂开的两谱线与原谱线的波数差均为2L ,所以不是正常塞曼效应。

6.6 2/122/1233S P Na →原子从跃迁的光谱线波长为οA 5896,在B=2.5特斯拉的磁场中发生塞曼分裂。

问从垂直于磁场方向观察,其分裂为多少条光谱线?其中波长最长和最短的两条光谱线的波长各为多少οA解:对于32,21,21,21,13222/12=±====g M J S L P 能级: 对于2,21,21,21,03112/12=±====g M J S L S 能级: L v )34,32,32,34(~--=∆,所以从垂直于磁场方向观察,此谱线分裂为四条。

根据塞曼效应中裂开后的谱线同原谱线波数之差的表达式:2/)1(~λλλ∆-=∆=∆v,L v 34/~2=∆=∆λλ 因此,波长改变λ∆为:ολλA L 54.0342==∆所以,最长的波长m ax λ为:ολλλA 54.5896max =∆+=最短的波长min λ为:ολλλA 46.5895min =∆-=6.7 S P Na 33→原子从跃迁的精细结构为两条,波长分别为5895.93埃和5889.96埃。

试求出原能级2/32P 在磁场中分裂后的最低能级与2/12P 分裂后的最高能级相并合时所需要的磁感应强度B。

解:对;34,21,23,23,21,12/32=±±====g M j s l P 能级: ;32,21,21,21,12/12=±====g M j s l P 能级:磁场引起的附加能量为:B mheMgE π4=∆ 设,,,2/122/122/32S P P 对应的能量分别为012,,E E E ,跃迁,,2/122/122/122/32S P S P →→产生的谱线波长分别为12,λλ;那么,οολλA A 93.5895,96.588912==。

P 2能级在磁场中发生分裂,,,2/122/32P P 的附加磁能分别记为12,E E ∆∆;现在寻求1122E E E E ∆+=∆+时的B 。

B mehg M g M E E E E π4)(22112112-=∆-∆=- 由此得:21121122()4E E E E eBM g M g hc hc mcπ-∆-∆==- 即:mceBg M g M πλλ4)(11221112-=-因此,有:)11(14122211λλπ--=g M g M e mc B其中2,312211-==g M g M ,将它们及各量代入上式得: B=15.8特斯拉。

6.8 已知铁的原子束在横向不均匀磁场中分裂为9束。

问铁原子的J 值多大?其有效磁矩多大?如果已知上述铁原子的速度秒米/103=v ,铁的原子量为55.85,磁极范围03.01米=L ,磁铁到屏的距离 10.02米=L ,磁场中横向的磁感应强度的不均匀度310=dydB特斯拉/米,试求屏上偏离最远的两束之间的距离d 。

解:分裂得条数为2J+1,现2J+1=9。

所以J=4,有效磁矩3为:B J J J J g P megμμ)1(2+== 而52)1(=+J J对D 5原子态:23,2,2===g S L ,因此2231021.653米安⋅⨯≈=-B J μμ 与第二章11题相似,22122122011',/,,v L L dy dB m Mg v L L dy dB m v v L tg L S N A m tg v vvL dy dB m v vL t dy dBm m f a at v B y FeFe y y μμθθμμ-=======∴====⊥⊥⊥⊥而将各量的数值代入上式,得:310799.1'-⨯=S 米原子束在经过磁场1L 距离后,偏离入射方向的距离:B Mg vL dy dB m S μ21)(21⋅-= 其中,0,1,2,3,4±±±±=M ,可见,当4±=M 时,偏离最大。

把4-=M 代入上式,得:B Fe v L dy dB A N S μ234)(2210⨯⋅⋅=把各量的数值代入上式,得:31079.2-⨯=S 米。

所以:31018.9)'(2-⨯=+=S S d米。

6.9 铊原子气体在2/12P 状态。

当磁铁调到B=0.2特斯拉时,观察到顺磁共振现象。

问微波发生器的频率多大?解:对2/12P 原子态:32,21,21,1====g J S L 由B g hv B μ=得h B g vB /μ=代入各已知数,得19109.1-⨯=秒v 。

6.10 钾原子在B=0.3特斯拉的磁场中,当交变电磁场的频率为9104.8⨯赫兹时观察到顺磁共振。

试计算朗德因子g ,并指出原子处在何种状态?解:由公式B g hvB μ=,得:2≈g钾外层只有一个价电子,所以s l s l j s -+==或,21又)1(2)1()1()1(1++++-++=j j s s l l j j g将s j l g -==和2代入上式,得到:2)1(2)1()1)(()1(1=++++---++=j j s s s j s j j j g整理,得:0)1(2=--+s j s j当21=s 时,上方程有两个根:1,2121-==j j 当21-=s 时,上方程有两个根:1,2143-=-=j j由于量子数不能为负数,因此432,,j j j 无意义,弃之。

2121211=∴=+===∴l l j j j 因此钾原子处于212S 状态。

6.11 氩原子(Z=18)的基态为01S ;钾原子(Z=19)的基态为212S ;钙原子(Z=20)的基态为01S ;钪原子(Z=21)的基态为232D 。

问这些原子中哪些是抗磁性的?哪些是顺磁性的?为什么?答:凡是总磁矩等于零的原子或分子都表现为抗磁性;总磁矩不等于零的原子或分子都表现为顺磁性。

而总磁矩为B J J J J g P megμμ)1(2+== 氩原子的基态为01S :00,0,0====J J S L μ所以有故氩是抗磁性的。

同理,钙也是抗磁性的。

钾原子的基态为212S :02,21,21,0≠====J g J S L μ,所以有,故钾是顺磁性的。

钪原子的基态为232D :054,23,21,2≠====J g J S L μ,所以有,故钪是顺磁性的。

6.22 若已知钒(F 4),锰(S 6),铁(D 5)的原子束,按照史特恩-盖拉赫实验方法通过及不均匀的磁场时,依次分裂成4,6和9个成分,试确定这些原子的磁矩的最大投影值。

相关文档
最新文档